
Scheduling Acyclic Branching Programs
on Parallel Machines∗

Marius Bozga, Abdelkarim Kerbaa and Oded Maler
VERIMAG

2 av. de Vignates, 38610 Gières, France.
{bozga,kerbaa,maler}@imag.fr

Abstract

In this paper we address the following problem: given an
acyclic program scheme with if-then-else control structures,
together with the duration of each procedure, and given an
architecture consisting of n identical processors, compute
offline a scheduling policy that will guarantee minimal ex-
ecution time (in the worst-case) for the entire program on
this architecture. Since this is a problem of scheduling un-
der uncertainty (the results of the branching decisions are
not known in advance) it cannot be solved in a satisfac-
tory manner using static or fixed priority schedulers but
rather requires a state-dependent scheduling strategy. We
use timed automata technology to derive such strategies us-
ing algorithms for finding shortest paths on game graphs.

1. Motivation

The class of real-time applications that motivates this
work consists of systems that interact with a physical en-
vironment and that have to perform computation based on
sensory inputs that arrive on a periodic basis. Typical appli-
cation domains include signal processing, such as radar, and
realization of control loops in avionic and automotive do-
mains. The philosophy underlying the development of such
systems is a bit different from that used in the “operating
systems” genre of real-time systems research.

To begin with, and in contrast with other approaches
where the computations to be performed are modeled as in-
dependent tasks, whose only interaction is via conflicting
demands for resources, we view tasks as admitting inter-
relationships such as precedence and conditional depen-
dency. For example, various control tasks may need to wait

∗ This work was partially supported by the European Community
projects IST-2001-35304 AMETIST (Advanced Methods for Timed
Systems), IST-2001-38117 RISE (Reliable Innovative Software for
Embedded Systems) and IST-2001-33520 CC (Control and Compu-
tation) and by a grant from Intel.

for the results of some filtering algorithm before being exe-
cuted and, moreover, different outcomes of the algorithm
may invoke different follow-up computations. Secondly,
unlike interactive systems, the major occupation of the class
of systems we consider is with periodic, rather than ape-
riodic, computations. Finally such systems typically avoid
the scheduling services of real-time operating systems, al-
beit their potential performance amelioration. This is partly
due to historic reasons and partly because in safety-critical
applications, being predictable with respect to timing is con-
sidered important while dynamic scheduling policies are
perceived as risky and hard to validate. The main goal of
this paper is to introduce a scheduling methodology which
is appropriate for this type of applications (other efforts in
this direction have been made within the time-triggered ar-
chitecture [KB03]).

To explain better our point of departure, let us fo-
cus on the development process of control programs writ-
ten using the synchronous data-flow language Lustre,
a special-purpose language tailored for control applica-
tions [HCRP91]. Lustre underlies the commercial pro-
gramming environment SCADE, used for writing parts of
the control loops of the Airbus. The philosophy of Lus-
tre is quite simple. Instead of programming by hand the
various tasks that realize the control loops, and delegat-
ing the handling of their invocation and inter-dependencies
to a real-time operating system, the whole application is
written in a uniform and modular data-flow style which re-
sembles the block diagrams used by control engineers.
In fact, Lustre is very similar to the discrete-time sub-
set of Simulink and an automatic translator from Simulink
to C via Lustre has been introduced recently [CCM+03].
During compilation this high-level description is trans-
formed into a single C program that runs on the target ma-
chine, with a minimal intervention of an operating system
(only I/O and real-time clock services are needed). The ad-
vantage of this approach is summarized by the the slogan
“what you compile is what you execute”: the whole opera-
tional semantics resides inside the program itself rather than

being shared with some third-party software with an ob-
scure semantics.

The Lustre compiler generates a single loop C code
without too much effort to optimize execution time using
scheduling. While this is not such a big issue in critical sys-
tems such as in avionics, where the the total computation
time of the control loop does not exceed the platform ca-
pabilities, other domains which are more computationally
expensive (signal processing) or that use cheaper execution
platforms (automotive, consumer electronics) require more
aggressive scheduling without compromising semantic clar-
ity.

As a starting point we consider an acyclic program which
has to be invoked periodically and perform some set of
inter-related tasks. We want to minimize the execution time
of this program assuming an execution platform with a
given number of identical processors. Finding this mini-
mum allows us to determine the highest frequency in which
the program can be executed. In real-time systems the prob-
lem is sometimes posed in a slightly different form where
the frequency is specified (typically using “deadline” and
“release time” constraints) and a schedule is sought that sat-
isfies these constraints. Since in our search-based approach
there is not much difference between optimization and con-
straint satisfaction problems, we prefer to concentrate on the
former which is more generic. As the reader will see, adding
constraints to our approach will only reduce the degrees of
freedom of the scheduler and will facilitate the search for
the optimal scheduling strategy.1

We assume that the (worst-case) execution times of all
atomic tasks are known and that the only uncertainty in
the system is due to the fact that not all tasks need to
be executed at every invocation (instance) of the program.
Whether or not some task should be executed is not known
in advance but is revealed as the computation goes on.
Hence the program admits a finite number of execution
“scenarios”, each corresponding to a subset of the set of
tasks.

A naive approach to solve this problem would be to enu-
merate all instances and solve a (deterministic) scheduling
problem for each of them, but this approach ignores the dy-
namic nature of the uncertainty and assumes a “clairvoy-
ant” scheduler who sees into the future. The optimal sched-
ule achieved by such a scheduler gives only a lower-bound
on the worst-case computation time of the entire program.

