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Motivations and context

Embedded systems (aeronautics, automotive, ...)

automatic-control/discrete-event duality:
sampled time iterations, mode switches;

critical real-time: timing constraints;
limited resources: computing, memory, power;
distributed and heterogeneous architecture

Intrinsically safety-critical systems, requiring

safe design using off-line validation
→ need for formal models e.g., transition systems

safe execution with on-line fault recovery
→ need for fault tolerance e.g., recovery
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Problem statement

Safe design for safe execution

fault tolerance:
maintain correct functionality, whatever the faults;

in a distributed system: upon processor failure:
reconfigure active tasks on remaining ones

correctness of the reconfiguration to be validated
w.r.t. properties of fault tolerance

We apply formal methods to ensure fault tolerance by:
applying controller synthesis: advantages of

correctness of the result, easy modifiability
producing automatically a controller

enforcing fault-tolerance for a distributed system
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Using controller synthesis for fault-tolerance

Model of the distributed system:

architecture and environment
processors (fail-silent), fault model (patterns)

application: configurations
tasks and their placement on the architecture

Properties to be enforced:
consistent execution: placement constraints
functionality fulfillment e.g., reach termination
optimization of costs (time, power) and qualities

Using controller synthesis: find, if it exists,
the controller of the model enforcing the properties

→ synthesis of the correct reconfiguration controller
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Discrete control synthesis

Purpose: make a property hold in the controlled system!

transition system:
all possible behaviours

(incl. bad ones)

events: uncontrollable, and
controllable: to be constrained

e.g., i controllable, d not

objectives: properties
e.g., make invariant w.r.t.

E s.t. not (s1 and s2)

controller {ctrl}=f(state, unctrl)
e.g., inhibit event i from state 10

E

i

i
i

d

dd i

00 01

1011
d
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Property enforcing layers

Mixed imperative/declarative descriptions [ESOP03]

local constraints of components: set of automata
global constraints on interactions: properties
combination by control synthesis as compilation

Automatic generation of property enforcing layers
correct control not just monitoring
efficient synthesis (relatively) on prepared model
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Architecture model

Local processor: fail-silent, permanent failure
multiple tasks, time-sharing; load are additive

quantitative bounds bi (e.g., power, CPU load)

ERRi

fi

OKi

Network model: heterogeneous
processor P0 dedicated for control, failless

fully connected network, no communication failure
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Environment or fault model

What failures can occur in the system?

all processors can fail: no tolerance whatsoever
(a) only one failure
(b) two failures possibly simultaneously
(c) other patterns e.g., not 1 and 3 together
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Task model (i)

Basic control structure pattern
task j, executable on 3 procs.

initially idle in Ij,
upon request rj: ready Rj

A
j
i : cyclically executed on Pi,

upon termination tj: ended T j

re-configuration: transition
(controllable) from A

j
i to A

j
k

 A
j
2

R
j

a
j
2

T
j

A
j
3

A
j
1

t
j

t
j

t
j

a
j
3

a
j
2

a
j
2

a
j
1

a
j
3
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j
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j
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3

r
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j
1

I
j
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Task model (ii)

Quantitative characteristics: weights associated with states

Execution time or CPU load required by each task
Power consumption on a given processor
Quality of the functionality (accuracy,

depth of search, algorithm versions, ...)
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Task model (ii)

Quantitative characteristics: weights associated with states
Execution time or CPU load required by each task
Power consumption on a given processor

Quality of the functionality (accuracy,
depth of search, algorithm versions, ...)

Power processor
consumption P1 P2 P3

T 1 4 4 2
T 2 2 2 3

ta
sk

T 3 2 3 4
bound 5 3 6
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Power processor
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Application model

Tasks server: n tasks in parallel

synchronous composition of behaviours
composition of costs e.g., addition:

for CPU loads or power: on each Pi: Ci =
∑

j C
j
i

for quality: means, or actually sum: Q =
∑

i

∑
j Q

j
i

Program or scheduler (not handling distribution)
emitting requests in sequence

according to precedence graph

T 1

T 3

T 2

T 1
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System model

f2

OK2

ERR2
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composition of all that → the system to be controlled
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Properties and objectives for fault-tolerance

Insuring consistent execution: make it invariantly true

No task active on a failed processor ¬
∨

j

∨

i

(Aj
i ∧ Erri)

Tasks active on a proc. are within capacity ∀i, Ci ≤ bi

Insuring functionality: make that, from all reachable states,
the terminal configurations such that

∧
i T

i are reachable

Optimizing costs and qualities among remaining behaviors
maximize global quality varying according to Pi

(also giving some progress)
minimize global consumption in time or power

Order of synthesis operations essential: not commutative
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Illustrative scenarii

Insuring consistent execution:

No task is active on a failed processor
if P1 goes to ERR1, any task on P1 is reconfigured
Tasks active on a proc. are within capacity
when T 1 on P1, T 2 on P2, T 3 on P3, if P2 goes to ERR2:
T 2 is forced to migrate to P1 or P3, but then overload?
hence forcing migration of both T 1 to P3 and T 2 to P1

Insuring functionality avoids staying in Rj

keeping only paths clear and wide enough down to the end
one failure: ok; two failures: no; (c) pattern: ok

Optimizing costs and qualities: different solutions
when minimizing cost first, maximizing quality then
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Implementation

Using synchronous tools

behavior specification in Mode Automata (Verimag)
objectives and synthesis with Sigali (IRISA)
co-simulation with SigalSimu

Sigali

SigalSimu
interactive
simulationAutomata

Mode

weights

components
system model encoding

z3z

properties

controller
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Conclusion and perspectives

Results

a formal model of a real-time distributed system
processors, faults, tasks, and reconfigurations

automatic production of a controller
enforcing fault-tolerance by reconfiguration

Perspectives
model of tasks with modes, other architectures, ...
properties: exclusions on resources, observers, ...
platform-based design: same system

used under different control objectives
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