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1 Introduction

Designing correct algorithms for systems involving interaction among state machines, such as com-
munication protocols and concurrent algorithms, is known to be a difficult task. Design errors are
often overlooked because of the difficulty in reasoning about all possible executions of a concurrent
system. Traditional debugging techniques, such as simulation and prototype testing, may fail be-
cause the potential state-space of the system is too large for all bugs to be revealed. Consequently,
there has been increasing interest in the use of formal methods for the verification of concurrent
systems.

Most work in this field has concentrated on the sequencing and coordination of system events,
abstracting away the times at which events occur. However many systems are time-critical: their
behaviors may be time-dependent, and their specifications may require events to occur within spe-
ctfic time bounds. For example, most communication protocols require a maximal response time,
and an automatic flight controller must guarantee fast reaction times. Recently, much attention
has been given to the problem of extending existing verification techniques to such real-time sys-
tems [Dil89, AD90, ACD90, Lew90, AH89, LA90].

We consider real-time systems described by timed automata, which have a finite-state con-
trol [AD90, ACD90]. These automata have a set of fictitious clocks which measure the passage of
time. Clocks may individually be reset on transitions, and each transition is subject to an enabling
condition on the clock values. A state of the system consists of the control state of the automaton
and the values of all the clocks. It is clear that a timed automaton has infinitely many states. Anal-
ysis of such systems involves constructing a finite graph called a regions graph which represents a
finite quotient of the infinite state graph. States in the same region are in some sense equivalent,
and the regions graph can be used for checking emptiness of an automaton [AD90], deciding bisim-
ulation equivalence between timed automata [Cer91], real-time model-checking [ACD90], deciding
reachability questions [CY90], and controller synthesis [WTH91]. The practical difficulty lies in
the fact that the regions graph is exponentially large. As well as the state-space explosion due to
concurrent components, there is an additional blow-up due to the time bounds. There is there-
fore great need for the development and testing of heuristics before formal verification becomes
practical.
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In this paper, we describe three generic (untimed) algorithms for constructing graphs of the
reachable states of a system, and how these graphs can be used for verification. They all have as
input an implicit description of a transition system. We then apply these algorithms to real-time
systems. The first algorithm performs a straightforward reachability analysis on sets of states of
the system, rather than on individual states. This corresponds to stepping symbolically through
the system many states at a time. In the case of a real-time system this procedure constructs a
graph where each node is the union of some regions of the regions graph. There is therefore no
need for an @ prior: partitioning of the state space into individual regions; however, this approach
potentially leads to exponentially worse complexity since its potential state space is the power set
of regions [Dil89]. The other two algorithms we consider are minimization algorithms [BFH90,
LY92]. These simultaneously perform reachability analysis and minimization from an implicit
system description. These can lead to great savings when the minimized graph is much smaller
than the regions graph.

Our paradigm for verification is to test for the emptiness of the set of all timed system executions
that violate a requirements specification. One way to specify and verify non-terminating processes
is to model them as languages of w-sequences of events [Par81, SVW87, MP87, Dil89, Kur90, L'T87].
Modular processes can be constructed via operations involving language intersection. Specifications
are also given as languages: they contain all acceptable event sequences. Program correctness is
then just language containment. If the process language P has the specification Spec, to verify P
is to establish that P C Spec, or equivalently that PN Spec (where Spec represents the complement
of the specification) is empty. In many cases both P and Spec can be expressed naturally by a fair
transition system (or fts for short). Since fts’s are closed under intersection, program verification
reduces to a test of emptiness of a fts. This methodology is suitable for verifying real-time systems
since timed automata are a form of fts.

We describe how these algorithms are implemented, and discuss strategies for analyzing only
the “non-Zeno” runs of a timed automaton, i.e. runs where time progresses without bound. The
performance of the implementations is compared using two examples: a train-gate controller, and
Fischer’s timed mutual exclusion algorithm.

The remainder of the paper is organized as follows. In the next section, we give a general
description of a fair transition system. This provides the framework for the three algorithms
discussed in Sections 3 and 4. Section 5 describes timed automata. In Section 6, we show how
these algorithms are adapted for timed systems. A method for representing sets of states of a
real-time system is given in Section 7. Performance over the examples of Section 8 is evaluated in
Section 9.

2 Analysis of Fair Transition Systems

2.1 Fair Transition Systems

Suppose we have an implicit description of a labeled transition system S = (X, 5, sg, —, F). Here
Y is a set of events and the set 5 is a not necessarily finite set of states., The state sp € .5 is the
initial state, and —C 5 x ¥ x § is the transition relation. We denote the fact that a transition
t:(s,0,s") €— by the notation s = s'. For ¢ : (s,0,s') €, the set #(s) = {s’}. For a state s and
a subset X C §, we write s = X to mean that s~ for some s’ € X. We use s — s to mean that
there is some event o such that s = s’. The notation s = X for a set X is used similarly. The
fairness constraint set JF is a subset of 22°.

