
Data Refinement:
model-oriented proof methods and their comparison

Willem-Paul de Roever
University of Kiel, Germany

SYNCHRON 2003 · Marseille-Luminy, France · December 1–5, 2003

1

Overview

• Refinement

• Data refinement

• Simulation

• Equivalence between assertional and relational characterizations of

downward simulation

• Sound and relatively complete proof system for a minimal Hoare

logic

• Theorems: Reynolds’ method, VDM reduced to downward

simulation for total correctness

2

Questions answered in this talk

• What is a (data) refinement step?

• How to find and prove such a step?

• How to judge the solutions given by others?

3

Refinement (1)

Given a pair of programs called concrete and abstract, the

concrete program refines the abstract program correctly

whenever the use of the concrete program does not lead to an

observation which is not also an observation of the abstract

program. [Gardiner & Morgan, 1993]

So, what is observable?

4

Refinement (2)

So, what is observable?

In our setting of sequential, imperative programs, only the binary

relation between initial and final states is considered observable.

Given a class Prog of programs and a function

P [[.]] : Prog → 2Σ×Σ

that maps each program to its initial/final state relation,

program S ∈ Prog refines T ∈ Prog is defined by

P [[S]] ⊆ P [[T]],

abbreviated to

S ⊆ T .

5

Refinement (3)

Example 1 Let S1 and S2 denote statements not involving variables s

and l. Compare the following two programs; they refine each other.

begin begin

var s : finset of N ; s := ∅; var l : N
∗ ; l := nil;

S1; S1;

s := s ∪ {x}; l := append(l, x);

S2; S2;

y := a member of s y := first(l)

end end

This refinement step comprises of replacing the variable s (ranging

over finite subsets of the natural numbers) and operations on it by the

sequence-valued variable l and corresponding operations.

6

Refinement (4)

Initial/final state behaviour of S1 and S2 in terms of

value-transformations of x, y are global w.r.t. S1 and S2:

x and y are called normal variables.

In contrast s, t are data-representation variables. Their values are only

visible inside S1 and S2, because these variables vary according to the

abstraction level.

Representation variables are not observable outside a program.

7

Data types

How to formalize the interesting part of two programs such as those in

the example from the refinement point of view?

Definition 1 [data type] Given a finite set of variables x̄, called

normal variables, another (disjoint) finite set of variables ā, called

representation variables, and a finite index set J , define state spaces Σ

and ΣA by Σ
def
= [x̄→ V] and ΣA def

= [x̄∪ ā→ V]. Let Aj ⊆ ΣA ×ΣA

for j ∈ J . Let initialization AI ⊆ Σ × ΣA, and finalization

AF ⊆ ΣA × Σ. Then we call

A = (AI, (Aj)j∈J , AF)

a data type.

Note relational characterization of A: Aj ⊆ ΣA × ΣA.

8

Program Skeletons

A program skeleton maps each data type to a relation constructed from

the operations Aj and operations on the normal variables using

sequential composition, non-deterministic choice and recursion.

Example 2 P (A) = A1 ; A2 ∪A3 and P (C) = C1 ; C2 ∪ C3.

Obviously, there are infinitely many program skeletons (unless J = ∅).

9

Data refinement (1)

Compare two levels of abstraction:

A of data type A

C of data type C

with A and C compatible (index sets J plus set x̄ of normal variables

the same).

C should refine/implement A.

As mentioned before, the data type representation variables

(e.g., s and l) themselves are NOT observable. ⇒

When defining that C refines A, the particular way a data type represen-

tation is defined should, therefore, not be observable:

10

Data refinement (2)

When defining that C refines A, the particular way a data type

representation is defined should, therefore, not be observable:

CI ; . . . ; CF
︸ ︷︷ ︸

CI , CF hide the transformation

of c̄ by {Cj}j∈J

⊆ AI ; . . . ; AF
︸ ︷︷ ︸

AI , AF hide the transformation

of ā by {Aj}j∈J

Moreover, the fact that one data type refines another should hold for

all program skeletons using those data types:

CI ; P (C) ; CF ⊆ AI ; P (A) ; AF ,

for all program skeletons P concerned. ⇒

This involves proving infinitely many proof obligations.