1 The problem of scheduling a Lustre program realizing a multi-rate
control system with tasks that need to be executed periodically with
different periods can be transformed into a similar acyclic schedul-
ing problem using the following standard transformation. Suppose
we have k tasks, p1, . . . pk with (normalized) respective periods
π1, . . . , πk . Let π be the least common multiplier of π1, . . . , πk . We
then construct a “main loop” of the program with π/πi copies for each
task pi, with some additional constraints on the duplicate tasks so that
they are forced to execute in their corresponding sub-cycles.

On the other hand, the fact that the uncertainty is bounded
allows us to compute a dynamic scheduling strategy offline,
without the overhead associated with online re-scheduling.
The scheduler can then be implemented as a simple add-on
to the compiled code which is invoked when tasks termi-
nate and decides, based on a pre-computed look-up table,
which tasks to execute next (or to wait for the next event).
In the next section we give a more detailed yet intuitive ex-
planation of the abstract problem that we solve.

2. Introduction

Consider the following program scheme:

prog1: input y
x0 := f0(y)
x1 := f1(y)
if x0 = 0
then

x2 := f2(y)
x3 := f3(y)
x4 := f4(x2, x3)

Each fi is a function (task) with a known computation time.
All functions except f4 depend only on some inputs avail-
able when the program is invoked and hence can be exe-
cuted immediately. The functions have no side effects and
their only dependencies are via argument passing. Using
data-flow analysis we can deduce that f4 cannot be executed
before both f2 and f3 terminate. In addition, these three
statements are executed conditionally, only if x0 = 0 holds,
a fact to be revealed only after the termination of f0. The
whole situation can be captured by the conditional prece-
dence graph of Figure 1 where each statement xi := fi is
represented as a task pi with a given duration and the con-
dition x0 = 0 is modeled as a special Boolean task b with
a zero duration. The precedence constraints between tasks
are drawn as arrows and the conditional invocation of p2,
p3 and p4 is represented by their inclusion in the left side of
the to b or not b box.2

Suppose we want to execute this program as quickly as
possible on an architecture with two processors, assuming
that communication is for free.3 At time t = 0 we have two
tasks, p0 and p1, ready and we can start executing both. If
after the termination of p0 at t = 3, b evaluates to false,
then all we need to do is to wait for the termination of p1

at t = 7. If, however, b evaluates to true, p2 and p3 be-
come enabled, but since p1 still occupies one processor (we

2 Unfortunately not all conditional precedence graphs can be drawn so
neatly.

3 This assumption can be relaxed at the price of complicating the pre-
sentation as well as the computation (because some of the symmetry
in the system is lost).

¬bb

p1

p2 p3

p4

22

8

7 3

p0

Figure 1. A conditional task graph represen-
tation of the program.

p0
p1

7

p0
p1

¬b

s1(¬b)

s2(¬b)

10

p0 p2
p3

p4

p0
p1

p3p2 p4

p1

13

b

s1(b)

s2(b)

15

s1

s2

Figure 2. The results of applying strategies s1

and s2 to instances b and ¬b.

assume no preemption), we can only execute them sequen-
tially, a fact that will delay the execution of p4 resulting in
termination at t = 15. The only reasonable alternative to
this strategy is to postpone the execution of p1 until t = 3
and then base our decision on the evaluation of b. If it turns
out to be false, we start p1 and terminate with a slight delay
at t = 10. If, however, b is true, we have two free proces-
sors on which we can execute p2 and p3 in parallel and only
then execute p1 and p4 and terminate at t = 13. The sched-
ules obtained by these two strategies (we call them s1 and
s2, respectively) on the two cases (b and ¬b) are illustrated
in Figure 2.

Which strategy do we prefer? The answer depends on
our evaluation criteria. If we want to be optimal with re-
spect to the worst case, we will prefer strategy s2 because
max{10, 13} < max{7, 15}. If, however, we estimate the
probability of b to be true by λ ∈ [0, 1] and want to opti-
mize with respect to the average case, we should compare
the expected termination times of the two strategies, that
is, (1 − λ) · 10 + λ · 13 and (1 − λ) · 7 + λ · 15, in or-
der to choose. It is not hard to see that s1 is preferable when
λ < 3/5 and that s2 is preferable otherwise.

In this paper we build a framework in which problems
of this kind can be formulated and solved. It consists of the

following ingredients:

1. A formal model, conditional precedence graphs, for
describing sets of tasks related by precedence con-
straints and conditional execution.

2. A translation between such models into timed game
automata such that all feasible schedules correspond
to runs of the automaton. Optimal scheduling is then
phrased as finding shortest paths in these automata.

3. Reduction of this problem to finding shortest paths in
discrete weighted game graphs.

4. Development of a heuristic forward search algorithm
that can find nearly-optimal solutions for that problem.

A prototype implementation of this framework has been
built and experiments with randomly-generated instances of
the problem have been performed.