A run of a fts S for an infinite sequence of events o; € ¥ is an infinite sequence of states s; € §



such that
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It is a fair run if for every set F; € F, s; € F; for infinitely many ¢. The language accepted by
the fts is the set of infinite sequences that have fair runs.

2.2 Emptiness

When both 5 and ¥ are finite, there are many well-known algorithms for constructing the reachable
subgraph of &. From such a subgraph, emptiness of & can be decided by looking for strongly
connected components that satisfy the fairness constraints. However in many cases, and indeed
for timed systems, this finiteness assumption is not true (the notion of state includes a real-valued
time component).

Thus rather than constructing a graph with individual states as nodes, we build from & instead
a set-graph G = {Z, N, No, —), whose nodes A are sets of states of §, rather than individual states.
We say a set-graph is complete if and only if every state s € 5 appears in some node N € . We
now describe two properties that prove useful in relating the emptiness of &, to the emptiness of

G
A set-graph G is bisimulating if and only if Y N{,N; e N,Vo € &

JseNy:1s3> Ny
ifand only if Vs € Ni:s' 2 N,
if and only if N; 5N,

A set-graph G is surjective if and only if VN;,No, € N\,Vo e &

35’ e Ny3seNy:sS ¢
ifand only if Vs” € Nodse Ny:s> 5"
if and only if Ny SN,

Proposition: Let G be a complete set-graph for &. Assume that G is either bisimulating or
surjective.

If there exists a run {s;} for {¢;} in &, then there exists a run {N;} for {o;} in G such that
$; € ;.

Conversely, if there exists a run {N;} for {o;} in G, then there exist a run {s;} for {¢;} in &
such that S; € ¥;. O

In order to capture a correspondence between the fair runs of & and the runs of G, we have to
ensure that whenever a state s in 2 node N of &7 intersects with some fairness set F; € F, then all
states in N lie within F;. We say that a set of states N respecis a partition p of 5, if and only if
for every class X € p, NN X is either empty or all of X.

For a set A C 5, we denote its complement with respect to § by A. Let 4,B C §. Welet ®
be the pairwise intersection operator on sets, i.e.

{4:} ® {B;} = {4:n By}

The operator is generalized to multiple arguments. Consider the partition



Po = ® {Esjﬁ;}
F;eF
We say a set-graph G for § is fairness-respecting if and only if every node N of GG respects the
partition pg.

Theorem: Let G be a complete, fairness-respecting set-graph for §. Suppose G is also either
bisimulating or surjective. The fts & is non-empty if and only if G has a strongly connected
component which contains for every ¢ a node N; such that N;NF; #0. O

We now outline three algorithms that build complete, fairness-respecting set-graphs. The first
algorithm produces only graphs that are surjective, while the last two generate bisimulating graphs.

3 Set-Reachability Algorithm

There are familiar algorithms for reachability which perform an exhaustive search over a discrete
state-space. When examining one discrete state, all of its successors must also be examined in some
order (commonly either depth-first or breadth-first order). A state need not be examined further
if it has previously been visited.

This basic methodology can be applied to sets of states, rather than individual states. Given
a partition of the state space, and an initial reachable set of states respecting that partition, we
want to construct a graph where all nodes are sets of states, and there is an edge between two sets
of states A and A’ whenever every state in A’ is directly accessible from some state in A, i.e. we
want to build a surjective set-graph. Furthermore every node respects the partition.

procedure set_reachability {

input AC; /* an initial reachable set of states respecting rho_0 */
input S; /* a transition system */

input rho; /* a partition of the states */

output G; /* a graph as described above */

vertices(G) := {};
edges(G) := {};
stack := emptystack;
push{A0, stack);
while (not empty(stack)) do
A := pop(stack);
for (t in Transitions(S)) do
At := successors(A,t);
if (At <> {}) then
A* := intersect(At, rho):
while (A’ <> {}) do
B := select(4’);
A' = A’ - B;
if (not B in vertices(G)) then

vertices(G) := vertices(G) + B;
push(B, stack);
endif
edges(G) := edges{G) + <4,t,B>;
endwhile



endif
endfor
endwhile

Let V(%) be the set of states that are reachable from Ap via the sequence of transitions #. The
algorithm will terminate if and only if the cardinality of {V(f)}t'eT( S) is finite.

4 Minimization Algorithms

‘We now briefly describe two algorithms for simultaneously minimizing and generating the reachable
subgraph of an implicitly defined transition system. First we introduce some common notation.

Let p be a partition of §. A class X € p is said to be stable with respect to another class ¥ € p if
and only if Yo € B
(Jz € X :2 > Y) implies (V2 € X : 2 > Y)

A class is stable with respect to p if it is stable with respect to every class in p, and the partition
p is called a bisimulation if and only if every class of p is stable with respect to p.