11

Data refinement (3)

Definition 2 Data type C = (CI , (Cj)j∈J ,CF) refines data type

A = (AI , (Aj)j∈J ,AF) iff, for all program skeletons P :

CI ; P (C) ; CF ⊆ AI ; P (A) ; AF

Technical note: C uses c̄ (disjoint from x̄ and ā) and ΣC = [x̄ ∪ c̄→ V]

instead of ā and ΣA. Moreover, C and A use the same index set J . I.e., C

and A are compatible.

Hence, in order to prove data refinement, one has to prove infinitely

many proof obligations.

12

Why simulation?

Instead of proving infinitely many proof obligations such as

⊆

directly, one would like to use induction. This requires invention of a

relationship ρ between abstract and concrete level representation.

⊆ ⊆ ⊆ ⊆ ⊆

⊆⊆

To focus on (the finite number of) base cases

⊆ ⊆ ⊆⊆

one has to guarantee that induction steps are for free.

13

Local conditions for simulation (1)

Consider a relation ρ ⊆ ΣA ×ΣC between abstract and concrete states.

Then there are essentially four ways in which weak commutativity of

diagram

⊆
Cj

Aj

ρ ρ

can be defined, possibly using inverses of ρ.

14

Local conditions for simulation (2)

⊆
⊆ ⊆

⊆

The induction step for sequential composition is free only for the first

two, called downward and upward simulation, resp.

Technical note: The conditions for initialization and finalization are obtained

by “identifying” either of the RHS/LHS pairs of corners in the diagrams

above.
15

Soundness of simulation

Both downward and upward simulation are sound techniques for

proving data refinement. The induction steps for sequential

composition look as follows.

⊆ ⊆⊆ ⊆

⊆ ⊆

⇓ ⇓

16

Proofs

⊆
⊆

⊆
⊆

17

Incompleteness of downward simulation (1)

P (A):

P (C):

CI

AI

C1

A1

C2

A2

CF

AF

ρ

c0 c1

c3

c4

σ a0

a1

a2

a3

a4

τ

τ ′

18

Incompleteness of downward simulation (2)

Assume ρ is a downward simulation relation between

(AI , (Aj)j∈{1,2},AF) and (CI , (Cj)j∈{1,2},CF)

where the relations in question are those depicted above.

1. CI ⊆ AI ; ρ, thus, (a0, c0) ∈ ρ.

2. ρ ; C1 ⊆ A1 ; ρ, thus, one of (a1, c1) and (a2, c1) is in ρ.

W.l.o.g. assume that (a1, c1) ∈ ρ.

3. ρ ; C2 ⊆ A2 ; ρ, thus, (a3, c4) ∈ ρ.

4. ρ ; CF ⊆ AF , which implies, that (a3, τ
′) ∈ AF ,

however, CF is only {(c3, τ), (c4, τ
′)}! Contradiction!

19

Completeness

The combination of downward and upward simulation is complete for

proving refinement between data types.

Theorem 1 [HHS] If C refines A then there exist

• an intermediate data type B,

• a downward simulation relation ρ between B and C, and

• an upward simulation relation α between B and A.

⊆

⊆
⊆

⊆
⊆

⊆

AI Aj AF

CI

Cj

CF

ρ ρ ρ ρ

α α α α

20

What’s out there?

Numerous (formal) methods exist for writing specifications and refining

those to implementations:

• VDM (Raise, Z, B)

• Reynolds’ method

• Refinement Calculi of Back & von Wright, Gardiner & Morgan,

Morris

• Hehner’s method

• Abadi & Lamport’s refinement mappings

• Lynch’s possibilities mappings

major development technique: stepwise refinement

All these methods are proved to be related in the Data Refinement book

by Kai Engelhardt and me.

21

Key problem

• The soundness and completeness results of [HHS86] reduce the

task of proving data refinement to:

Proving that

-A

-
C

?

ρ

?

ρ⊆

downwards

upwards

simulates

So we have to prove inclusion between relations

(ρ ; C ⊆ A ; ρ and C ; ρ−1 ⊆ ρ−1 ;A).

I.e., we have a relational characterization of simulation.

• This relational characterization we want to compare with methods

which use assertional characterizations of operations and

simulation (Hoare logics, VDM, Reynolds, refinement calculi).