3. Conditional Precedence Graphs

The task graph (see, [KI99]) is a commonly used model
for describing precedence constraints between tasks. It is es-
sentially a triple G = (P,≺, d) where P is a set of tasks,
≺ is a strict partial-order relation on P with the intended
meaning that p ≺ p′ if p′ cannot be executed before the
termination of p, and d : P → N is a duration function
specifying the execution time of each task. The task graph
scheduling problem is concerned with finding an optimal
schedule for such tasks on a given number of identical ma-
chines. In [AKM03] we have shown how to translate this
problem into finding shortest paths in timed automata, and
were able to find optimal and nearly-optimal schedules for
graphs with several thousands of tasks. Since our approach
is based on search, it was also easy to incorporate addi-
tional features such as deadline and release time constraints
into our tool. In this section we extend this model to ex-
press conditional execution. This is done by introducing a
special type of Boolean tasks with the following features:
1) They can be preceded by other tasks; 2) They take zero
time to execute;4 3) They terminate with a result which is
either true or false; 4) The execution of other tasks may de-
pend on the results of the Boolean tasks;

To express the activation conditions of tasks we will use
functions over a set B of Boolean variables that encode
the results of the Boolean tasks. To simplify the presenta-
tion we restrict ourselves to the class F(B) of functions
that can be written as a conjunction of positive and nega-
tive occurrences (literals) of distinct Boolean variables, e.g.

4 This can be relaxed if testing the condition takes non-negligible
amount of time, but such tests can be decomposed into an ordinary
task and a zero duration test.

b1 ∧ ¬b2 ∧ b3. We denote by V (f) the set of variables ap-
pearing in f . The partial order on Boolean functions is de-
fined as f ≤ f ′ if for every Boolean vector v, f(v) ≤ f ′(v).
Syntactically this means that the set of literals in f is a su-
perset of those of f ′. We say that f and f ′ are contradictory
if f ∧ f ′ = false, which is the case when at least one vari-
able appears positively in one and negatively in the other.
Note the conjunctions can be evaluated to true only if all
variable values are known, while their falsity can be some-
times deduced from partial information.

Definition 1 (Conditional Precedence Graphs)
A conditional precedence graph (CPG) is G = (P, B,≺
, A, d) where P = {p1, . . . , pn} is a set of tasks, B =
{b1 . . . , bm} is a set of Boolean tasks, ≺ is a strict partial
order precedence relation on P ∪ B, A : P ∪ B → F(B)
is an activation function assigning a Boolean function over
B to every task, and d : P → N specifies task durations.

We use notation Ap for A(p) and say that task p is less
general than p′ if Ap < Ap′ . We denote this fact by p <

p′. We say that a Boolean task b influences a task p if b ∈
V (Ap) and denote it by b ⇀ p.

Definition 2 (Consistent CPG) A CPG is consistent if the
following holds for every b ∈ B, and p ∈ P ∪ B:

• No speculation: if b ⇀ p then b ≺ p. No task can be
executed before it is known whether it has to be exe-
cuted.5

Remark: We allow consistent CPGs to include precedence
p′ ≺ p when p′ < p, that is, p may depend on a task p′

which might not be executed in all situations where p is. We
interpret it as a conditional dependency, that is p′ needs to
wait for p only when Ap evaluates to true. Nevertheless, we
disallow precedence between tasks whose activation func-
tions are contradictory.

The definition of a feasible schedules for ordinary deter-
ministic task-graph problems is simple. It is an assignment
of start times to all tasks such that precedence constraints
are satisfied and that the number of tasks active simultane-
ously at every moment is bounded by the number of ma-
chines. The adaptation of the definition to CPGs is more
involved because different values of the B variables corre-
spond to different sets of tasks to be executed.

An instance of the scheduling problem is an augmented
Boolean vector v : B → {0, 1, ?} where v(b) = ? (“don’t

5 This assumption can be relaxed if we want to move to the realm of
speculative execution, used extensively in hardware. The idea is that if
you have many processors you may save time by executing alternative
conditional branches in parallel and then using only the outcome of
the branches that really need to be executed. In that case we replace
non-speculation with the weaker non circularity condition: if p � b
then b 6⇀ p. In other words, the termination of a task cannot be pre-
requisite for determining whether it is to be executed.

care”) indicates that Ab(v) is false and b need not be exe-
cuted. Such situations may occur when the program admits
nested if statements. A partial instance is an instance which
may be undefined for some variables whose values are not
known yet. We say that v′ extends v if it agrees with v on all
variables defined in v. The set of tasks associated with an in-
stance v is

Pv = {p ∈ P ∪ B : Ap(v) = true}.

A schedule for an instance v is a function st : Pv → R+

indicating the start times of tasks. From st we can derive for
each task its termination time, en(p) = st(p) + d(p) and
its execution interval I(p) = [st(p), en(p)]. The number of
active tasks at time t is β(t) = |{p : t ∈ I(p)}|.

Definition 3 (Feasible Schedules) A schedule st for an in-
stance v is feasible on an architecture with k machines if

1. Precedence: for every p ∈ Pv, st(p) ≥ max{en(p′) :
p′ ∈ Pv ∧ p′ ≺ p}. A task may start only after all its
predecessors have terminated.

2. Resource constraints: for every t ∈ R+, β(t) ≤ k. No
more than k tasks may be active simultaneously.

The length of a schedule is defined as the termination
time of the last task, that is, maxp∈Pv

en(p). We would
like to obtain schedules that are optimal for all instances,
but since instances reveal themselves progressively as more
Boolean tasks are evaluated, we should restrict ourselves to
causal scheduling strategies that can base their decisions
only on information available at decision time.