The reduction of § according to a partition p is the transition system S|p = (Aed(p), [s0lp: —,),
where

o Acc(p) is the set of classes of p which contain at least one state accessible from sp;

* [so], denotes the class of p which contains sg;

o X %, Yiffz %Y for some z € X.

4.1 Minimization Algorithm I

This minimization algorithm is due to Boujjani et al [BFHT92, BFH90].

The algorithm starts from a transition system & and an initial partition p and constructs a
transition system &[p, where 7 is the coarsest bisimulation compatible with pp (every class of pp
is a union of classes of ). The algorithm will terminate whenever the bisimulation 7 has a finite
number of classes. The generic algorithm is parameterized by the following functions which are
specific to the transition system &. For computational efficiency we describe here a variant of the
split function found in [BFH192, BFHI0].

¢ split is a non-deterministic function which “splits” a class X of a partition p into “more
stable” subclasses. Let 4 be the set of classes of p for which X is not stable. If ¥ is not
empty, then split returns a minimal set of subclasses of X that are stable with respect to
some Y € 7. If 7 is empty, i.e. X is stable with respect to p, then split returns X.

o For a class X of p, the set post,(X ) is the set of classes in p which contain at least one state
directly accessible from a state of X: post (X )= {Y |Jz € X,z = Y}.

+ The set pre (X)) is the set of classes in p which contain at least one state from which a state
of X is directly accessible: pre,(X)={Y |y eY,y= X}.



In the following algorithm, p is the current partition, a is the set of classes of p which have
been found accessible from (the class of) the initial state, and o is the set classes of p which have
heen found stable with respect to p.

procedure min_alge_I;
begin
rho := rhe_0;
alpha := { [s0] };
sigma := {J;
while (alpha <> sigma) do
X := select{alpha - sigma);

alpha’ := split(X,rho);
if (alpha’ = { X }) then
sigma := sigma + {X};
alpha := alpha + Post(rho)(X);

else
alpha := alpha - {X};
if (there exists ¥ in alpha’ such that s0 in Y) then
alpha := \alpha + {Y};
endif
sigma := sigma — Pre(xho)(X);
rho := (rho - {X}) + alpha’;
endif
endwhile
endprocedure

4.2 Minimization Algorithm II

This minimization algorithm {LY92] is similar in spirit to the one above. It differs in that it does not
compute the exact states in each node of the minimal reachable subgraph. It specifies an explicit
strategy for choosing which class of the partition to split next. It also guarantees that no effort is
wasted unnecessarily splitting classes that are not reachable (this idea in fact led to the variant of
the split function we use in Minimization Algorithm I).

The idea behind Lee and Yannakakis’s selection strategy is to search forward to find classes
that need to be split, and to give every class a fair chance of being split. Space does not permit a
detailed account of their algorithm, so we provide instead only a brief description and a pseudo-code
outline.

Whenever a class is known to be reachable, a reachable point is chosen from within the class
and used to mark the class. Consequently future splitting may be done “around” this reachable
point, thereby ensuring that all splitting is done on reachable classes. Once a class is reached, it is
placed in a marked graph. An edge between one marked class and another indicates that there is
some state in the second class that is directly accessible from the marked state of the first.

The outline below is from [LY92] and uses the following functions:

e successor(p,t) — For parameters p € 5(S) and t €— g, this function returns #(p).

¢ successor-classes{p,t) — For parameters p € S(S) and ¢t €—g, this function returns
the set of all classes in the current partition that contains states in #(p).

e stable-part-of(B,p,rho) — This returns a subset of B that contains the state p and
is stable with respect to the partition p. This operation involves successively stabilizing B
around the state p with respect to each transition.



B? := B;
for (each t in Transitions(S)) do

D := t(B);

for (each marked-edge <B,p> -t-> <C,q>) do
B’ := intersection(B’,inverse_image(t,C));
D :=D - C;

endfor;

B’ := B’ - inverse_image(t,D);

endfor
¢ edge-from(q,B) - This function evaluates whether the class B is directly accessible from

state ¢q.
We now give the algorithm itself.

global stack; /* holds list of classes to search from */
global queue; /* holds unstable classes */

procedure min_algo_II;
begin

procedure search(stack};
begin
while ( stack not empty AND termination not detected) do
<B,p> := pop(stack);
for (each transition t im T(S)) do
C := successor-classes(p,t);
D := successors(p,t);
for (each Ci in C) do
if ( <B,p> not on queue) then
if (NOT all of B goes to Ci via transition t) then
insert(<B,p>, queus);

endif
endif
if (Ci not marked) then
mark(<Ci,pi>);
push(<Ci,pi>,stack);
endif
add-edge(<B,p> —> <Ci,pi>);
D :=D - Ci;

endfor
if ({(D NOT empty) AND (<B,p> not in queue)) then
insert(<B,p>, quene);
endif
endfor
endwhile
endprocedure

setempty(stack);
setempty{quene);

rtho := rho_0;
mark(<AQ,p0>);
push(<40,p0>, stack);



search{stack);
while ( queue is NOT empty) do
<B,p> := delete-head(quene);

