
Using discrete controller synthesis for
fault-tolerant distributed systems

Alain Girault, Éric Rutten

POP ART, INRIA Rhône-Alpes

Alain.Girault@inrialpes.fr, Eric.Rutten@inrialpes.fr, www.inrialpes.fr/pop-art

Using discrete controller synthesis for fault-tolerant distributed systems – p.1/16



Motivations and context

Embedded systems (aeronautics, automotive, ...)

automatic-control/discrete-event duality:
sampled time iterations, mode switches;

critical real-time: timing constraints;
limited resources: computing, memory, power;
distributed and heterogeneous architecture

Intrinsically safety-critical systems, requiring

safe design using off-line validation
→ need for formal models e.g., transition systems

safe execution with on-line fault recovery
→ need for fault tolerance e.g., recovery

Using discrete controller synthesis for fault-tolerant distributed systems – p.2/16



Motivations and context

Embedded systems (aeronautics, automotive, ...)
automatic-control/discrete-event duality:

sampled time iterations, mode switches;

critical real-time: timing constraints;
limited resources: computing, memory, power;
distributed and heterogeneous architecture

Intrinsically safety-critical systems, requiring

safe design using off-line validation
→ need for formal models e.g., transition systems

safe execution with on-line fault recovery
→ need for fault tolerance e.g., recovery

Using discrete controller synthesis for fault-tolerant distributed systems – p.2/16



Motivations and context

Embedded systems (aeronautics, automotive, ...)
automatic-control/discrete-event duality:

sampled time iterations, mode switches;
critical real-time: timing constraints;

limited resources: computing, memory, power;
distributed and heterogeneous architecture

Intrinsically safety-critical systems, requiring

safe design using off-line validation
→ need for formal models e.g., transition systems

safe execution with on-line fault recovery
→ need for fault tolerance e.g., recovery

Using discrete controller synthesis for fault-tolerant distributed systems – p.2/16



Motivations and context

Embedded systems (aeronautics, automotive, ...)
automatic-control/discrete-event duality:

sampled time iterations, mode switches;
critical real-time: timing constraints;
limited resources: computing, memory, power;

distributed and heterogeneous architecture

Intrinsically safety-critical systems, requiring

safe design using off-line validation
→ need for formal models e.g., transition systems

safe execution with on-line fault recovery
→ need for fault tolerance e.g., recovery

Using discrete controller synthesis for fault-tolerant distributed systems – p.2/16



Motivations and context

Embedded systems (aeronautics, automotive, ...)
automatic-control/discrete-event duality:

sampled time iterations, mode switches;
critical real-time: timing constraints;
limited resources: computing, memory, power;
distributed and heterogeneous architecture

Intrinsically safety-critical systems, requiring

safe design using off-line validation
→ need for formal models e.g., transition systems

safe execution with on-line fault recovery
→ need for fault tolerance e.g., recovery

Using discrete controller synthesis for fault-tolerant distributed systems – p.2/16



Motivations and context

Embedded systems (aeronautics, automotive, ...)
automatic-control/discrete-event duality:

sampled time iterations, mode switches;
critical real-time: timing constraints;
limited resources: computing, memory, power;
distributed and heterogeneous architecture

Intrinsically safety-critical systems, requiring

safe design using off-line validation
→ need for formal models e.g., transition systems

safe execution with on-line fault recovery
→ need for fault tolerance e.g., recovery

Using discrete controller synthesis for fault-tolerant distributed systems – p.2/16



Motivations and context

Embedded systems (aeronautics, automotive, ...)
automatic-control/discrete-event duality:

sampled time iterations, mode switches;
critical real-time: timing constraints;
limited resources: computing, memory, power;
distributed and heterogeneous architecture

Intrinsically safety-critical systems, requiring

safe design using off-line validation
→ need for formal models e.g., transition systems

safe execution with on-line fault recovery
→ need for fault tolerance e.g., recovery

Using discrete controller synthesis for fault-tolerant distributed systems – p.2/16



Motivations and context

Embedded systems (aeronautics, automotive, ...)
automatic-control/discrete-event duality:

sampled time iterations, mode switches;
critical real-time: timing constraints;
limited resources: computing, memory, power;
distributed and heterogeneous architecture

Intrinsically safety-critical systems, requiring

safe design using off-line validation
→ need for formal models e.g., transition systems

safe execution with on-line fault recovery
→ need for fault tolerance e.g., recovery

Using discrete controller synthesis for fault-tolerant distributed systems – p.2/16



Problem statement

Safe design for safe execution

fault tolerance:
maintain correct functionality, whatever the faults;

in a distributed system: upon processor failure:
reconfigure active tasks on remaining ones

correctness of the reconfiguration to be validated
w.r.t. properties of fault tolerance

We apply formal methods to ensure fault tolerance by:
applying controller synthesis: advantages of

correctness of the result, easy modifiability
producing automatically a controller

enforcing fault-tolerance for a distributed system

Using discrete controller synthesis for fault-tolerant distributed systems – p.3/16



