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ABSTRACT
A mathematical model ig pProposed, allowing a
description of real time digital systems, sultable
for specification, documentation and validation
purposes. This model makes use of an absolute time,
as it is perceived by an external observer to the
system. The basic concepts of events and variables
are defined by means of sequences, 0 as to permit
the whole history of a system to be globally hand-
led. The descriptive pover of this model 1s illus~
trated by examples. Then we deal with design and
validation problems, regstricting ourselves to a
class of systems without interpretation, i.e. which
can be described only by means of events. The alge-
braic structure of the set of events is studied,
and the application of formal caleulus techniques
is outlined.

INTRODUCTION

In this paper, real time discrete systems are
considered in a rather restrictive sense: In ordi-
nary systems, only functional and temporal ordering
relationships between input/output variables are
relevant for the user, and time appears only as a
speed criterion that allows to compare different
functionally equivalent systems. In real time
systems, time rvelationships between external wva-
riables are also lmportant in order to decide of
the adequacy of the system to its requirements. For
instance, many logical or numerical automatic con-
trol systems, sigral and picture processing sys-—
tems, that were formerly realized using analog or
discrete technologies, are now implemented on
(multi-) mini or microcomputers, for evident rea-
sons of cost, versatility, computing power and
reliability. In most of these systems, fundamental
time constraints appear (frequencies, response
times...).

In the same way as for ordinary computer sys-~
tems, the design of these systems leads to problems
of specification, description, and validation.
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In  ordinary systems, these problems have been
approached by means of a mathematical formaliza—
tion. Many authors and the experience over the past
15 years have stressed the advantages of the mathe-
matical language - such as universality, precision,
ability to formal derivation -~ and successful
applications to software specification {1],
programming languages semantics definition [5,91,
and program proving are available. However, those
approaches cannot be straightforwardly applied to
our real time systems, since, in their philosophy,
a great deal of efforts have been spent in order to
withdraw the time from the models.

These considerations have led us to look Ffor
convenient mathematical descriptions of real time
systems. Qur first objective being the specifica-
tion of such systems, we have defined toolsg adapted
to behavioural description of events and variables,
allowing to denote every occurrence of an event,
and every assignment o a variable along the whole
history of the system (sections 1 and 2). These
tools are well suited to iaput=-output descriptions
of systems, and thus may be expected to avoid these
overspecifications that would arise from descrip-
tions in terms of buffers, tasks, processes,
clocks. ..

In section 3, a formal calculus over events is
outlined. Events are formaiized there as formal
series, and algebraic operators are defined on such
series, leading to very concise descriptions, and
allowing, to some extend, formal transformations
and deductions on these descriptions,

1. BASIC CONCEPTS

1.1 Time

Our notion of time refers to an absolute one,
such as perceived by an external observer to the
system. Clearly, at the description level, the
problem of the relative times measured by several
subsystems clocks in a distributed system, such as
studied in [6], does not arise. We shall generally
model the set W of times by the set R of real num-
achieved with minimum and maximum elemants
== and +o (whose usefulness will appear later in
the paper}., In many cases, Z, the achieved set of



Elements of T
dura-—

relative integers can be considered.
are called indifferently times, instants,
tions, delays..

1.2 Events

We consider as events the transitions between
states that may appear in a system or in its envi-
ronment, such as setting a switch, or assigning a
new value to a wvarlable. Moreover, an event can
occur several times during the perioed of observa-
tion of the system. As we deal with discrete sys-
tems, the set of occurrences of an event 1s assumed
to be enumerable.

At a suitable level of abstraction, as we look
for a mathematically tractable definition, we can
decide that an occurrence of an event has no dura-
tion, and can be viewad as a cut in the time line
that separates the periods before and after the
event occurs. As we have adopted an observationnal
point of wview, it will be convenient not to be
restricted by causality limitations, and thus to be
able to equally handle the past, the present and
the future of the system. For these reasons, we
define an event e to be an increasing mapping from
M to T, where e(n) denotes the instant of the n—th
occurrence of e.