B? := stable-part-of(B, p,rho);
B'? := B - B*;

B := B’

tho := rhe + B’7;

for (each marked edge e from <C,g> -> <B,p>) do
if (<C,qg> in queue) AND (unstable(C,rho))) then
insert(<C,q>, queue};
endif
if (NOT edge~from(q,B)}) then
delete-marked-edge(e);
else
if {(B?’ unmarked) then
mark({ <B*?,p’>);
push(<B*’,p?’>,stack);
endif
add-marked-edge( <C,q> -> <B’?,p’7>);
endif
endfor
if ( stack is NOT empty)) then
search(stack);
endif
endwhile
endprocedure

If the minimal subgraph is finite, the algorithm will terminate without any extra termination
detection. In the instance of timed transition systems, we know in advance this is the case.

5 Timed Automata

We review the definition of timed automate as a means of specifying timed transition systems and
their properties [Dil89, AD90, ACD90]. We show how a timed automaton can be viewed as a fair
transition system. Thus the algorithms described above can be applied to timed automata.

5.1 Timed Automata

Timed automata are a form of finite-state automata augmented with a finite set of real-valued
clocks. The value of each clock represents the amount of time that has passed since it was last
reset. Clocks may only be reset when transitions occur, and each transition has an associated
enabling condition. Thus to express a bound on the delay between two transitions, we reset a clock
on the first transition, and associate an enabling condition with the other transition.

For each transition, the enabling condition is given as a set of points in IR™ (IR denotes the set
of nonnegative reals, and n is the number of clocks in the automaton). The condition is enabled
provided the n-vector of clock values lies in the enabling region. We require enabling conditions
to be a form of convex polyhedron of IR", consisting of all the solutions of a system of linear
inequalities where each inequality is of one of the following forms:

ez < k,a<k x>k x>k, where 2 is a clock and £ is an integer constant, or positive
infinity {denoted oc).



o 2 —y <k, z—y<k, where z and y are clocks and & is an integer constant or oo.

We call such a polyhedron a (time) zone. Let Z(n) be the set of zones of R™. We consider also
a set of reset actions A(n), which are functions from IR" to IR®. For each ¢ € A, there is a set of
indexes I, C {1...n} such that

0 ifiel,

VEERLV=1 o, a(m);:{ (#): otherwise

Definition: A timed automaton G is a tuple (X,Q,C, giniz, T, ') where

1. ¥ is a finite set of events,
¢) is a finite set of locations,
C ={z1,...,2,} is a (finite) set of clocks,

Ginit € ¢ is an initial location,

vl wo

TCQRxExZ(n)x A(n) x @ is a transition relation.

6. I'C 229 i5 a set of fairness constraint.

Control of the automaton starts in location ¢jns;. Initially all clocks have value 0. A transition
(¢,0,2,a,¢) in T, denoted by ¢ Z%% ¢, means that control may pass from location ¢ € § in the
automaton to location ¢ € @ via the event ¢ provided the n-vector of clock values lies in the
enabling region a. At the same time the reset action a is applied to the current clock values, setting
to 0 all the clocks in I;.

At any instant, the state of the system can be fully described by the current location and the
values of all its clocks. So, a state of the system is a pair {g, &), where ¢ € @ and & € IR*. We
must consider two forms of events in the evolution of the transition system: either real events from
% occur, or t time units pass. All events occur instantaneously: an event §; represents the event
that ¢ time units have passed since the last event. Thus let £ = U {§; | ¢ € R}. Now we can
define a timed consecution relation on the states of a timed automaton.

Definition: For e € 5, a state (¢, .’LT’) is said to be an e-successor of another state (g, ¥}, written
(g, %) £ (¢, f’), if and only if either

¢ ¢ =0 ¢ ¥ and there is a transition ¢ 225 ¢’ € T such that ¥ € z and 2’ equals a( &), or

e e=6 and ¢ = gand 2’ = ¥ + { (where i denotes the n-vector [t,?,...] € R™).

g

A run of the automaton started in a state (g, £} is obtained by iterating the relation —s.
Formally, a run r is an infinite sequence of locations g; € ¢}, clock vectors #; € IR™, and events
g; € ¥ of the form

L. € I L. e . L. e
{0, To) —= {q1, T1) = (go, Fa) 2 oo+ 25 (g, Tp) = -+



We allow the possibility of more than one event occurring at a given time instant. One may
imagine time stopping momentarily. The occurrence of an event may be immediately followed by
another event, provided it is enabled by the new clock valuation.