Problem statement

Safe design for safe execution
fault tolerance:

maintain correct functionality, whatever the faults;

in a distributed system: upon processor failure:
reconfigure active tasks on remaining ones

correctness of the reconfiguration to be validated
w.r.t. properties of fault tolerance

We apply formal methods to ensure fault tolerance by:
applying controller synthesis: advantages of

correctness of the result, easy modifiability
producing automatically a controller

enforcing fault-tolerance for a distributed system

Using discrete controller synthesis for fault-tolerant distributed systems – p.3/16



Problem statement

Safe design for safe execution
fault tolerance:

maintain correct functionality, whatever the faults;
in a distributed system: upon processor failure:

reconfigure active tasks on remaining ones

correctness of the reconfiguration to be validated
w.r.t. properties of fault tolerance

We apply formal methods to ensure fault tolerance by:
applying controller synthesis: advantages of

correctness of the result, easy modifiability
producing automatically a controller

enforcing fault-tolerance for a distributed system

Using discrete controller synthesis for fault-tolerant distributed systems – p.3/16



Problem statement

Safe design for safe execution
fault tolerance:

maintain correct functionality, whatever the faults;
in a distributed system: upon processor failure:

reconfigure active tasks on remaining ones
correctness of the reconfiguration to be validated

w.r.t. properties of fault tolerance

We apply formal methods to ensure fault tolerance by:
applying controller synthesis: advantages of

correctness of the result, easy modifiability
producing automatically a controller

enforcing fault-tolerance for a distributed system

Using discrete controller synthesis for fault-tolerant distributed systems – p.3/16



Problem statement

Safe design for safe execution
fault tolerance:

maintain correct functionality, whatever the faults;
in a distributed system: upon processor failure:

reconfigure active tasks on remaining ones
correctness of the reconfiguration to be validated

w.r.t. properties of fault tolerance

We apply formal methods to ensure fault tolerance by:

applying controller synthesis: advantages of
correctness of the result, easy modifiability

producing automatically a controller
enforcing fault-tolerance for a distributed system

Using discrete controller synthesis for fault-tolerant distributed systems – p.3/16



Problem statement

Safe design for safe execution
fault tolerance:

maintain correct functionality, whatever the faults;
in a distributed system: upon processor failure:

reconfigure active tasks on remaining ones
correctness of the reconfiguration to be validated

w.r.t. properties of fault tolerance

We apply formal methods to ensure fault tolerance by:
applying controller synthesis: advantages of

correctness of the result, easy modifiability

producing automatically a controller
enforcing fault-tolerance for a distributed system

Using discrete controller synthesis for fault-tolerant distributed systems – p.3/16



Problem statement

Safe design for safe execution
fault tolerance:

maintain correct functionality, whatever the faults;
in a distributed system: upon processor failure:

reconfigure active tasks on remaining ones
correctness of the reconfiguration to be validated

w.r.t. properties of fault tolerance

We apply formal methods to ensure fault tolerance by:
applying controller synthesis: advantages of

correctness of the result, easy modifiability
producing automatically a controller

enforcing fault-tolerance for a distributed system

Using discrete controller synthesis for fault-tolerant distributed systems – p.3/16



Using controller synthesis for fault-tolerance

Model of the distributed system:

architecture and environment
processors (fail-silent), fault model (patterns)

application: configurations
tasks and their placement on the architecture

Properties to be enforced:
consistent execution: placement constraints
functionality fulfillment e.g., reach termination
optimization of costs (time, power) and qualities

Using controller synthesis: find, if it exists,
the controller of the model enforcing the properties

→ synthesis of the correct reconfiguration controller

Using discrete controller synthesis for fault-tolerant distributed systems – p.4/16



Using controller synthesis for fault-tolerance

Model of the distributed system:
architecture and environment

processors (fail-silent), fault model (patterns)

application: configurations
tasks and their placement on the architecture

Properties to be enforced:
consistent execution: placement constraints
functionality fulfillment e.g., reach termination
optimization of costs (time, power) and qualities

Using controller synthesis: find, if it exists,
the controller of the model enforcing the properties

→ synthesis of the correct reconfiguration controller

Using discrete controller synthesis for fault-tolerant distributed systems – p.4/16



Using controller synthesis for fault-tolerance

Model of the distributed system:
architecture and environment

processors (fail-silent), fault model (patterns)
application: configurations

tasks and their placement on the architecture

Properties to be enforced:
consistent execution: placement constraints
functionality fulfillment e.g., reach termination
optimization of costs (time, power) and qualities

Using controller synthesis: find, if it exists,
the controller of the model enforcing the properties

→ synthesis of the correct reconfiguration controller

Using discrete controller synthesis for fault-tolerant distributed systems – p.4/16



Using controller synthesis for fault-tolerance

Model of the distributed system:
architecture and environment

processors (fail-silent), fault model (patterns)
application: configurations

tasks and their placement on the architecture

Properties to be enforced:

consistent execution: placement constraints
functionality fulfillment e.g., reach termination
optimization of costs (time, power) and qualities