• Key problem: How to relate these two characterizations?

22

Assertional vs. relational characterizations of an operation

Assertional methods characterize operations by first-order logic

assertions called pre- and postconditions. Questions:

1: Given an assertional characterization of an operation,

which relation is determined by it?

2: Given a relational characterization of an operation:

can this operation be expressed using pre- and postconditions?

Ad 2: Solved affirmatively in [Zwiers ’89, LNCS 321] on the basis of

recursion theory.

Ad 1: Solved using Galois connections as developed below.

23

Hoare formulae

Use Hoare formulae {ϕ} S {ψ}
predicate operation predicate

to specify operations, meaning:

{ϕ}S {ψ} is valid (holds) iff

• if ϕ holds in initial state σ, and if S terminates for initial state σ

in final state τ then ψ holds in τ .

Notation: |= {ϕ}S {ψ} (validity)

24

Logical variables

• Specifying operations by Hoare formulae introduces the need for

logical variables v, i.e., variables v whose values are not changed

during program execution:

{x = v} x := x+ 1 {x = v + 1},

because, otherwise, no single axiom for x := x+ 1.

• Leads to introduction of set Logvar of logical variables disjoint

from VAR, the set of program variables, and to logical variable

states Γ
def
= Logvar → VAL, γ ∈ Γ.

25

First connection

Using logical variable states, the meaning of |= {ϕ}S {ψ} is:

∀σ, τ ∈ Σ.∀γ ∈ Γ.(γ, σ) ∈ C[[ϕ]] ∧ (σ, τ) ∈ P[[S]] ⇒ (γ, τ) ∈ C[[ψ]],

with the meaning of assertions given by a relation between logical

states and program states:

C[[ϕ]] ⊆ Γ × Σ

and the meaning of operation S as a relation between program states:

P [[S]] ⊆ Σ × Σ

This implies: |= {ϕ}S {ψ} ⇔ |= ϕ ; S ⊆ ψ

using r1 ; r2
def
= {(σ, τ) | ∃θ.(σ, θ) ∈ r1 ∧ (θ, τ) ∈ r2}.

26

Second connection

• When operation op is specified by {ϕ} op {ψ}, we interpret op as

the maximal relation r satisfying C[[ϕ]] ; r ⊆ C[[ψ]].

• This max. relation is expressed by specification statement ϕ ψ:

P [[ϕ ψ]]
def
= {(σ, τ) | ∀γ ∈ Γ.(γ, σ) ∈ C[[ϕ]] ⇒ (γ, τ) ∈ C[[ψ]]}

• Since ∀σ, τ.∀γ((γ, σ) ∈ C[[ϕ]] ∧ (σ, τ) ∈ P[[S]] ⇒ (γ, τ) ∈ C[[ψ]])

⇔ ∀σ, τ.(σ, τ) ∈ P[[S]] ⇒ (∀γ.(γ, σ) ∈ C[[ϕ]] ⇒ (γ, τ) ∈ C[[ψ]])

⇔ P [[S]] ⊆ P [[ϕ ψ]],

one obtains

{ϕ}S {ψ} ⇔ |= S ⊆ ϕ ψ.

• This clarifies why we interpret op as maximal relation:

We do not want to restrict any refinement S of op unnecessarily.

27

Third connection

Let for s ⊆ A× C and t ⊆ B × C

[t]s
def
= {(a, b) ∈ A×B | ∀c ∈ C.(b, c) ∈ t⇒ (a, c) ∈ s}

then |= {ϕ}S {ψ} ⇔ |= ϕ ⊆ [S]ψ

Proof: ∀στ.∀γ.(γ, σ) ∈ C[[ϕ]] ∧ (σ, τ) ∈ P[[S]] ⇒ (γ, τ) ∈ C[[ψ]]

⇔ ∀γ, σ.(γ, σ) ∈ C[[ϕ]]
︸ ︷︷ ︸

⇒ (∀τ.(σ, τ) ∈ P[[S]] ⇒ (γ, τ) ∈ C[[ψ]])
︸ ︷︷ ︸

⇔ ∀γ, σ.(γ, σ) ∈ C[[ϕ]] ⇒ (γ, σ) ∈ C[[[S]ψ]]

⇔ C[[ϕ]] ⊆ C[[[S]ψ]] QED

28

Galois connection

Express maximal solutions for each of

the relations on the LHS of ϕ ; S ⊆ ψ

in terms of the remaining two relations.