Not all runs represent the unbounded passing of time; in fact there is no guarantee that any
non-zero time passes at all. However if we are to model the execution of non-terminating runs of
a timed system we wish to rule out such runs. A run r is progressive (or non-Zeno) if and only if

Yi=of(e;) is unbounded, where
_J 0 eeX
f(e) - { i e—= 6’6 .

This property ensures that only a finite number of real events can occur in any finite interval of
time.

6 Verification of Timed Systems

We now describe how each of three schemes above can be adapted to check the perform verification
of timed transition systems by checking for emptiness. The graphs we construct as set-graphs for a
timed transition system have nodes of the form (g, Z), where ¢ € Q and Z € Z(n). We demonstrate
how the operations required by each algorithm can be expressed as operations on time zones, and
show that each algorithm will terminate.

6.1 Zones and regions

6.1.1 Time operations

The following partial order will be considered on IR™:

& < 7 iff 36 € R such that 7 = & + &.
The set of time successors of azone Zis Z,={¢§ | T X 7}
The set of time predecessors of azone Zis Z, = {§ |38 € Z,§ 2 &}.

If Z is a zone and Z’' is a zone, then Z \ Z’ is some set of disjoint zones satisfying Z = 2’ U U; Z!.
Notice that in general the region Z — Z’ is not a zone.

If Z and Z' are two zones, then define
Zuz' ={zZnz'y v (Z\2Z) U (Z'\ 2).

In the following, we will consider regions of the form (s, Z}, for some zone Z. By convention,
(s, YU (s, 2y ={{s,2") | 2" € Z U Z"}.

A zone Z' is directly time-accessible from another zone Z (noted Z 7 Z') if and only if it is
possible to continuously pass from any point of Z to a point of Z’ by letting time elapse:

z/z ff VZ@ez,37e€Z', 3T € ZU Z' such that

e FXUWXTJ
¢ Vi< <7, €2
s Vi <y <§,ye”



Let Z {t Z’ denote the largest subset Z” of Z such that Z"7Z’ holds:
zyz' =U{z"12"CczZ A 272"}
It is easy to show that Z {} Z' is a zone.

6.1.2 Transitions

We need to be able to compute the images and inverse images of transitions in a timed transition
system.

The image of a class {g, Z) under the transition { : ¢ plaii g2, denoted t({q, Z)), is empty if ¢ # ¢,
or Z Nz =M. Otherwise it is simply (g2, Z’) where Z/ = a(Z N z).

The pre-image of a class (g, Z) under the transition ¢ : ¢ 2% gy, denoted t~1({g, Z)), is {q;,0) if
g # g2, 0or a(2) N Z = 0. Otherwise it is (¢, Z') where Z’ = ¢71(Z) N z. To find Z’, we compute

e H2Z)=U{Z" | (2" C Z}

We first find Z,, the part of Z that is in the image of a. This zone is simply Z N Z, where Z, is
the «(IR). We can then express ¢ '(Z) as

«Y(2) = ;Y(Z1)
where II;! is the inverse projection of all clocks in I,.
A class {(¢/, Z") is directly accessible from another class (g, Z} if and only if

1. either ¢ = ¢’ and Z’ is directly time-accessible from Z, or

2. there exists a transition ¢ 225 ¢ such that a(Z N 2)] N Z’ £ .

6.2 Set Reachability

We represent the nodes of the set-graph as regions, and show each step of the algorithm yields
reachable sets that are also regions.

The set-reachability algorithm requires us to specify how to find the successors of a given class,
and how to compute the pairwise intersection operator.

The successor sets of a region (g, Z) are themselves regions: they are the time successors {g, Z,
and the images of (g, Z) under some transition ¢, namely #({g, Z}). Both of these operations were
given in the previous subsection.

Pairwise intersection is easily handled since the intersection of any two time zones is a time
Zone.

The initial partition taken here, and also for the other algorithms, is

Pa;{qunlqu}

Clearly this partition is fairness-respecting, and so the set-graph constructed is too.

11



6.3 Minimization Algorithm I

We briefly describe how to define the functions split, pre, and post in terms of operations on time
zones. For a more detailed account see [ACHT92].
A class (g, Z) is stable with respect to a transition ¢ € T and another class (¢’, Z’) if and only if

t_l((q', ZI)) — <qu, Zfr)

with
¢" = qimplies Z'NZ =Qor Z

It is time-stable with respect to (¢’, Z) if and only if
g=4¢q implies Z{t 2" =0 or Z

A class is stable with respect to a partition p if and only if it is stable with respect to every
transition - class pair, and time-stable with respect to every class in p.
Let p be any partition of the states into regions. For any classes (¢, Z),

{q,2) (g, Z} is stable with respect to p
{¢, Z)U{q, Z 1+ 2"y  for some {¢', Z"}, (g, Z) is not time-stable
split({q, Z},p) = with respect to {¢', Z')

(g, ZY Ut Y({¢', 2")) forsomet € T,{¢,2Z') € p such that
(g, Z) is not time-stable with respect to ¢ and (¢’, Z')

Notice that this function is non-deterministic. However it always yields a set of classes that
ave either stable with respect to p or stable with respect to a greater number of transitions — class
pairs.

pre,((s:,2)) = (s, ZY epl Z' 1 24030 U {{s,Z) e pla(Z'n2)n 2 # 0},

sf—s

post,((s,Z))={{s,ZY e pl ZH Z' # B}V zl‘-aJ_ {(,ZYep|a(Znz)n Z' # G},

s—rg!