In the last couple of years we have developed a frame-
work for expressing and solving dynamic scheduling prob-
lems using timed automata [A02], [AAM03], [AM02]
[AKM03]. The timed automaton is the natural tool for
modeling the evolution of the state of the scheduling prob-
lem as a result of discrete actions (starting or ending a
task, revealing the value of a Boolean task) and of the pas-
sage of time. Before describing how tasks are modeled
as timed automata, let us give an informal explana-
tion of the state-space approach to modeling scheduling
problems. At any given moment the state of a schedul-
ing problem, of the type definable by a CPG, consists of
the following information:

1. Which tasks have already been executed, and for the
Boolean tasks also what their result was.

2. Which tasks are currently executing and for how long.

3. For which tasks it is known whether they should be ex-
ecuted.

4. Which tasks, among those that should be executed, are
enabled for execution (all their predecessors have ter-
minated and not all machines are busy).

The state of the schedule determines which future evolu-
tion is possible. Passage of time increases the elapsed ex-
ecution time of active tasks and allows them eventually to
terminate. Termination of tasks may cause the evaluation of
Boolean tasks and make some other tasks enabled. Starting
a task, an action performed by the scheduler, moves a task
from the waiting list to the active list and resets its timer.
These actions belong to three categories:

1. Deterministic actions: these are actions that will al-
ways happen at certain states. They include termina-
tion of a task p exactly d(p) time after its initiation,
and the re-evaluation of a task activation function when
some new Booleans terminate.

2. Scheduler actions: these are the decisions of whether
or not to start an enabled task.

3. Adversary actions: the choices of the results of
Boolean tasks on which we have no control. Note
that they are, nevertheless, deterministic with re-
spect to time and happen immediately after they
become enabled.

A scheduling strategy is thus a function that assigns to each
state of the schedule one of the scheduler actions enabled
at this state, including the special waiting “action” which
means to do nothing and wait for the next event, while the
active tasks keep on executing.

4. Modeling with Timed Automata

Timed automata [AD94] are automata augmented with
continuous clock variables which operate in the dense time
domain. A behavior (run, execution) of the automaton con-
sists of an alternation of time passage periods where the
automaton stays in the same state and the clock values
grow uniformly, and of instantaneous transitions that can
be taken when clock values satisfy certain conditions and
which may reset some clocks to zero. In the context of
scheduling, a clock reset when a certain task was started
records at any moment the time spent so far in execution,
and its value determines the ability of the task to take the
transition that corresponds to termination.

We model scheduling problems defined by CPGs as a
product of interacting timed automata. For each ordinary
task p we construct a timed automaton Ap with four states
and one clock c as depicted in Figure 3-(a). State p? is the
initial state where it is not known yet whether p is to be exe-
cuted. Once Ap evaluates to true, the automaton moves to a
waiting state p. We can leave this state and move to the ac-
tive state p as soon as the condition Πp holds, where Πp is
a conjunction of conditions indicating that for every p′ ≺ p,
automaton Ap′ is in its terminal state. Whether or not to take
this transition when Πp holds is a decision of the scheduler

and when it is taken the clock is reset to zero. After spend-
ing d(p) time in the active state the automaton moves to the
terminal state p. If Ap evaluates to false, the automaton goes
from p? directly to p.

For each Boolean task b we build an automaton (with
no clock) Ab as in Figure 3-(b). This automaton has three
terminal states, the state b? which indicates that the activa-
tion condition of b is false and hence it is not executed, and
states b and ¬b to which the automaton may move when
its activation condition is true and all its predecessors have
terminated. As mentioned earlier, the choice between these
two transition is the source of uncertainty in the scheduling
problem.6 The evaluation of activation conditions of other
tasks that mention b is done on the basis of the states of the
corresponding Ab automata, where b? is interpreted as “un-
known” and b? as “don’t care”.

The product of all these automata (excluding states
where more than k automata are in their active state) is a
timed automaton in which every global state is a tuple con-
sisting of the state of each task, including a clock for each
task which is in its active state. The runs of this global au-
tomaton correspond to all the feasible schedules un-
der all possible scheduling strategies and all adversar-
ial choices. Readers interested in more formal details may
look at [AAM03].

To get the intuition let us look at Figure 4 which shows
a fragment of the global automaton obtained from the CPG
of Figure 1. The difference between strategies s1 and s2

is manifested in state (p0, p1) where the scheduler needs
to choose between starting p1 (left sub-automaton) or wait-
ing for the termination of p1 (right sub-automaton). The ter-
mination of p0, which leads to the choice of the value of b
(dashed arrows), happens at different states in each case. For
s1, this happens when p1 occupies one machines and con-
sequently, when b is true p2 and p3 can only be executed
sequentially, leading to a run of length 15. For s2 this hap-
pens at state p1 and both p2 and p3 can be executed in par-
allel7 leading to a schedule of length 13.

Timed automata may have an uncountable number of
executions. For example, the start1 transition from state
(p0, p1) can be taken at any time before condition c0 = 3
becomes true, i.e. anywhere in the interval [0, 3]. A key re-
sult of [AAM03] allows us to consider only a finite subset
of the runs that we call non-lazy runs. A lazy run is a run in
which at some state the scheduler hesitates some time be-
fore starting a task, while the global state remains the same
during that waiting period. Such a laziness could be use-

6 Note also that these two branches never meet again, a fact the induces a
special structure of the product automaton which distinguishes it from
other types of game graphs.

7 The fact that the start2 and start3 are executed one “after” the other
is just an artifact of the interleaving semantics; No time passes be-
tween these two transitions and they happen at the same metric time.

p?

p

p

p

Ap

Πp/c := 0

c = d(p)

¬Ap

b?

¬bb

Ab ∧ Πb Ab ∧ Πb

b?