Using controller synthesis: find, if it exists,
the controller of the model enforcing the properties

→ synthesis of the correct reconfiguration controller

Using discrete controller synthesis for fault-tolerant distributed systems – p.4/16



Using controller synthesis for fault-tolerance

Model of the distributed system:
architecture and environment

processors (fail-silent), fault model (patterns)
application: configurations

tasks and their placement on the architecture

Properties to be enforced:
consistent execution: placement constraints

functionality fulfillment e.g., reach termination
optimization of costs (time, power) and qualities

Using controller synthesis: find, if it exists,
the controller of the model enforcing the properties

→ synthesis of the correct reconfiguration controller

Using discrete controller synthesis for fault-tolerant distributed systems – p.4/16



Using controller synthesis for fault-tolerance

Model of the distributed system:
architecture and environment

processors (fail-silent), fault model (patterns)
application: configurations

tasks and their placement on the architecture

Properties to be enforced:
consistent execution: placement constraints
functionality fulfillment e.g., reach termination

optimization of costs (time, power) and qualities

Using controller synthesis: find, if it exists,
the controller of the model enforcing the properties

→ synthesis of the correct reconfiguration controller

Using discrete controller synthesis for fault-tolerant distributed systems – p.4/16



Using controller synthesis for fault-tolerance

Model of the distributed system:
architecture and environment

processors (fail-silent), fault model (patterns)
application: configurations

tasks and their placement on the architecture

Properties to be enforced:
consistent execution: placement constraints
functionality fulfillment e.g., reach termination
optimization of costs (time, power) and qualities

Using controller synthesis: find, if it exists,
the controller of the model enforcing the properties

→ synthesis of the correct reconfiguration controller

Using discrete controller synthesis for fault-tolerant distributed systems – p.4/16



Using controller synthesis for fault-tolerance

Model of the distributed system:
architecture and environment

processors (fail-silent), fault model (patterns)
application: configurations

tasks and their placement on the architecture

Properties to be enforced:
consistent execution: placement constraints
functionality fulfillment e.g., reach termination
optimization of costs (time, power) and qualities

Using controller synthesis: find, if it exists,
the controller of the model enforcing the properties

→ synthesis of the correct reconfiguration controller

Using discrete controller synthesis for fault-tolerant distributed systems – p.4/16



Discrete control synthesis

Purpose: make a property hold in the controlled system!

transition system:
all possible behaviours

(incl. bad ones)

events: uncontrollable, and
controllable: to be constrained

e.g., i controllable, d not

objectives: properties
e.g., make invariant w.r.t.

E s.t. not (s1 and s2)

controller {ctrl}=f(state, unctrl)
e.g., inhibit event i from state 10

E

i

i
i

d

dd i

00 01

1011
d

Using discrete controller synthesis for fault-tolerant distributed systems – p.5/16



Discrete control synthesis

Purpose: make a property hold in the controlled system!

transition system:
all possible behaviours

(incl. bad ones)

events: uncontrollable, and
controllable: to be constrained

e.g., i controllable, d not

objectives: properties
e.g., make invariant w.r.t.

E s.t. not (s1 and s2)

controller {ctrl}=f(state, unctrl)
e.g., inhibit event i from state 10

E

i

i
i

d

dd i

00 01

1011
d

Using discrete controller synthesis for fault-tolerant distributed systems – p.5/16



Discrete control synthesis

Purpose: make a property hold in the controlled system!

transition system:
all possible behaviours

(incl. bad ones)

events: uncontrollable, and
controllable: to be constrained

e.g., i controllable, d not

objectives: properties
e.g., make invariant w.r.t.

E s.t. not (s1 and s2)

controller {ctrl}=f(state, unctrl)
e.g., inhibit event i from state 10

i

i
i

d

dd i

00 01

1011
d

E

Using discrete controller synthesis for fault-tolerant distributed systems – p.5/16



Discrete control synthesis

Purpose: make a property hold in the controlled system!

transition system:
all possible behaviours

(incl. bad ones)

events: uncontrollable, and
controllable: to be constrained

e.g., i controllable, d not

objectives: properties
e.g., make invariant w.r.t.

E s.t. not (s1 and s2)

controller {ctrl}=f(state, unctrl)
e.g., inhibit event i from state 10

i

i

d

dd i

00 01

1011
d

E
i

Using discrete controller synthesis for fault-tolerant distributed systems – p.5/16



Property enforcing layers

Mixed imperative/declarative descriptions [ESOP03]

local constraints of components: set of automata
global constraints on interactions: properties
combination by control synthesis as compilation

Automatic generation of property enforcing layers
correct control not just monitoring
efficient synthesis (relatively) on prepared model

Using discrete controller synthesis for fault-tolerant distributed systems – p.6/16



Property enforcing layers

Mixed imperative/declarative descriptions [ESOP03]
local constraints of components: set of automata

global constraints on interactions: properties
combination by control synthesis as compilation

Automatic generation of property enforcing layers
correct control not just monitoring
efficient synthesis (relatively) on prepared model