For some reasons that will appear later in the
modeling of wvariables, we impose furthermore that
every event e must be such that e(0)=-«. HNote that
if the event e has only a finite nuaber n of occur-

rences, it will be such that e(m)=+= for every m>n,
for an occurrence whose time i1s +» will never
occur.

This modeling in terms of sequences has alrea-
dy been applied, for instance im the applicative
language LUCID {2].

Example: Specification of periodic events:In
many automatic contrel and signal processing sys—
tems, periodic inputs or outputs are required. A
periodic event e, with period A, can easily be
specified in our model by stating that:

’o‘nc'.lN*, e{nt+l) = e{n)+a

However, a strictly perioedic output can be
rather difficult to realize on a digital computer.
One can wonder whether this is not an overspecifi-
cation due to the use of informal language. It may
occur that weaker requirements should be equally
convenient, such as the following ones:

. Maximum Period: The time interval between two
suceessive occurrences of e must be smaller than A:

x
¥neg W, e(n¥l) < e{n)tA
. Mean Period: e must happen once and only once in
each time interval of duration 4, counted from an

Initial instant tyt

¥n em*, (n-l)A+to < e{n) < natt
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Since we deal with discrete systems, variables
may be considered as cells whose values change at
discrete times. As for events, it will be conve-
nient to encapsulate the whole history of a wva-
riable. So we define a wvariable X to be a couple
(x,2), where:

. X is a sequence of values, i.e. an application
from IN to D» the domain of the variable X;

.% is an event, called assignment to X.

The interpretation is: At the instant %(n}, X
takes the value x{n). x(0) is the initial value of
X, taken at the instant R(Q)=-=. Every value may be
the undefined value w, which belongs to every do-
main Dx'

Example: Specification of response times: When
an input variable X and an ocutput variable Y are
linked by a functional relationship (Y=g{X)), a
common requirement in real time systems consists of
defining a waximum response time, say &, between
the input of a wvalue of X and the corresponding
output of Y. However, such a requirement can be
found in specification documents in the case where
X and Y are periodic (in one sense defined above),
with different periocds. Such a requirement may be
given, at least, three interpretations:

Y must be computed at the same freguency as X,
and there 1Is a one to one correspondence between
their values:

¥n EIN*, y(n) = g(x(n)) and X{n) < F{n) < K(n)+6

Y may be computed at a smaller frequency than X,
but each output of Y corresponds to an input of X
not older than &:

¥n s]N*, Fme m* such that
y(n) = g(x(m}) and R(m) < ¥(n} < R(m)+5

Y must be computed at a greater frequency than X,
and each input of X causes the corresponding output
of Y in a delay shorter than & (this siruvarion
appears especially when g involves other variables
than X):

¥n em*, Jm e }N* such that
y(m) = g(x{n)) and &(n) < §(m) < &(n)+5

2 DESCRIPTION TOOLS

with the basic notions of events and
riables, as defined above, one can describe, using
mathematical language, the behavicur of any discre-—
te real time system, or specify the set of correct

Vau

behaviours of such a system to be Ilmplemented.
Nevertheless, 1in order to provide an effective
description language, we define now some tools

which seem to be of general usage for the sake of
natural description. Of course, we do net aim here
at dogmatically didentifying some closed set of
general purpose primitives, all the more as it 1Is




the advantage of the mathematical language to allow
its user to freely define the particular extensions
that seem well adapted to a specific problem.

2.1 Counters

An  alternative way for handling events con-
sists of using counters Instead of times. Such
counters have appeared useful in deseribing and
programming synchronization between processes
[7,8]. We shall associate, with each event e, a
counter p_ , which is an application from T to IN,
defined as follows:

¥t ™, p,e(t) = Card { ne ]N*le(n)< t}

Thus, p.(t) measures the number of cccurrences
of e that have happened strictly before t. p, is an
increasing, left continuous integer function on
T —[-=}. Such a function will be called a left
counter. Similarly a right counter (right continu-
ous) pe+ may be defined as:

*
Bt €T, p:(t) = Card{n el Je(n) <t }
Obviously, there is a bijection between the
set of events and the set of left or right counters
since:
¥ocW, e(n) = inf | te'ﬂ‘lue(t) o }
=min { t el uZ(t) >n}