⊆

ψ

ϕ S

S ⊆ ϕ ψ ⇔ ϕ ; S ⊆ ψ (⇔ ϕ ⊆ [S]ψ)

It depends on the program semantics chosen whether total or partial

correctness is expressed; the equivalence of these inclusions holds in

both cases.

This Galois connection is our main technical tool in relating relational to

assertional characterizations of operations.

29

Assertional characterization of simulation

Problem: How to characterize the maximal relation C ?-simulating

ϕ ψ under abstraction relation ρ as a specification statement:

-
ϕ ψ

-
C

?

ρ

?

ρ⊆

? = L or downwards / L−1 or upwards

⇒ Once solved, ?-simulation is characterized, and therefore provable,

within Hoare Logic

We solved this problem for both L and L−1-simulation and for partial

correctness and total correctness relational semantics [de Roever & En-

gelhardt, MFCS ’96].

30

Simulation Theorems

Problem: How to characterize the maximal relation C downwards

simulating ϕ ψ under abstraction relation ρ as a specification

statement.

Solution for C:

(Partial correctness, relational semantics, downward simulation)

∃ā
(
ρ ∧ (x̄, ā) = (ȳ0, b̄0)

)
 ∃ā

(

ρ ∧ ∀x̄0

(

ϕ
[
(ȳ0,b̄0)/(x̄,ā)

]

⇒ ψ
))

NB For the total correctness solution, add conjunct ∃ā (ρ ∧ ∃x̄0 (ϕ)) to

the precondition. (This term expresses the domain of convergence of

the total correctness solution.) This conjunct is essential in justifying

the reduction of Reynolds’ method for data refinement to downwards

simulation for total correctness.

31

Proof sketch of the downward simulation theorem for partial correctness (1)

-
ϕ ψ

-
S

?

β

?

β⊆
-� ?

�

S downward simulates ϕ ψ w.r.t. β

⇐⇒ β ; S ⊆ (ϕ ψ) ; β

⇐⇒ S ⊆ β (ϕ ψ) ; β

32

Proof sketch of the downward simulation theorem for partial correctness (2)

From the solution

⊆

(ϕ ψ) ; β

β S

Σā,x̄

provided by the Galois connection β (ϕ ψ) ; β (which is not a

specification statement but a relational term) we construct a

specification statement ϕ′ ψ′

⊆

ψ′

ϕ′ S

Γ

with the same meaning for S by expressing binary relations, “ ”, and

“;” syntactically and replacing abstract program states in the upper left

corner by concrete logical states.

33

Expressing binary relations and syntactically (1)

Given first-order logic predicates ϕ, ψ with free variables:

fv(ϕ) = {x̄, ȳ} notation: ϕ(x̄ ; ȳ), x̄ ∩ ȳ = ∅

fv(ψ) = {x̄, z̄} notation: ψ(x̄ ; z̄), x̄ ∩ z̄ = ∅

Then: C[[ϕ]] ⊆ Σx̄ × Σȳ, C[[ψ]] ⊆ Σx̄ × Σz̄, with Σū def
= [ū→ Val]

and C[[ϕ]] C[[ψ]] = {(σ, τ) | ∀θ.(θ, σ) ∈ C[[ϕ]] ⇒ (θ, τ) ∈ C[[ψ]]}

⊆ Σȳ × Σz̄

Since ȳ and z̄ in general not disjoint, indicate syntactically which

variables are evaluated in initial state σ and which ones in final state τ ,

for (σ, τ) ∈ C[[ϕ]] C[[ψ]].

Substitute primed versions v′ for variables v evaluated in the initial state,

with unprimed versions evaluated in the final state.

34

Expressing binary relations and syntactically (2)

Convention: primed variables v′ evaluated in σ by v′(σ, τ) = σ(v),

and unprimed ones v in τ by v(σ, τ) = τ(v), and define

ϕ ψ
def
= (∀x̄.ϕ[ȳ′/ȳ] → ψ)(ȳ ; z̄),

possibly renaming x̄ in case x̄ ∩ ȳ′ 6= ∅.