Using discrete controller synthesis for fault-tolerant distributed systems – p.6/16



Property enforcing layers

Mixed imperative/declarative descriptions [ESOP03]
local constraints of components: set of automata
global constraints on interactions: properties

combination by control synthesis as compilation

Automatic generation of property enforcing layers
correct control not just monitoring
efficient synthesis (relatively) on prepared model

Using discrete controller synthesis for fault-tolerant distributed systems – p.6/16



Property enforcing layers

Mixed imperative/declarative descriptions [ESOP03]
local constraints of components: set of automata
global constraints on interactions: properties
combination by control synthesis as compilation

Automatic generation of property enforcing layers
correct control not just monitoring
efficient synthesis (relatively) on prepared model

Using discrete controller synthesis for fault-tolerant distributed systems – p.6/16



Property enforcing layers

Mixed imperative/declarative descriptions [ESOP03]
local constraints of components: set of automata
global constraints on interactions: properties
combination by control synthesis as compilation

physical system under control

requests

sensors

ack

actuators

Application program

Property-enforcing layer

Automatic generation of property enforcing layers

correct control not just monitoring
efficient synthesis (relatively) on prepared model

Using discrete controller synthesis for fault-tolerant distributed systems – p.6/16



Property enforcing layers

Mixed imperative/declarative descriptions [ESOP03]
local constraints of components: set of automata
global constraints on interactions: properties
combination by control synthesis as compilation

physical system under control

requests

sensors

ack

actuators

Application program

Property-enforcing layer

Automatic generation of property enforcing layers
correct control not just monitoring

efficient synthesis (relatively) on prepared model

Using discrete controller synthesis for fault-tolerant distributed systems – p.6/16



Property enforcing layers

Mixed imperative/declarative descriptions [ESOP03]
local constraints of components: set of automata
global constraints on interactions: properties
combination by control synthesis as compilation

physical system under control

requests

sensors

ack

actuators

Application program

Property-enforcing layer

Automatic generation of property enforcing layers
correct control not just monitoring
efficient synthesis (relatively) on prepared model

Using discrete controller synthesis for fault-tolerant distributed systems – p.6/16



Architecture model

Local processor: fail-silent, permanent failure
multiple tasks, time-sharing; load are additive

quantitative bounds bi (e.g., power, CPU load)

ERRi

fi

OKi

Network model: heterogeneous
processor P0 dedicated for control, failless

fully connected network, no communication failure

Using discrete controller synthesis for fault-tolerant distributed systems – p.7/16



Architecture model

Local processor: fail-silent, permanent failure
multiple tasks, time-sharing; load are additive

quantitative bounds bi (e.g., power, CPU load)

ERRi

fi

OKi

P0

P1 P3 P2

S = {P1, P2, P3}

Network model: heterogeneous
processor P0 dedicated for control, failless

fully connected network, no communication failure

Using discrete controller synthesis for fault-tolerant distributed systems – p.7/16



Environment or fault model

What failures can occur in the system?

all processors can fail: no tolerance whatsoever
(a) only one failure
(b) two failures possibly simultaneously
(c) other patterns e.g., not 1 and 3 together

Using discrete controller synthesis for fault-tolerant distributed systems – p.8/16



Environment or fault model

What failures can occur in the system?
all processors can fail: no tolerance whatsoever

(a) only one failure
(b) two failures possibly simultaneously
(c) other patterns e.g., not 1 and 3 together

Using discrete controller synthesis for fault-tolerant distributed systems – p.8/16



Environment or fault model

What failures can occur in the system?
all processors can fail: no tolerance whatsoever
(a) only one failure

(b) two failures possibly simultaneously
(c) other patterns e.g., not 1 and 3 together

e2e3

(a) F1

F2 F3

B

e1

/f1

e3/f3

/f2

e1e2

e2e3

e1

Using discrete controller synthesis for fault-tolerant distributed systems – p.8/16



Environment or fault model

What failures can occur in the system?
all processors can fail: no tolerance whatsoever
(a) only one failure
(b) two failures possibly simultaneously

(c) other patterns e.g., not 1 and 3 together

e1e3/f1

e1e3/f3

e2e3/f2

e2e3

e1e2

F1

F2 F3

F1,2 F1,3

F2,3

B

e1
e2e3

/f2f3

e2e1/f2

e2e3/f3

e1

e1

/f1 f3

e3/f3

e3/f1

e1e2

e2e3
/f1, f2

e2e3

e1

/f2

e1e2/f1

(b)

Using discrete controller synthesis for fault-tolerant distributed systems – p.8/16



Environment or fault model

What failures can occur in the system?
all processors can fail: no tolerance whatsoever
(a) only one failure
(b) two failures possibly simultaneously
(c) other patterns e.g., not 1 and 3 together

e1e3/f1

e1e3/f3

e2e3/f2 F1

F2 F3

F1,2

F2,3

B

e1
e2e3

/f2f3

e2e1/f2

e1

e1

/f1

e3/f3

e2e3
/f1, f2

e2e3

e1

/f2

(c)

e1

e3

Using discrete controller synthesis for fault-tolerant distributed systems – p.8/16