According to these definitions, the event e

occurs at the dinstant t if and only if
i+
be(t) <ug{e).
Some cowmpositions of the already defined
functions provide new interesting ones:
2.2 last occurrence functions
o = +o +
e = @ © | and € = & ° ug are increasing

functions from T to TI. Be(t) (respectively @Z(t))
provides the instant of the last occurrence of e
that precedes strictly (resp. loosely) t. These
functions can be useful for description purposes.
However, they cannot be used in order to define
events, since several events may correspond to the
same O function, in the case of events with mul-
tiple simultaneous ocecurrences. If we restrict
ourselves to events without simultaneous occurren—
ces, the set {1, e, pf, of}, where I denotes the
identity function on IN¥, 1is closed with respect to
functional composition, as shown in figure 1.

2.3 Current value functions

Concerning variables, it may be interesting in
some applications, to handle the current value of a
variable ¥ as a function of time. This is achieved
by means of the functions X = x o pg and
gte x o . Both functions completely define
the variable X, when % has no simultaneous occur-
rences. This condition is clearly satisfied in
sequential systems, but can be false in parallel
ones, where several processes cam try to assign the
same variable at the same time.
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Figure 1

2.4 Filtering of an event by a condition

The following operation is of wvery common
usage: We define a condition C to be a variable
with truth values, i.e. such that
D, = {true,false}. Then the filtering of an event e
by a condition C provides an event, noted e/C

(e/C+), which occurs each time e occurs when C
(C+) is true:
¥t €10, *
pe/c(t) = Card {aenq [ e(n)<t and E(e(n))=true}

pe/c+(t)w Card {n snf I e(n)<t and E+(e(n))=true}

2.5 Analysis example

This example illustates the application of the
proposed tools inm handling what happens in an
asynchronous distributed system. The example 1is
derived from a fault tolerant multiple computer,
proposed by the french SFENA Company, for aircraft
control purposes [3].

The six cowmputers are organised as a rting
structure such that each computer can broadcast its
results to its three successors in the rting. A
continuous variable V is sampled by three redundant
sensors X, KZ' K3, connected to three computers
€1, €y, Cq (fig.2).

Periodically, each sensor K; samples the
variable V and sends it to its associated computer.
Let Xi (i=1..3) be the corresponding variables.

Computers connected to a sensor emit the
sample received from the sensor, and the other
computers emit the mean value of the samples recei-
ved from other computers. Let Y (i=1..6) be the
result broadeasted by computer Ci‘

The system is totally asynchronocus, since each
computer and sensor has its own clock. All the
petiods are theoretically equal, but, since clocks
are different, they can In fact differ slightly.
However, it 1s possible to know an upper bound A of
the period. In the absence of failure, the involved
variables may be described as follows:

st S



+

Figure 2
¥t €, ¥i=1..3, ¥i=4..6
Ti(e) = d Fi(t) = Fy(e- (t
(1) V(Q;(i(t)) and ¥;(t) = ¥i( yi( )}

NI S N .
Aty o[ ¥ . {0~ 7, -
Fyem 5 (e O chm a0 (o)

It is then possible to express ¥g(t) (using
functional composition):

1
= [ S(o@ 0@ )+
%o = [ (700 00

1
Z(Te@~ 00~ + Fod~ 00~ + Yop~ oA oG~ 4
507 % "%, Xz Y2 237%3 *%,

1 i
Z(qoB~ oG~ + Fo0 00~ ) 90~ + —=(Ve@~ 20~ +
9( X3 ¥3 X3 y3) ¥s 27( X1 Y1
Volr o 4 Tor o0~ ) o8~ 50~ ] oQ~

x2 Y2 *3 Y3 Y4 ¥5 ¥e
In this expression, terms like

[veO~ o8~ o0~ 20~ o0~ J(t) stand for "the value of
X2 ¥2 Y4 Y5 Ve

Vv at the instant of the last occurrence of ﬂz,

preceding the fnstant of the last occurrence of %.,,

preceding ..., preceding the instant of the last

occurrence of 96 preceding t.