¬Ab

(a) (b)

Figure 3. Modeling tasks with timed au-
tomata: a) ordinary tasks; b) Boolean tasks.

ful if something has changed during waiting, for example
a new task became enabled or a value of a Boolean task
was revealed. But if the delayed action is taken in the same
global state, the waiting is useless and the schedule can be
replaced by another schedule of a lesser or equal length in
which the lazy action is taken as soon as it is enabled.

Restricting the search to non-lazy runs amounts to trans-
forming the timed automaton into an ordinary finite-state
automaton with numerical weights associated with its tran-
sitions, and facilitates the application of standard shortest
path algorithms. Whenever a global state has several out-
going transitions, the continuations to consider are those in
which a start transition is taken immediately, and those in
which time (and clock values) advances by the exact amount
needed to satisfy the condition for the nearest end transi-
tion. State (p0, p1), for example, has two continuation, one
is a result of starting p1 immediately and the other is the re-
sult of waiting 3 time units until c0 = 3 and the end0 tran-
sition is taken.

5. Shortest Paths in Game Graphs

5.1. Game Graphs and Exhaustive Search

Due to the difference in the “ownership” of the start
transitions (scheduler) and the transitions of Boolean tasks
(environment), the object obtained after restricting the
timed automaton to non-lazy runs is a kind of a game
graph, also known as AND-OR graph [N71], [Z99], or al-
ternating automaton. Such a graph has two types of nodes,
OR nodes where the scheduler (“player 1”) chooses an en-
abled transition, and AND nodes where the adversary
chooses between the b and ¬b transitions. Figure 5 shows
part of the game graph for our example. The outcome of ap-
plying a particular strategy is represented as a sub-graph

c0 = 3end0

¬b b

end1

end3 c3 = 2

end1 c1 = 7

c4 = 8

end0

¬b b

end2end2

end3 c3 = 2

end1 c1 = 7

end4end4

start0

start2start1

start3

start3

start1

start4

start4

c0 = 3

c2 = 2

c0 := 0

start1

c1 := 0 c2 := 0

c3 := 0c1 = 7c2 := 0start2c1 = 7end1

c2 = 2

c3 := 0

c4 := 0

c4 = 8

c4 := 0

c1 := 0

c1 := 0

s1 s2

p0, p1

0

p0, p1

p1p0, p1

p1, 3 p1, p2, p3p1

p1, p2, p3p3p1, 3, p2, p3p1, 3

¬b p1, 3, p2, p3 ¬b p1, p2, p3

p1, p3, 2p1, 5, p3

p1, p4p1, 7, p3

p1, p4p1, 7

p1, p4p4

p4p4

bb

0

0 3

3

3

3

5

5

5

5

3

3

10

3

33

37

5

5

7

7

7 12

1315

Figure 4. Part of the global automaton for the
example of Figure 1. In the states we write
only the waiting tasks, the executing tasks
and the values of their non zero clocks. The
numbers on the lower right corners stand for
the total elapsed time to reach the state via
a non-lazy run. The branches correspond to
the schedules of Figure 2.

rooted at the initial state in which every OR state has ex-
actly one successor and every AND node has all its succes-
sors (see Figure 5). The worst case performance of such a
strategy, also known as its value, is the length of the longest
path in that sub-graph.

Since there are finitely many strategies, one could enu-
merate and evaluate all of them, but a more intelligent way
to find the optimum is to exploit the structure of the space
of strategies. Taking the left branch at q1 is the beginning
of the exploration of all scheduling strategies that decide
to wait in this state. States q5 and q6 are two possible out-
comes of this partial strategy, and any strategy that extends
it has to choose what to do in each of them. Taking the right
branch at q1 starts the exploration of the rest of the strate-
gies, each of which has to be defined for q2, and those that
take there the right branch need to be defined for q7 and q8

and so on. Note that a strategy should be defined only for
states reachable while applying that strategy.

Definition 4 (Game Automaton)
A game automaton over a set B of Boolean variables is
M = (Q, q0, Σ, δ

∨
, γ, B̄, δ

∧
) where Q = Q

∨
∪ Q

∧
is a

set of states partitioned into OR and AND states, q0 ∈ Q
∨

is the initial state, Σ is a set of actions enabled at certain
OR states, δ

∨
: Q

∨
× Σ → Q is a partial transition func-

tion on OR states, γ : Q
∨
× Σ → R+ is a cost function de-

fined for every q and σ such that δ
∨
(q, σ) is defined. The set

B̄ consists of positive and negative literals over the B vari-
ables and δ

∧
: Q

∧
×B̄ → Q is the adversary (partial) tran-

sition function, defined for each q ∈ Q
∧

for exactly one pair
of opposing literals.

We assume that the transition graph of the automaton is
acyclic and use Mq to denote the sub-automaton rooted
at state q, which represents the “residual” game which re-
mains to be played after reaching q. A state q ∈ Q

∨
is said

to be terminal if δ
∨
(q, σ) is not defined for any σ. A strat-

egy is a partial function s : Q
∨
→ Σ, represented as a sub-

graph in which for every q ∈ Q
∨

all (q, σ) transitions are
removed except for σ = s(q). A particular property of the
game graphs obtained for CPGs is that all strategies induce
sub-graphs which are trees with the same type of branch-
ing.