Task model (i)

Basic control structure pattern
task j, executable on 3 procs.

initially idle in Ij,
upon request rj: ready Rj

A
j
i : cyclically executed on Pi,

upon termination tj: ended T j

re-configuration: transition
(controllable) from A

j
i to A

j
k

 A
j
2

R
j

a
j
2

T
j

A
j
3

A
j
1

t
j

t
j

t
j

a
j
3

a
j
2

a
j
2

a
j
1

a
j
3

r
j

a
j
1

a
j
3

r
j

a
j
1

I
j

Using discrete controller synthesis for fault-tolerant distributed systems – p.9/16



Task model (i)

Basic control structure pattern
task j, executable on 3 procs.

initially idle in Ij,
upon request rj: ready Rj

A
j
i : cyclically executed on Pi,

upon termination tj: ended T j

re-configuration: transition
(controllable) from A

j
i to A

j
k

 A
j
2

R
j

a
j
2

T
j

A
j
3

A
j
1

t
j

t
j

t
j

a
j
3

a
j
2

a
j
2

a
j
1

a
j
3

r
j

a
j
1

a
j
3

r
j

a
j
1

I
j

Using discrete controller synthesis for fault-tolerant distributed systems – p.9/16



Task model (i)

Basic control structure pattern
task j, executable on 3 procs.

initially idle in Ij,
upon request rj: ready Rj

A
j
i : cyclically executed on Pi,

upon termination tj: ended T j

re-configuration: transition
(controllable) from A

j
i to A

j
k

 A
j
2

R
j

a
j
2

T
j

A
j
3

A
j
1

t
j

t
j

t
j

a
j
3

a
j
2

a
j
2

a
j
1

a
j
3

r
j

a
j
1

a
j
3

r
j

a
j
1

I
j

Using discrete controller synthesis for fault-tolerant distributed systems – p.9/16



Task model (ii)

Quantitative characteristics: weights associated with states

Execution time or CPU load required by each task
Power consumption on a given processor
Quality of the functionality (accuracy,

depth of search, algorithm versions, ...)

Using discrete controller synthesis for fault-tolerant distributed systems – p.10/16



Task model (ii)

Quantitative characteristics: weights associated with states
Execution time or CPU load required by each task

Power consumption on a given processor
Quality of the functionality (accuracy,

depth of search, algorithm versions, ...)

Using discrete controller synthesis for fault-tolerant distributed systems – p.10/16



Task model (ii)

Quantitative characteristics: weights associated with states
Execution time or CPU load required by each task
Power consumption on a given processor

Quality of the functionality (accuracy,
depth of search, algorithm versions, ...)

Power processor
consumption P1 P2 P3

T 1 4 4 2
T 2 2 2 3

ta
sk

T 3 2 3 4
bound 5 3 6

Using discrete controller synthesis for fault-tolerant distributed systems – p.10/16



Task model (ii)

Quantitative characteristics: weights associated with states
Execution time or CPU load required by each task
Power consumption on a given processor
Quality of the functionality (accuracy,

depth of search, algorithm versions, ...)

Power processor
consumption P1 P2 P3

T 1 4 4 2
T 2 2 2 3

ta
sk

T 3 2 3 4
bound 5 3 6

Task processor
quality P1 P2 P3

T 1 3 5 3
T 2 2 2 5

ta
sk

T 3 2 2 5

Using discrete controller synthesis for fault-tolerant distributed systems – p.10/16



Application model

Tasks server: n tasks in parallel

synchronous composition of behaviours
composition of costs e.g., addition:

for CPU loads or power: on each Pi: Ci =
∑

j C
j
i

for quality: means, or actually sum: Q =
∑

i

∑
j Q

j
i

Program or scheduler (not handling distribution)
emitting requests in sequence

according to precedence graph

T 1

T 3

T 2

T 1

Using discrete controller synthesis for fault-tolerant distributed systems – p.11/16



Application model

Tasks server: n tasks in parallel
synchronous composition of behaviours

composition of costs e.g., addition:
for CPU loads or power: on each Pi: Ci =

∑
j C

j
i

for quality: means, or actually sum: Q =
∑

i

∑
j Q

j
i

Program or scheduler (not handling distribution)
emitting requests in sequence

according to precedence graph

T 1

T 3

T 2

T 1

Using discrete controller synthesis for fault-tolerant distributed systems – p.11/16



Application model

Tasks server: n tasks in parallel
synchronous composition of behaviours
composition of costs e.g., addition:

for CPU loads or power: on each Pi: Ci =
∑

j C
j
i

for quality: means, or actually sum: Q =
∑

i

∑
j Q

j
i

Program or scheduler (not handling distribution)
emitting requests in sequence

according to precedence graph

T 1

T 3

T 2

T 1

Using discrete controller synthesis for fault-tolerant distributed systems – p.11/16