Using this expression, we can compiute an upper
bound of the error ¥(t) - §%(t) , that camn be
useful for setting a voting threshold. This can be
done by replacing V(t) by a.t, where o 15 an upper
bound of the derivative of ¥, and by remarking
that, from the assumption made upon the maximum
period of all events, all the 6 functions appearing
here satisfy t—-A < @{t) <t. This yilelds:
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< é% [+ Y.

This result wmight certainly be obtained by
other wmethods. However, it 1is obtained here in a
very straightforward mamner and this seems due to
the fact that our formalism allows a very exact
representation of what happens im that distributed
asynchronous system.

vty - ya(t)

3 FORMAL CALCULUS OVER EVENTS

In the remainder of the paper, we shall deal
with design problems for real time systems descri-
bed in our model, such that proofs of properties,
static behavioural analysis, or description trans-

formations. Because of space limitatioms, we can
only outline our algebraic model, more thoroughly
developped in [4]. We shall henceforth restrict

ourselves to logical systems, i.e. without vari-
ables. A behaviour of such z system is then a set
of inter-related events.

3.1 Pseudo Events

The process of describing sequences by means
of formal series is classical, for instance in the
£field of discrete transform techniques applied to
the solution of finite difference equationms.

Let us define a pseudo event to be a formal
series:
H#y
x = L R0

where

(X,) is a sequence of non null telative integers;

(xn) is a strictly increasing sequence of ins-
tants;
. Both sequences have the same length #x, which can
be finite or infinite. If #x is infinite, it is
assumed that the sequence of instants x_ converges
towards infinity. #=0 defines the pseudo event 0.

With each pseudo event x can be associated in
a one to one way its counter u, defined by:

¥tem, 1f x=0 then px(t) = 0
else py(E) = xxn<t %n
set E of

Now, let us consider the events

satisfying the following property:

ee¢ E <=> ¢ may only have a finite number of
occurrences in a finlte amount of time.

Then, with each e in E, we can associate a

pseudo event x{e), such that:

. (x(e)n) is the sequence of the finite instants of

occurrences of e;

. ¥(e), is the number of occurrences ,of e happen-

ning at the instant x(e)n. So R(e)c W .

Example: 1 4
e= (~=,0,3,3,4,2,..) = x(e)= p% 207+ D
The correspondence being one to one, we shall
henceforth confuse e and x(e), and consider E to b
the subset of pseudo events x such that (%X ) ¢ W




(or equivalently, such that By, 18 Increasing).

The set R of pseudo events is provided with
the usual sum and product operations over formal
series. Intuitively, the sum of two events of E is
their disjunction (Bogg = Eetig} and the product
by pd delays an event by A units of time. So D° is
the unity of the product. Tt will be noted 1 and
omitted in products. The general product will be
usefyl in formal derivations.

A classical result about formal series is that
4 pseudo event X has am inverse 1/x (i e. such that
x.{1/x)=1) 1if and only if §1= *1.

Finally, let us define the following ordering
relationship over pseudo events:
¥X,¥ €R, x=y <==> ¥, p(r) < ()

If x and y are events, x<y means that, for
every integer n, the n-th occurrence of x happens
always after the n—th occurrence of y.

Example: Periodic events: Let us come back to
the example givem in 1.2. We get a much more conci-
se specification of each case:

t
. Strict period: e = DAe +D° (1)

From (1), we can deduge e(lwnb) = Dto, and fur-
ther, if A>0:

A t
« Maximum period: e »De + D © (2)

Note that (2) implies e » Dt°/(1-DB) but the
converse is false, because 1-D° is not an event
and it can be shown [4] that the product by a
pseudo event % 1s order preserving if and only if
X is an event.

Mean period: Dﬁf < e <f, with f = DAf +p%0 (%)

(3) implies f= Dt°/(1-n‘3) and so:
pEott o tg
N
1-p° 1-p"

Now, let us apply the formal model outlined
above to a more significant example.