Example 3 (x = x0 x = x0 + 1) = ∀x0.(x
′ = x0 → x = x0 + 1)

characterizes x := x+ 1.

Theorem: C[[ϕ ψ]] = C[[ϕ]] C[[ψ]]

35

Expressing “;” syntactically

Given first-order logic predicates ϕ(x̄ ; ȳ) and ψ(ȳ ; z̄), “;” is usually

defined by

(∃ȳ.ϕ(x̄ ; ȳ) ∧ ψ(ȳ ; z̄))(x̄ ; z̄)

However this does NOT cater for our primed variable convention:

So one has ϕ(x̄′ ; ȳ), x̄′ ∩ ȳ = ∅

ψ(ȳ′ ; z̄), ȳ′ ∩ z̄ = ∅

and defines

ϕ(x̄′ ; ȳ) ; ψ(ȳ′ ; z̄)
def
= ∃ū.ϕ[ū/ȳ] ∧ ψ[ū/ȳ′] with ū ∩ x̄′ = ū ∩ z̄ = ∅

Theorem: C[[ϕ ; ψ]] = C[[ϕ]] ; C[[ψ]]

36

Expressing representation relations syntactically

Binary representation relation β is expressed by a first-order predicate ρ

relating values of abstract representation variables ā to those of

concrete representation variables c̄, and lets the values of normal

variables x̄ – i.e., of non-representation variables – unchanged:

β(ā′, x̄′ ; c̄, x̄)
def
= ρ(ā′ ; c̄) ∧ x̄′ = x̄, for appr. ρ

37

Proof of downwards simulation theorem for partial correctness (1)

1. Case ϕ ψ:

Given: ϕ(x0 ; x, a)

ψ(x0 ; x, a)

⇒ (ϕ ψ) = (∀x0.ϕ[x′, a′/x, a] → ψ)

2. Case (ϕ ψ) ; β:

(ϕ ψ)(x′, a′ ; x, a)

(ρ[a′/a] ∧ x′ = x)(x′, a′ ; x, c)
︸ ︷︷ ︸

=β

⇒

(ϕ ψ) ; (ρ[a′/a] ∧ x′ = x) = ∃u, a.(ϕ ψ)[u/x] ∧ ρ ∧ u = x
︸ ︷︷ ︸

= (∃a.(ϕ ψ) ∧ ρ)(x′, a′ ; x, c)

38

Proof of downwards simulation theorem for partial correctness (2)

3. Case β (ϕ ψ) ; β:

ρ[a′/a] ∧ x′ = x
︸ ︷︷ ︸

=β

 (ϕ ψ) ; (ρ[a′/a] ∧ x′ = x
︸ ︷︷ ︸

=β

) = (by (2))

∀x′0, a
′
0.(ρ[a

′
0/a] ∧ x

′
0 = x)[x′, c′/x, c] → (∃a.ρ ∧ ∀x0.ϕ[x′0, a

′
0/x, a] → ψ)

︸ ︷︷ ︸

= ρ[a′0/a] ∧ x
′
0 = x ∃a.ρ ∧ ∀x0.ϕ[x′0, a

′
0/x, a] → ψ

QED

I.e., S ⊆ β (ϕ ψ) ; β iff

|=
{

ρ[a′0/a] ∧ x
′
0 = x

}

S
{

∃a.ρ ∧ ∀x0.ϕ[x′0, a
′
0/x, a] → ψ

}

39

Simplification possible in some cases

Theorem: For x̄ list of program variables, x̄0 a list of logical variables

occurring free in assertions ϕ and ψ, let ȳ0 be a list of fresh logical

variables of the same length as of x̄. Then:

ϕ ψ = x̄ = ȳ0 ∀x̄0(ϕ[ȳ0/x̄] → ψ)

Theorem: For preconditions of form x̄ = ȳ0 of if ρ−1 is a total function

S downward simulates ϕ ψ under representation relation ρ iff

|=
{

∃a(ρ ∧ ϕ)
}

S
{

∃a(ρ ∧ ψ
}

.

40

Semantic models

Unfortunately, the relational model for partial correctness is not

appropriate for all of the methods we would like to discuss.