Application model

Tasks server: n tasks in parallel
synchronous composition of behaviours
composition of costs e.g., addition:

for CPU loads or power: on each Pi: Ci =
∑

j C
j
i

for quality: means, or actually sum: Q =
∑

i

∑
j Q

j
i

Program or scheduler (not handling distribution)

emitting requests in sequence
according to precedence graph

T 1

T 3

T 2

T 1

Using discrete controller synthesis for fault-tolerant distributed systems – p.11/16



Application model

Tasks server: n tasks in parallel
synchronous composition of behaviours
composition of costs e.g., addition:

for CPU loads or power: on each Pi: Ci =
∑

j C
j
i

for quality: means, or actually sum: Q =
∑

i

∑
j Q

j
i

Program or scheduler (not handling distribution)
emitting requests in sequence

according to precedence graph

T 1

T 3

T 2

T 1

Using discrete controller synthesis for fault-tolerant distributed systems – p.11/16



System model

f2

OK2

ERR2

f3

OK3

ERR3

A1
2

R1

a1
2

T1

A1
3

A1
1

t1 t1
t1

a1
3

a1
2

a1
2

a1
1

a1
3

r1

a1
1

a1
3

r1

I1

a1
1

A2
2

R2

a2
2

T2

A2
3

A2
1

t2 t2
t2

a2
3

a2
2

a2
2

a2
1

a2
3

r2

a2
1

a2
3

r2

I2

a2
1

A3
2

R3

a3
2

T3

A3
3

A3
1

t3 t3
t3

a3
3

a3
2

a3
2

a3
1

a3
3

r3

a3
1

a3
3

r3

I3

a3
1

F1

F2 F3

B

e1 e2 e3/f1

e3/f2

e1 e2

e1 e2 e3/f3

CONTROLLERSCHEDULERf1

OK1

ERR1

composition of all that → the system to be controlled

Using discrete controller synthesis for fault-tolerant distributed systems – p.12/16



Properties and objectives for fault-tolerance

Insuring consistent execution: make it invariantly true

No task active on a failed processor ¬
∨

j

∨

i

(Aj
i ∧ Erri)

Tasks active on a proc. are within capacity ∀i, Ci ≤ bi

Insuring functionality: make that, from all reachable states,
the terminal configurations such that

∧
i T

i are reachable

Optimizing costs and qualities among remaining behaviors
maximize global quality varying according to Pi

(also giving some progress)
minimize global consumption in time or power

Order of synthesis operations essential: not commutative

Using discrete controller synthesis for fault-tolerant distributed systems – p.13/16



Properties and objectives for fault-tolerance

Insuring consistent execution: make it invariantly true

No task active on a failed processor ¬
∨

j

∨

i

(Aj
i ∧ Erri)

Tasks active on a proc. are within capacity ∀i, Ci ≤ bi

Insuring functionality: make that, from all reachable states,
the terminal configurations such that

∧
i T

i are reachable

Optimizing costs and qualities among remaining behaviors
maximize global quality varying according to Pi

(also giving some progress)
minimize global consumption in time or power

Order of synthesis operations essential: not commutative

Using discrete controller synthesis for fault-tolerant distributed systems – p.13/16



Properties and objectives for fault-tolerance

Insuring consistent execution: make it invariantly true

No task active on a failed processor ¬
∨

j

∨

i

(Aj
i ∧ Erri)

Tasks active on a proc. are within capacity ∀i, Ci ≤ bi

Insuring functionality: make that, from all reachable states,
the terminal configurations such that

∧
i T

i are reachable

Optimizing costs and qualities among remaining behaviors
maximize global quality varying according to Pi

(also giving some progress)
minimize global consumption in time or power

Order of synthesis operations essential: not commutative

Using discrete controller synthesis for fault-tolerant distributed systems – p.13/16



Properties and objectives for fault-tolerance

Insuring consistent execution: make it invariantly true

No task active on a failed processor ¬
∨

j

∨

i

(Aj
i ∧ Erri)

Tasks active on a proc. are within capacity ∀i, Ci ≤ bi

Insuring functionality: make that, from all reachable states,
the terminal configurations such that

∧
i T

i are reachable

Optimizing costs and qualities among remaining behaviors
maximize global quality varying according to Pi

(also giving some progress)
minimize global consumption in time or power

Order of synthesis operations essential: not commutative

Using discrete controller synthesis for fault-tolerant distributed systems – p.13/16



Properties and objectives for fault-tolerance

Insuring consistent execution: make it invariantly true

No task active on a failed processor ¬
∨

j

∨

i

(Aj
i ∧ Erri)

Tasks active on a proc. are within capacity ∀i, Ci ≤ bi

Insuring functionality: make that, from all reachable states,
the terminal configurations such that

∧
i T

i are reachable

Optimizing costs and qualities among remaining behaviors

maximize global quality varying according to Pi

(also giving some progress)
minimize global consumption in time or power

Order of synthesis operations essential: not commutative

Using discrete controller synthesis for fault-tolerant distributed systems – p.13/16