6.4 Minimization Algorithm II

This algorithm uses similar procedures to the first two algorithms: images, inverse images, and
time successors and predecessors are computed as above.

The only functions that differ are for marking blocks with single points and finding the successors
of a single state. It turns out that not every time zone contains a time zone that represents a single
point in IR™: this is because time zones are defined using only integer constants. Consider for
example, the time zone defined by 0 < « < 1 for n = 1. Thus the algorithm is modified slightly
to mark classes not with a single reachable state, but instead with a set of states. Thus marking
can also be done using time zones. Consequently, the marked subset must be updated whenever a
class is split, so that it always lies within the class it is marking.

12



6.5 Termination

The termination of the algorithms relies on the fact that there are only finitely many time zones
that need be considered in the analysis of a timed system. We merely state the result needed here
and refer the reader to [ACD90, AD90, Alu91] for details.

Theorem: For any timed graph G, there is a finite set-graph (called a regions graph) whose nodes,
all of the form (¢, Z) for some time zone in Z, are a stable partition of the state-space of G. O

Notice that the initial partition of the algorithms is coarser than the stable partition represented
by the nodes of regions graph, and the minimization algorithms only ever split unstable classes.
Thus at any point during the algorithm, every class of the generated set-graph is the union of nodes
in the regions graph.

Theorem: The minimization algorithms described above terminate. O

The set-reachability algorithm as outline above in fact does not terminate. We briefly describe
how it is modified to guarantee termination. The idea is that we may add to each reachable set of
states NV in the set-graph any states s’ for which there exists an s € N such that s = N’ if and only
if s' & N’ for every N’ in the regions graph. Thus as each node N is generated it is replaced by
the set of nodes in the regions graph with which it has non-empty intersection. Hence only finitely
many nodes are generated.

Theorem: The set-reachability algorithm terminates. O

6.6 Progressiveness

From the results in [ACD90] it follows that the progressiveness assumption can be modeled as
fairness constraints. In particular, these fairness conditions assert that every clock either increases
without bound or is infinitely often reset, but not continuously so. Let ¢; be the largest constant
to which clock ¢ is ever compared in the enabling conditions of G.

Oune possibility for handling this fairness condition in the analysis of timed graphs is to distin-
guish, in the initial partition, the cases where (¥ ); = 0 and those where ( ¥); > ¢;, for every clock
t. Now an infinite path in the region graph is called progressive if and only if for every i =1...m:

e it contains an infinite number of regions (g, F) such that for all & € F either (Z); = 0 or
( 5)5 > ¢

¢ it contains an infinite number of regions {g, F) such that for all & € F, (&); # 0.

However this procedure is computationally expensive since it causes the initial partition to
be fragmented into exponentially many pieces. The approach we prefer is to add this fairness
information iteratively. We first let the initial partition be {¢ x IR | ¢ € @}, and generate a
reachable subgraph, thus ignoring the progressiveness requirement for now. We then test the graph
for emptiness. If it is empty, then there are no runs of the timed graph, and thus certainly no
progressive runs. The timed graph is empty and we are done.

If not, we may prune from the graph all nodes that do not lie on any fair path. They need no
longer be considered since they cannot be reached by any fair run. Now we split each remaining
node set (s, Z) into (s, Z;} such where

{Z} =20 {{F [(£)i=0}1{F|0< (&) <}, {T](F)i>e1}
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Thus all classes now respect the fairness constraints for clock 1. We now recompute a reachable
graph starting from these classes as a partition of the state-space. This iterative step is continued
until either the automaton is declared empty, or the fairness information for all clocks has been
added.

7 Implementing Operations on Time Zones

Having described how algorithms for emptiness checking can be expressed using operations on time
zones, we now discuss how to perform these operation on a particular representation for zones.

We describe a canonical representation due to Dill [Dil89], and provide algorithms for some of
the basic operations.

7.1 Difference Bounds Matrices

Recall that a time zone Z € Z(n) is any polyhedron described as the set of all points in IR™
satisfying a system of inequalities of the form:

s <k ax<k a>kora >k, where k is either an integer or co
e 2 —y < kora—y <k where k is either an integer or oco.