Instead we need four of them:

relations pred. transformers

partial corr. Hoare (p.c.), Hehner Gardiner

total corr. VDM, Z, Reynolds, Hoare (t.c.), Back & von Wright,

Abadi & Lamport, Lynch Morgan

41

Syntax & semantics

Prog is a reasonably broad language to express the essential features of

the treated methods (from the data refinement point of view).

Prog 3 S ::= ϕ ψ | X | S1 ; S2 | S1 S2 | µX.S

with relational semantics for partial correctness P [[.]] : Prog → 2Σ×Σ

such that

{ϕ}S {ψ} is valid iff P [[S]] ⊆ P [[ϕ ψ]].

Example 4 (x, y, s = x0, y0, s0) (x, y, s = x0, y0, s0∪{x0}) expresses

s := s ∪ {x} in Example 1.

42

4 semantics of programs

relations pred. transformers

partial corr. P [[S]] ⊆ Σ2 wlp(S) : 2Σ mon
→ 2Σ

total corr. P
⊥
[[S]] ⊆ Σ⊥

2 wp(S) : 2Σ mon
→ 2Σ

43

Relating semantics (1)

vertical connection: separation theorems

total corr. = partial corr. + termination

[ϕ]S[ψ] ⇔ {ϕ}S {ψ} ∧ [ϕ]S[true]

wp(S)ψ ⇔ wlp(S)ψ ∧ wp(S)true

horizontal connection: Galois connection (F, [.])

σ ∈ [r] s ⇔ ∀τ ((σ, τ) ∈ r ⇒ τ ∈ s)

(σ, τ) ∈FP ⇔ ∀s (σ ∈ P (s) ⇒ τ ∈ s)

44

Relating semantics (2)

([2Σ mon
→ 2Σ],⊆)

([2Σ mon
→ 2Σ],⊆)

(2Σ2

⊥ ,⊇)

(2Σ2

,⊇)

Prog

[.]

F

[.]

F

P [[.]]

P [[.]]⊥

wlp

wp

45

Proof system (1)

adaptation axiom

` {π}ϕ ψ {∃ȳ0

(
π[ȳ0/x̄] ∧ ∀x̄0

(
ϕ[ȳ0/x̄] ⇒ ψ

))
}

 -substitution rule

{ϕ}S1 {ψ}, {π}S2[
ϕ ψ/X] {θ}

{π}S2[S1/X] {θ}

recursion rule

{π}S[π θ/X] {θ}

{π}µX.S {θ}

46

Proof system (2)

composition rule

{π}S1 {ϕ}, {ϕ}S2 {ρ}

{π}S1 ; S2 {ρ}

choice rule

{π}S1 {ρ}, {π}S2 {ρ}

{π}S1 S2 {ρ}

consequence rule

π ⇒ ϕ, {ϕ}S {ψ}, ψ ⇒ ρ

{π}S {ρ}

= sound and (relatively) complete proof system (in the sense of Cook).

47

Reynolds’ method

. . . we must transform our program to replace the abstract variable by a concrete

variable representing its value. To do this, we will use the following general method:

R1. One or more concrete variables are introduced to store the representation of

one or more abstract variables.

R2. A general invariant called the representation invariant is introduced, which

describes the relationship between the abstract and concrete variables.

R3. Each assignment to an abstract variable (or more generally, each assignment

that affects the representation invariant) is augmented with assignments to the

concrete variables that re-establish the representation invariant (or achieve it,

in case of an initialization).

R4. Each expression that contains an abstract variable but occurs outside of an

assignment to an abstract variable is replaced by an expression that does not

contain abstract variables but is guaranteed by the representation invariant to

have the same value.

The last step will render the abstract variables auxiliary, so that their declarations

and assignments can be eliminated. [Reynolds 1981]

48

Theorems

Theorem 2 Each data refinement step following Reynolds’ recipe

induces a case of total correctness downward simulation in the

relational setting.

Theorem 3 Each data refinement step in VDM induces a case of total

correctness downward simulation in the relational setting.