The computation of the optimal strategy is a by product
of computing the value function h : Q → R+ where h(q)
is the value of the best strategy for the residual game Mq .
This function is defined recursively as:

h(q) =

0 if q is terminal
minσ∈Σ γ(q, σ) + h(δ

∨
(q, σ)) if q ∈ Q

∨

max{h(δ
∧
(q, b), δ

∧
(q,¬b)} if q ∈ Q

∧

There are various ways to compute h, one of them is the
backward value iteration procedure, also known as dynamic
programming, which starts with the final states and propa-
gates values according to the definition of h until h(q0) is

defined. A forward depth-first algorithm is obtained by in-
voking h(q0) and following literally the recursive definition.
If the game graph has a tree structure, this procedure has
the same complexity as dynamic programming, however on
non-tree graphs, the algorithm can easily become exponen-
tial since the same node can be reached via many paths.
Consequently we use an algorithm that combines depth-first
search with memorization: whenever h(q) is computed for
the first time, the result is stored as E(q) and subsequent in-
vocations of h(q) are answered using this value.

Algorithm 1 (Forward Value Iteration)

integer function h(q)

if q is terminal return(0)
elsif E(q) is defined return(E(q))
elsif q ∈ Q

∨
then

begin
E:=∞
for every σ such that δ

∨
(q, σ) is defined do

E′ := γ(q, σ) + h(δ
∨
(q, σ))

E := min{E, E′}
E(q) := E
return(E)

end
elsif q ∈ Q

∧
then

begin
E:=h(δ

∧
(q,¬b))

E′:=h(δ
∧
(q, b))

E := max{E, E′}
E(q) := E
return(E)

end

The derivation of a strategy from the value function is stan-
dard: let s(q) = σ for every q ∈ Q

∨
from which the mini-

mum is obtained via the transition σ.
Algorithm 1 is (time and space) linear in the size of the

game graph but this is not of much help because the game
graph by itself is exponential in the size of the CPG. The
largest problems that we could solve with this algorithm had
up to 14 tasks and 4 Booleans. We have preferred this al-
gorithm over backward dynamic programming because it
is more easily amenable to techniques that find optimal or
nearly-optimal solutions without exploring the whole graph.

5.2. Best First Search

Techniques for pruning the search space are based on
two related ideas: 1) Do not explore paths that can easily
be shown not to lead to an improvement of the value func-
tion computed so far; 2) Replace the arbitrary depth-first
(or breadth-first) order of exploration by a more “intelli-
gent” policy, which explores the more promising successors

· · ·· · · · · ·

q0

q1

0

3
b ¬b

b ¬b

4

00

4 10

1

· · ·

q2 q3

q4 q5 q6

q7 q8

q9 q10 q11

0 3

· · · · · ·

q12

Figure 5. Part of the game graph for our ex-
ample, with AND nodes denoted by squares.
The sub-graph of strategy s2 is marked.

first. The first part of the methodology is based on an aux-
iliary estimation function µ̄(q) which approximates h(q). If
this function is optimistic, that is, µ̄(q) ≤ h(q) for every
q, we need not explore σ-successors of an OR node q sat-
isfying E ≤ γ(q, σ) + µ̄(δ

∨
(q, σ)) where E is a value ob-

tained via an already explored successor. We refer to the
above condition as a safe cutting test.

5.2.1. Estimation Functions for Conditional Scheduling
For unconditional precedence graphs, an estimation func-
tion that gives a lower bound on the time remaining until
termination from a state, can be constructed by first associ-
ating with each task p the length µ(p) of the longest path
in the CPG from p to some terminal task. Then, the estima-
tion µ̄ of the value of the global state, is the maximum of µ
over all tasks which are waiting or active in this state.

In the conditional setting this is more involved due to
precedence constraints between tasks that have different ac-
tivation conditions. Consequently the distance from a task
to termination is not a single number but is instance depen-
dent. Let µ : P × {0, 1}n → R+ be a partial function de-
fined over all v such that Ap(v) is true. When Ap(v) is false
we use the notation µ(p, v) = ⊥. The intended meaning of
µ(p, v) is the total amount of work that needs to be done
for instance v before task p has started. Since computation
of longest paths8 is done (explicitly or implicitly) within the
(max, +)-algebra we need to extend these two operations to
R+∪{⊥} by letting r+⊥ = ⊥ and max{r,⊥} = r for ev-
ery r ∈ R+.

8 The reader should not confuse the precedence graph (CPG) on which
we compute longest paths, as in PERT, with the transition graph of the
game automaton on which we seek shortest paths.

A simple way to understand this function (although not
the most efficient way to compute it) is the following: for
each instance v let Gv be the sub-graph consisting of the
tasks whose activation conditions are satisfied by v. If p
does not belong to Gv then µ(p, v) = ⊥, otherwise let
µ(p, v) be the longest path in Gv from p to termination. This
function can be computed backwards on the whole graph,
starting from terminal nodes:

µ(p, v) =

{

⊥ if Ap(v) = false
d(p) otherwise

and computing for other nodes as

µ(p, v) = d(p) + max
p′:p≺p′

µ(p′, v).

This computation can be done symbolically (and offline) us-
ing the syntax of A without necessarily enumerating all in-
stances. From µ we can define an estimation function µ̄ over
the states and clock values of the Ap automaton by letting
µ̄(p?, c, v) = µ̄(p, c, v) = µ(p, v), µ̄(p, c, v) = µ(p, v) − c
and µ̄(p, c, v) = µ(p, v) − d(p).