If we identify a new fictitious clock variable xg with the constant value 0, each of the inequalities
above can be represented as a bound on the difference between two clock values. For instance, 2 < 3
can be expressed as 2 — zg < 5. Furthermore, if we introduce —oo as a bounding value, we can
restrict ourselves to upper bounds on differences without loss of generality. More precisely, each
inequality can be re-expressed in one of the following forms:

o z; —x; < korx;—x; <k, for some integer k&,
& T, —T; < —00,
¢z, —2; <00

Thus to describe these inequalities in a uniform fashion we introduce the domain of bounds. A
bound is an order pair in Z X {<, <} U {(o0, <), (—00,<)}. Each bound is intended to represent
an upper bound on a real value. We define an ordering on bounds as

z <z or
r=2a',ris <, and 7' is <

(z,7) < (a',r') iff {

Bounds can be added, where

(z +2',<) if z and 2’ are finite, and one of r or 7' is <
(z +2',<) if z and &’ are finite, and both r and r’ are <
(—o0,<) ifoneof2anda’is —oo

(—o0,<)  otherwise

(z,r)®(2',7) =

A difference bounds matrix (DBM) for IR" is an (n + 1) X (n + 1) matrix of bounds, with rows
and column indexed from 0 to n. Entries in the matrix represent upper bounds on the differences
between clock values. Formally the DBM A represents the polyhedron consisting of all points that
satisfy the inequality
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zi—w; <r Hay=(r<)
zi—z;<r Hay=(r<)

It is easy to see that every time zone can be described by a DBM. However there are many
DBMs defining the same zone, because some of the upper bounds need not be tight. For example,
the system

T < 2 (1)

can be represented by any matrix

(01 S.) (_lag) (09 S)
(2,<) (0,5) b
5,<) b (0,5)

where by £ (2, <) and by £ (-4, <).

7.2 Canonical form for DBM’s

The key idea in performing operations on zones is to represent them as canonical DBM’s. While a
zone Z has many DBM representations, there is a unique matrix for Z where all upper bounds are
as ‘tight’ as possible. We denote this canonical matrix cf(Z). Dill [Dil89] showed that this matrix
can be computed from an arbitrary matrix for Z by applying an all-pairs shortest path algorithm.
‘This representation therefore leads to easy tests for equality and emptiness of time zones.

7.3 Intersection

The intersection of two time zones Z and Z' can easily be computed from their DBM’s. Intuitively
we take the union of all the inequalities for each zone. To achieve this we need only take the lower
of the two bounds for each pair of clock differences.

Let A and A’ be DBM’s for Z and Z'. The zone Z N Z’ is represented by the matrix B where
for all ¢, 7 we have

M 7
) ai; if aj; < al;
bi; = min{a;;, ;) = J ]
“ {a, i3} aj; otherwise
Notice that the matrices A and A’ need not be in canonical form, and in general the matrix B

is not canonical.

7.4 Time successors

If 5T is a system of inequalities defining Z, then Z - is defined by the system SI’ obtained from
ST by removing all inequalities that place upper bounds on the absolute values of the clocks, i.e.
inequalities of the form z < kor 2 < k.

The following pseudo-code describes how this operation can be performed on a DBM.

15



procedure time_successors(4,B) {
input DBM A; /% input is DBM for Z #/

output DBM B; /% output is DBM for time successors */
B := A;
for i := 1 to n do
B{il[0] := (infty,<);
endfor

Notice that the input need not be canonical. However if it is, then the output will also be.

7.5 Time Predecessors

Similar to computation of time successors, we may replace all lower bounds on clocks with (0, <).
The matrix computation is analogous to that above. However in this case, canonical input does
not in general imply the output will be canonical.

procedure time_successors(4,B) {
input DBM 4; /* input is DBM for Z */

output DEH B; /% output is DBM for time successors */
B = A;
for j := 1 to n do
BLOJ[j] := (0,<=);
endfor

7.6 Inverse Images of Reset Actions

Let a be a reset action of the variables in 7. Its inverse «™*(Z) is computed by first finding the
possible image ¢ within Z, and then taking the inverse projection of the reset variables.

procedure inverse(A,a,A’)

begin
input DBM A; /* A represents Z */
input reset_action a; /% the reset action */
output DBM B; /+ B will be a DBM for a~{-1}(Z) */

/% compute subset of Z whose clocks in I_a equal 0 */
B := 4;
for x in I_a do
BLx][0] := (0,<=);
B[Ol[x] := (0,<=};
B := cf(B);
endfor

/* inverse projection %/
for x in I_a do
/# set all bounds relating to x as irrelevant */
BLol[x] := (0,<=);
for i := 0 to n do
if i <> x then
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B[L1[x] := (0,<=);
endif
endfor
for j := 0 to n do
if j <> x then
B[x1[j] := (infty,<);
endif
endfor
endfor
endprocedure

7.7 Zone Difference

Given zones Z and Z' we often need to compute the set of points Z — Z’. Unfortunately this set
is in general not a zone, but rather a union of zones. We sketch below an algorithm for computing
Z\ Z', a set of disjoint zones Z¥ such that Z = Z' U U; 2.