49

Example with Reynolds’ method: steps R1 and R2

begin

var s : set of N ; l : N
∗;

s := {5};

{geninv I: elems(l) = s}

S1;

s := s ∪ {x};

S2;

y := a member of s;

end

50

Example with Reynolds’ method: step R3

begin

var s : set of N ; l : N
∗;

s := {5} ; l := 〈5〉;

{geninv I: elems(l) = s}

S1;

〈s := s ∪ {x} ; l := append(l, x)〉 ;

S2;

y := a member of s;

end

51

Example with Reynolds’ method: step R4

begin

var s : set of N ; l : N
∗;

s := {5} ; l := 〈5〉;

{geninv I: elems(l) = s}

S1;

〈s := s ∪ {x} ; l := append(l, x)〉 ;

S2;

y := first(l);

end

52

Example with Reynolds’ method: final step

begin

var l : N
∗;

l := 〈5〉;

S1;

l := append(l, x);

S2;

y := first(l);

end

53

Example in VDM (1)

We specify the abstract and concrete level operations of our example

using VDM:

First the state variable is declared.

s : set of N l : N
∗

Then its initial value is fixed.

s0 = {5} l0 = [5]

54

Example in VDM (2)

The operations are specified next.

ADDa (x : N) ADDc (x : N)

ext wr s : set of N ext wr l : N
∗

post s =
↼
s ∪{x} post l =

↼

l
_
x

GETa (y : N) GETc (y : N)

ext rd s : set of N ext rd l : N
∗

pre s 6= ∅ pre len(l) > 0

post y ∈ s post y = first(l)

55

VDM proof obligations (1)

The connection between the state spaces of the two levels under

consideration is provided by retrieve function

elems : N
∗ → set of N .

The concrete data model (N∗) shall be adequate, i.e., every abstract

value has a corresponding concrete value:

l : N
∗ ` ∃s : set of N (elems (l) = s)

All images of concrete initial states must be abstract initial states.

` elems ([5]) = {5}

56

VDM proof obligations (2)

The concrete precondition shall hold whenever the abstract

precondition does. (domain rule for GETa and GETc)

l : N
∗, elems (l) 6= ∅ ` len(l) > 0

The concrete operation should not break the abstract postcondition.

(result rule for ADDa and ADDc)

↼

l , l : N
∗, elems (l) 6= ∅, l =

↼

l
_
x

` elems (l) = elems (
↼

l) ∪ {x}

57

References

All references can be found in:

• Willem-Paul de Roever and Kai Engelhardt, Data Refinement:

Model-Oriented Proof Methods and their Comparison,

Cambridge Tracts in Theoretical Computer Science 47,

Cambridge University Press, 1998.

58

	Overview
	Questions answered in this talk
	Refinement (1)
	Refinement (2)
	Refinement (3)
	Refinement (4)
	Data types
	Program Skeletons
	Data refinement (1)
	Data refinement (2)
	Data refinement (3)
	Why simulation?
	Local conditions for simulation (1)
	Local conditions for simulation (2)
	Soundness of simulation
	Proofs
	Incompleteness of downward simulation (1)
	Incompleteness of downward simulation (2)
	Completeness
	What's out there?
	Key problem
	Assertional vs. relational characterizations of an operation
	Hoare formulae
	Logical variables
	First connection
	Second connection
	Third connection
	Galois connection
	Assertional characterization of simulation
	Simulation Theorems
	Proof sketch 	extmd {of the downward simulation theorem for partial correctness} (1)
	Proof sketch 	extmd {of the downward simulation theorem for partial correctness} (2)
	Expressing binary relations and $leadsto $ syntactically (1)
	Expressing binary relations and $leadsto $ syntactically (2)
	Expressing ``$;$'' syntactically
	Expressing representation relations syntactically
	Proof of downwards simulation theorem for partial correctness (1)
	Proof of downwards simulation theorem for partial correctness (2)
	Simplification possible in some cases
	Semantic models
	Syntax & semantics
	4 semantics of programs
	Relating semantics (1)
	Relating semantics (2)
	Proof system (1)
	Proof system (2)
	Reynolds' method
	Theorems
	Example with Reynolds' method: steps R1 and R2
	Example with Reynolds' method: step R3
	Example with Reynolds' method: step R4
	Example with Reynolds' method: final step
	Example in VDM (1)
	Example in VDM (2)
	VDM proof obligations (1)
	VDM proof obligations (2)
	References