Properties and objectives for fault-tolerance

Insuring consistent execution: make it invariantly true

No task active on a failed processor ¬
∨

j

∨

i

(Aj
i ∧ Erri)

Tasks active on a proc. are within capacity ∀i, Ci ≤ bi

Insuring functionality: make that, from all reachable states,
the terminal configurations such that

∧
i T

i are reachable

Optimizing costs and qualities among remaining behaviors
maximize global quality varying according to Pi

(also giving some progress)

minimize global consumption in time or power

Order of synthesis operations essential: not commutative

Using discrete controller synthesis for fault-tolerant distributed systems – p.13/16



Properties and objectives for fault-tolerance

Insuring consistent execution: make it invariantly true

No task active on a failed processor ¬
∨

j

∨

i

(Aj
i ∧ Erri)

Tasks active on a proc. are within capacity ∀i, Ci ≤ bi

Insuring functionality: make that, from all reachable states,
the terminal configurations such that

∧
i T

i are reachable

Optimizing costs and qualities among remaining behaviors
maximize global quality varying according to Pi

(also giving some progress)
minimize global consumption in time or power

Order of synthesis operations essential: not commutative

Using discrete controller synthesis for fault-tolerant distributed systems – p.13/16



Properties and objectives for fault-tolerance

Insuring consistent execution: make it invariantly true

No task active on a failed processor ¬
∨

j

∨

i

(Aj
i ∧ Erri)

Tasks active on a proc. are within capacity ∀i, Ci ≤ bi

Insuring functionality: make that, from all reachable states,
the terminal configurations such that

∧
i T

i are reachable

Optimizing costs and qualities among remaining behaviors
maximize global quality varying according to Pi

(also giving some progress)
minimize global consumption in time or power

Order of synthesis operations essential: not commutative

Using discrete controller synthesis for fault-tolerant distributed systems – p.13/16



Illustrative scenarii

Insuring consistent execution:

No task is active on a failed processor
if P1 goes to ERR1, any task on P1 is reconfigured
Tasks active on a proc. are within capacity
when T 1 on P1, T 2 on P2, T 3 on P3, if P2 goes to ERR2:
T 2 is forced to migrate to P1 or P3, but then overload?
hence forcing migration of both T 1 to P3 and T 2 to P1

Insuring functionality avoids staying in Rj

keeping only paths clear and wide enough down to the end
one failure: ok; two failures: no; (c) pattern: ok

Optimizing costs and qualities: different solutions
when minimizing cost first, maximizing quality then

Using discrete controller synthesis for fault-tolerant distributed systems – p.14/16



Illustrative scenarii

Insuring consistent execution:
No task is active on a failed processor
if P1 goes to ERR1, any task on P1 is reconfigured

Tasks active on a proc. are within capacity
when T 1 on P1, T 2 on P2, T 3 on P3, if P2 goes to ERR2:
T 2 is forced to migrate to P1 or P3, but then overload?
hence forcing migration of both T 1 to P3 and T 2 to P1

Insuring functionality avoids staying in Rj

keeping only paths clear and wide enough down to the end
one failure: ok; two failures: no; (c) pattern: ok

Optimizing costs and qualities: different solutions
when minimizing cost first, maximizing quality then

Using discrete controller synthesis for fault-tolerant distributed systems – p.14/16



Illustrative scenarii

Insuring consistent execution:
No task is active on a failed processor
if P1 goes to ERR1, any task on P1 is reconfigured
Tasks active on a proc. are within capacity
when T 1 on P1, T 2 on P2, T 3 on P3, if P2 goes to ERR2:
T 2 is forced to migrate to P1 or P3, but then overload?
hence forcing migration of both T 1 to P3 and T 2 to P1

Insuring functionality avoids staying in Rj

keeping only paths clear and wide enough down to the end
one failure: ok; two failures: no; (c) pattern: ok

Optimizing costs and qualities: different solutions
when minimizing cost first, maximizing quality then

Using discrete controller synthesis for fault-tolerant distributed systems – p.14/16



Illustrative scenarii

Insuring consistent execution:
No task is active on a failed processor
if P1 goes to ERR1, any task on P1 is reconfigured
Tasks active on a proc. are within capacity
when T 1 on P1, T 2 on P2, T 3 on P3, if P2 goes to ERR2:
T 2 is forced to migrate to P1 or P3, but then overload?
hence forcing migration of both T 1 to P3 and T 2 to P1

Insuring functionality avoids staying in Rj

keeping only paths clear and wide enough down to the end
one failure: ok; two failures: no; (c) pattern: ok

Optimizing costs and qualities: different solutions
when minimizing cost first, maximizing quality then

Using discrete controller synthesis for fault-tolerant distributed systems – p.14/16



Illustrative scenarii

Insuring consistent execution:
No task is active on a failed processor
if P1 goes to ERR1, any task on P1 is reconfigured
Tasks active on a proc. are within capacity
when T 1 on P1, T 2 on P2, T 3 on P3, if P2 goes to ERR2:
T 2 is forced to migrate to P1 or P3, but then overload?
hence forcing migration of both T 1 to P3 and T 2 to P1