The function µ̄ is optimistic because it takes into account
precedence constraints but ignores resource constraints. In
other words it assumes sufficiently many machines so that
every task can be executed once all of its predecessors have
terminated. A complementary way to obtain lower-bounds
on schedule length is to ignore precedence constraints and
take into account resource constraints, that is, dividing the
total amount of work by the number of machines. The esti-
mation

νk = max
v

∑

p∈Pv

d(p)/k

is equally optimistic as it ignores the possibility that a ma-
chine can be idle at certain times because no task is enabled.
Like µ, estimation ν can be defined for global states of the
game automaton by restricting summation to tasks that have
not terminated.

5.2.2. Ordering and Sub-Optimal Solutions As for or-
dering the successors of an OR node q for the purpose of
best-first search, let us first note that they consist of at most
k start transitions (where k is the maximal width of the
CPG) and one wait transition (letting time pass until the ter-
mination of the nearest active task). A natural ordering for
the start transitions is to prefer starting pi over pj when-
ever µ(pi, v) > µ(pj , v), giving priority to tasks that lie
along the “critical path” of the problem. Although using
best-first ordering turned out to reduce the number of ex-
plored states, it did not increase the size of problems that
could be solved exactly and we need to resort to heuris-
tic methods that explore small subsets of the search space
which are not sufficient to guarantee optimality.

One class of heuristic methods would be to bound a-
priori the number of explored nodes and give the best so-
lution found until this number is reached. To avoid getting
stuck at a “local” optimum we can modify the algorithm
to explore only a fixed-size subset of size w of the succes-
sors of each node, to avoid concentration on the “left” part
of the search tree. Another type of heuristics is to replace
the safe cutting test by a more liberal one and explore nodes
only if αµ(q) < E where α is a number larger than 1 which
injects some “realism” into the optimistic estimation func-
tion. The results reported in the next section are based on a
heuristic that explores the w = 3 best (according to µ) suc-
cessors of each OR node, uses the safe cutting test and, after
exploring 80K states, switches to w = 1 to complee the ex-
ploration of some unfinished bracnches.

6. Experimental Results

We have implemented a tool which reads a CPG, trans-
lates it into a product of timed automata and then performs
best first search, with and without guarantee for optimality,
while generating states on the fly. The estimation function is
computed offline and stored as a BDD. We have tested this
algorithm on randomly generated CPGs on a 1.7GHz Pen-
tium III machine with 2GB of memory. As mentioned ear-
lier, 14 tasks and 4 Booleans is currently the upper limit for
exact methods.

Table 1 gives preliminary results and indications about
the applicability of our approach to large problems. For
each example we find sub-optimal schedules on architec-
tures with 3, 4 and 5 machines, using heuristic best first
search. Since the exact optimum for these problem is too
hard to compute, we compare these results with the lower-
bound max{µ, νk}. Note that this is not a comparison with
the real optimum but with an optimistic estimation of it. We
find the results rather encouraging as they demonstrate the
ability to compute close to optimal scheduling policies for
problems with up to 120 tasks and up to 10 Booleans. We
are confident that these results can be still improved signifi-
cantly by tuning the algorithm, and we look forward for test-
ing it on real, rather than randomly-generated, examples.

7. Discussion

We have presented a comprehensive framework for pos-
ing and solving the important problem of optimal schedul-
ing of conditional tasks. The overall structure of the pro-
posed methodology is depicted in Figure 6. Our solution
is based on the principle of starting with a rigorous model
having a well-defined semantics, and only then moving to
heuristic algorithms. Additional features such as release
times and deadlines can be added very naturally [AKM03],
as well as communication costs. Our methodology can be

Discrete game
automaton

Optimal and
sub-optimal
schedules

Architecture

(no. of machines)
description

Conditional
Precedence
Graphs

Non-lazy expansion

Product of timed
automata

Dataflow

analysis

Search
algorithm

Programs

execution times
annotated with

Figure 6. The overall methodology.

applied at any desired granularity, from simple statements
to procedures, and we believe that in the future it will pro-
vide a useful tool for compiling embedded software on par-
allel architectures and perhaps also for processor instruc-
tion scheduling. Finding the worst case optimal schedule
for a program which is to be invoked periodically can de-
termine the sampling rate (or clock rate, in hardware) with
which the program can function.

The next steps in our work are the amelioration and fine
tuning of the search algorithm and the development of a
front end for translating programs into CPGs via data flow
analysis. Further research directions include the adaptation
of the algorithm to average-case analysis, the extension of
our framework to speculative executions and the combina-
tion of the discrete uncertainty treated in this paper with
other features we have dealt with in the past, namely pre-
emption [AM02] and temporal uncertainty concerning the
duration of atomic tasks [AAM03].

This work is part of an ongoing effort to enrich schedul-
ing theory with techniques based on timed automata. The
reader is referred to [AGP99] and [STY03] for the general
approach, to [CPP+01], [KY03] and [AFM+03] for other
timed automaton based tools tailored for program schedul-
ing, to [AMPS98] for general controller synthesis for timed
automata, to [AM99], [NTY00], and [BFH+01] for algo-
rithms for finding shortest paths and optimal schedules and
to [M04] for a unified game theoretic framework for opti-
mal control in the presence of adversaries.