3.2 Example

A  system receives two strictly pericdic
sequences of Input requests. The former sequence
starts from the instant 0, with a 2 seconds pericd,
the later starts from the iustant 1, with a 4
seconds period. The system is made of n identical
processors. The processing of a request belonging
to the former sequence lasts for 7 seconds, while a
request from the later sequence needs a 5 seconds
processing.

This system may be formalized in our model as
follows: Let a, b be the events respectively asso-
ciated with input arrivals from the former and the

later sequences. Let ¢, d respectively represent
the event “an input from the former (resp. later)
sequence 1is taken into account by some processor”.
Finally, let &, f respectively represent the event
“a processor ends the processing of an input from
the former (later) sequence™.Then:

- The specification of input sequences wmay be
written ai: . .
4= D°2 + 1 and b= DD + D (n

As a request cannot be taken into account before
tts arrival, we get:
¢t <2and d<b (2)

- The processing times of requests is specified as
follows: . .
e = D7¢ and f = D54 (3

- AS a request may only be taken into account when
there exists an idle processor, and since J+d
represents the event “a processor begins working”

and @+f+n represents the event “a processor
becomes idle™, we have:
E+d<é€+f+n (&)

Now consider the problem of determining the
einimum number of processors, n, needed so as to be
able to take into account every incoming request as
soon as it arrives (i.e. each input has to occur at
a time when there is an idle processor). This
immediate handling requirement provides:

€=3 and d = b (5)

Now the equations (1) provide:

- 1 ~ D
a = =+—> and b = ————

1-p2 1-ph

Then, all the eveat variables may be elimina-
ted, and the problem may be restated as follows:

"Find a mimimum integer n so that:

Then, by equalizing the denominators of the
two fractions:

1+ D +p2-pb-p7.pd

1-ph
The left hand side of this last inequality is
a pseado event, x, which becomes periodic (with
period 4) after an initlal delay. We want to find
the maximm value of its counter function. Perfor-
ming the polynomial division, according to increa-

sing powers of D, of its numerator by its denomina-—
tor, we get successively:

<n

D+ 02 +p% - pf - p7 - pd
x =1+ T -

0% + D% + p3 - pb - p7 - p?
1 -4

=1+0D+

p* + p5 - p7 - p?
1~ D%

=1+0D+0D2+

5_p7 4+ p8 o pd
1 - p4

=1+D+0p2+p4+2




= 2 3+ ph 4 p5 4 TRLTD]
1+D+ 02 + 04+ D5 + T3y

remainder -D/+0% 1s D7(-1+D) and the
of {(-1+D) is L.
(-D7+D8)/(1~D4) is a periodic pseudo event,

counter of which can easily be shown to have

The

degree smaller than So,
the
the
maximum value zero. Thus the maximum value of the
counter of x is the one of 1+D+D2+DQ+DS, which is 5

(cf. figure 3). So n=5 is the solutionm.

b, {t}

L LJ LI

N W & ogn

8 1 32 3 45 & 7 8 9101311213 "

Figure 3

CONCLUSION

We have studied the problem of specifying and
reasoning about behaviours of real time digital
systems. After having given an original definition
of the basic notions of events and variables, we
have described a set of tools suitable for giving
precise behavioural specifications of such systems.

Some raticnales are given conceraing these
tools, that bring a deeper imsight into the des—
cription problems, such as the advantage of being
able to name every occurrence of an event, or every
value of a variable, during the whole history of a
system, and to define the kind of continuity satis-
fyed by the functions of time involved In a des-
cription.

Then, we have defined a mathematical structu-
re, which seems to be adequate for handling systems
of events. There is a great deal of open problems,
in order to increase the power of the outlined
caleulus. In particular, optimlization problems need
some kind of lipear programming techniques, which

715

are far from being easy to adapt
ordered sets.

to partially

Nevertheless, we believe that our formaliza-
tion is a suitable one for handling real time
problems, and that the difficult guestions met here
are intrinsic of any investigation in this field.
Even though the class of problems we are able to
solve using this model is, until now, quite limi-
ted, it seems to be a promising way in the real
time systems analysis field, which 1is far to be
thoroughly investigated, in spite of its increasing
importance.
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