Insuring functionality avoids staying in Rj

keeping only paths clear and wide enough down to the end
one failure: ok; two failures: no; (c) pattern: ok

Optimizing costs and qualities: different solutions
when minimizing cost first, maximizing quality then

Using discrete controller synthesis for fault-tolerant distributed systems – p.14/16



Implementation

Using synchronous tools

behavior specification in Mode Automata (Verimag)
objectives and synthesis with Sigali (IRISA)
co-simulation with SigalSimu

Sigali

SigalSimu
interactive
simulationAutomata

Mode

weights

components
system model encoding

z3z

properties

controller

Using discrete controller synthesis for fault-tolerant distributed systems – p.15/16



Implementation

Using synchronous tools
behavior specification in Mode Automata (Verimag)

objectives and synthesis with Sigali (IRISA)
co-simulation with SigalSimu

Sigali

SigalSimu
interactive
simulationAutomata

Mode

weights

components
system model encoding

z3z

properties

controller

Using discrete controller synthesis for fault-tolerant distributed systems – p.15/16



Implementation

Using synchronous tools
behavior specification in Mode Automata (Verimag)
objectives and synthesis with Sigali (IRISA)

co-simulation with SigalSimu

Sigali

SigalSimu
interactive
simulationAutomata

Mode

weights

components
system model encoding

z3z

properties

controller

Using discrete controller synthesis for fault-tolerant distributed systems – p.15/16



Implementation

Using synchronous tools
behavior specification in Mode Automata (Verimag)
objectives and synthesis with Sigali (IRISA)
co-simulation with SigalSimu

Sigali

SigalSimu
interactive
simulationAutomata

Mode

weights

components
system model encoding

z3z

properties

controller

Using discrete controller synthesis for fault-tolerant distributed systems – p.15/16



Conclusion and perspectives

Results

a formal model of a real-time distributed system
processors, faults, tasks, and reconfigurations

automatic production of a controller
enforcing fault-tolerance by reconfiguration

Perspectives
model of tasks with modes, other architectures, ...
properties: exclusions on resources, observers, ...
platform-based design: same system

used under different control objectives

Using discrete controller synthesis for fault-tolerant distributed systems – p.16/16



Conclusion and perspectives

Results
a formal model of a real-time distributed system

processors, faults, tasks, and reconfigurations

automatic production of a controller
enforcing fault-tolerance by reconfiguration

Perspectives
model of tasks with modes, other architectures, ...
properties: exclusions on resources, observers, ...
platform-based design: same system

used under different control objectives

Using discrete controller synthesis for fault-tolerant distributed systems – p.16/16



Conclusion and perspectives

Results
a formal model of a real-time distributed system

processors, faults, tasks, and reconfigurations
automatic production of a controller

enforcing fault-tolerance by reconfiguration

Perspectives
model of tasks with modes, other architectures, ...
properties: exclusions on resources, observers, ...
platform-based design: same system

used under different control objectives

Using discrete controller synthesis for fault-tolerant distributed systems – p.16/16



Conclusion and perspectives

Results
a formal model of a real-time distributed system

processors, faults, tasks, and reconfigurations
automatic production of a controller

enforcing fault-tolerance by reconfiguration

Perspectives

model of tasks with modes, other architectures, ...
properties: exclusions on resources, observers, ...
platform-based design: same system

used under different control objectives

Using discrete controller synthesis for fault-tolerant distributed systems – p.16/16



Conclusion and perspectives

Results
a formal model of a real-time distributed system

processors, faults, tasks, and reconfigurations
automatic production of a controller

enforcing fault-tolerance by reconfiguration

Perspectives
model of tasks with modes, other architectures, ...

properties: exclusions on resources, observers, ...
platform-based design: same system

used under different control objectives

Using discrete controller synthesis for fault-tolerant distributed systems – p.16/16



Conclusion and perspectives

Results
a formal model of a real-time distributed system

processors, faults, tasks, and reconfigurations
automatic production of a controller

enforcing fault-tolerance by reconfiguration

Perspectives
model of tasks with modes, other architectures, ...
properties: exclusions on resources, observers, ...

platform-based design: same system
used under different control objectives

Using discrete controller synthesis for fault-tolerant distributed systems – p.16/16



Conclusion and perspectives

Results
a formal model of a real-time distributed system

processors, faults, tasks, and reconfigurations
automatic production of a controller

enforcing fault-tolerance by reconfiguration

Perspectives
model of tasks with modes, other architectures, ...
properties: exclusions on resources, observers, ...
platform-based design: same system

used under different control objectives

Using discrete controller synthesis for fault-tolerant distributed systems – p.16/16


	Motivations and context
	Problem statement
	Using controller synthesis for fault-tolerance
	Discrete control synthesis
	Property enforcing layers
	Architecture model
	Environment or fault model
	Task model (i)
	Task model (ii)
	Application model
	System model
	Properties and objectives for fault-tolerance
	Illustrative scenarii
	Implementation
	Conclusion and perspectives