As for other approaches to similar problems we mention
the work of [KW02] in the context of hardware/software co-
design. Although this work is also geared toward schedul-
ing for conditional execution, it treats a much simpler prob-
lem where the only Boolean variables are clocks (in the
hardware sense) whose values do not depend on the results
of other tasks. Likewise, the approach taken in the time-
triggered architecture [KB03] does not consider dependen-
cies among tasks. It determines manually the distribution of
tasks on machines and then focuses on finding schedules for
the common bus through which they communicate.

k 3 4 5
(n,m) len time nb st dev len time nb st dev len time nb st dev
100, 6 268 2:37 119648 3.07% 198 3:26 126703 1.53% 162 4:10 141319 3.84%
100, 7 316 3:36 142602 0.00% 238 4:12 159369 0.42% 192 4:20 158961 1.05%
120, 7 357 4:15 143480 0.84% 270 6:20 182788 1.50% 218 3:40 101104 2.34%
100, 10 480 6:51 190163 2.78% 371 10:03 244199 6.00% 345 5:58 116089 3.60%

Table 1. Results for applying bounded best first search to some large examples Column len indi-
cates the worst-case length of the best solution found, time indicates computation time (in min-
utes), nb st is the number of explored states and dev is the deviation from the (optimistic) lower-
bound.

Acknowledgments Part of the motivation of this work is
due to discussions with P. Caspi and S. Tripakis concern-
ing the scheduling of Lustre programs. Helpful comments
were given by P. Niebert, A. Asarin, Ph. Gerner, S. Cot-
ton, S. Yovine, A. Curic, R. Rajkumar, I. Broster, A. Pnueli
and anonymous referess.

References

[A02] Y. Abdedaı̈m, Scheduling with Timed Automata,
PhD Thesis, INPG, Grenoble, 2002.

[AAM03] Y. Abdeddaı̈m, E. Asarin and O. Maler, Scheduling
with Timed Automata, Theoretical Computer Sci-
ence to appear, 2004.

[AKM03] Y. Abdedaı̈m, A. Kerbaa and O. Maler, Task
Graph Scheduling using Timed Automata, Proc.
FMPPTA’03, 2003.

[AM02] Y. Abdeddaı̈m and O. Maler, Preemptive Job-
Shop Scheduling using Stopwatch Automata, Proc.
TACAS’02, 113-126, LNCS 2280, Springer, 2002.

[AGP99] K. Altisen, G. Goessler, A. Pnueli, J. Sifakis, S. Tri-
pakis and S. Yovine, A Framework for Scheduler
Synthesis, Proc. RTSS’99, 154-163, IEEE, 1999.

[AD94] R. Alur and D.L. Dill, A Theory of Timed Au-
tomata, Theoretical Computer Science 126, 183-
235, 1994.

[AFM+03] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson,
and W. Yi, TIMES: a Tool for Schedulability Anal-
ysis and Code Generation of Real-Time Systems,
Proc. FORMATS’03, 2003.

[AM99] E. Asarin and O. Maler, As Soon as Possible:
Time Optimal Control for Timed Automata, Proc.
HSCC’99, 19-30, LNCS 1569, Springer, 1999.

[AMPS98] E. Asarin, O. Maler, A. Pnueli and J. Sifakis, Con-
troller Synthesis for Timed Automata, Proc. IFAC
Symposium on System Structure and Control, 469-
474, Elsevier, 1998.

[BFH+01] G. Behrmann, A. Fehnker T.S. Hune, K.G. Larsen,
P. Pettersson and J. Romijn, Efficient Guiding To-
wards Cost-Optimality in UPPAAL, Proc. TACAS
2001, 174-188, LNCS 2031, Springer, 2001.

[CCM+03] P. Caspi, A. Curic, A. Maignan, C. Sofronis and
S. Tripakis, Translating Discrete-Time Simulink to
Lustre, Proc. EMSOFT’03, 84-99, LNCS 2855,
Springer, 2003.

[CPP+01] E. Closse, M. Poize, J. Pulou, J. Sifakis, P. Venier,
D. Weil and S. Yovine, TAXYS: a Tool for the De-
velopment and Verification of Real-Time Embed-
ded Systems, Proc. CAV’01, LNCS 2102, Springer,
2001.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud,
The Synchronous Dataflow Programming Language
LUSTRE, Proc. of the IEEE 79, 1305-1320, 1991.

[KI99] K.-Y. Kwong, A. Ishfaq, Benchmarking and Com-
parison of the Task Graph Scheduling, J. of Parallel
and Distributed Computing 59, 381-422, 1999.

[KW02] A.A. Kountouris, Ch. Wolinski, Efficient Schedul-
ing of Conditional Behaviors for High-Level Syn-
thesis, ACM Transaction on Design Automation of
Electronic Systems 7, 380-412, 2002.

[KY03] Ch. Kloukinas, and S. Yovine, Synthesis of
Safe, QoS Extendible, Application Specific Sched-
ulers for Heterogeneous Real-Time Systems Proc.
ECRTS’03, 2003.

[KB03] H. Kopetz and G. Bauer, The Time-Triggered Archi-
tecture, Proc. of the IEEE 91, 112-126, 2003.

[M04] O. Maler, On Optimal and Sub-optimal Control in
the Presence of Adversaries, Proc. WODES’04, 1-
12, 2004.

[N71] N. Nilsson, Problem-Solving Methods in Artificial
Intelligence, McGraw-Hill, 1971.

[NTY00] P. Niebert, S. Tripakis and S. Yovine, Minimum-
Time Reachability for Timed Automata, IEEE
Mediteranean Control Conference, 2000.

[STY03] J. Sifakis, S. Tripakis and S. Yovine, Building Mod-
els of Real-time Systems from Application Soft-
ware, Proceedings of the IEEE 91, 100-111, 2003.

[Z99] W. Zhang, State-Space Search: Algorithms, Com-
plexity, Extensions and Applications, Springer 1999.