We generate a partition of Z — Z’ by successively slicing off parts of Z that do not lie in Z’. We
consider in turn each inequality z; — z; < zfj from Z’ as a potential face along which to slice Z. A
slice is necessary along this face if it “touches” any points in Z. Let cl(Z’) denote the closure of
Z’, i.e. all points in IR™ for which there are arbitrarily close points in 2’. If the restriction of ¢l(Z")
to points satisflying @; — z; = k intersects Z, then slice off from Z all points for which z; — z; < zt’-j
is not satisfied. These points form a zone which is then added to the partition of Z — 2.

procedure difference
begin
input DBM Z;
input DBM Z27;
output DBMset Z'’; /¥ Z'’ is set of DBMs for Z-Z*’ */

done := FALSE;
Z“ = {};
C := closure(Z’);
for (i,j distinct clocks) do
if (NOT done) then
A := intersect(Z,Z’);
if (4 = {}) then
/* what remains of Z can be put in Z°’ */

22 =2+ {Z};
done := TRUE;
else

it (A = Z) then
/* no more of Z does not lie in Z’? */
done := TRUE;

else
/* check whether to slice this face */
/* val(<k,r>) = k */
B := restrict(C,x_i-x_j=val(z’_ij});
if (intersect(B,Z) <> {}) then

/* slice along this face */

2% 1= 27 + restrict(Z, WOT x_i-x_j<z’_ij);
Z := restrict(Z,x_i-x_j<z’_ij);
endif
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y=0 z2:=0
Train Gate Controller

Figure 1: Automata for Train-Gate Controller Example

endif
endif
endif
endfor
endprocedure

The restriction operator is implemented by adding new constraints to a DBM and recomputing
a canonical form. The closure operation is performed by replacing all strict inequalities on finite
bounds with unstrict inequalities.

8 Examples

In the examples below, a global automaton for the system is formed as the composition of automata
for each component. Components synchronize their actions through shared events. Associated with
each component is an alphabet of event symbols, and an event can occur provided it is enabled in
every automaton whose alphabet includes the event.

8.1 Train-Gate Controller

Our first example is an automatic controller that opens and closes a gate at a railway track in-
tersection [Alu91]. The system consists of three components: a train, a gate, and their controller.
The automata modeling these components are shown in Figure 8.1.

Whenever a train enters the intersection, it sends an approach signal at least 2 minutes in
advance to the controller. The controller also detects the train leaving the intersection, and this
event occurs within 5 minutes after it started its approach.

The gate responds to lower and raise commands by moving down and up respectively within
certain time bounds. For example, the gate moves down within 1 minute of receiving a lower
command.

The controller sends a lower command to the gate exactly 1 minute after receiving an approach
signal from the train. It commands the gate to raise within 1 minute of the train’s exit from the
intersection.

We verify a simple real-time safety property, namely that whenever the gate goes down, it is
moved back up within a certain upper time bound K. In other words, the gate is never down for
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Figure 2: Real-time safety specification

as long as K minutes. The antomaton for this property appears in Figure 2. Its complement is
expressed by the same automaton with state so final instead of gy and s,
Whenever the specification constant is greater than or equal to 7 the specification is satisfied.

8.2 Timed Mutual Exclusion

We examine also a simplified version of a mutual exclusion protocol due to Fischer. A similar
example appears in [AL91, SBM91].

There are n processes, each labeled with a unique identifier ¢ € 1..n. Each process 7 has 4
operating states. In state ¢ it is idle, but at any time may begin executing the protocol provided
the value of a global variable z is 0. It then advances to state b. It delays here for up to Ap seconds
before simultaneously advancing to state ¢ and assigning the value i to the variable z. From state
¢ it may enter its critical section within &, seconds provided the value of z is still <. Upon leaving
its critical section, it reinitializes z to 0.

The automata for the case of two processes is given in Figure 3. Process 1’s alphabet has events
startl for starting the protocol, setz! for moving from state b to ¢ and setting z to 1, enterl
for entering its critical section, and setz0 for leaving its critical section and reassigning the global
variable z to 0.

The conditions on the value of the global variable 2 are maintained by the special process called
VARIABLE-X. Its states encode the current value of the global variable, 7.e. VARIABLE-X in state
s; means that @ = ¢. Constraints on each process’s behavior are expressed by disallowing certain
process events when the value of @ would prohibit it. For example the lack of a start! action from
states 83 and s indicates Process 1 cannot start the protocol if z equals 1 or 2.

We verify the safety property that no two processes are ever in their critical sections at the
same time. This property is expressed by the automaton of Figure 4.

A listing of the text input for this problem appears in the appendix.

9 Results and Comparison

9.1 Implementation

All three algorithms above have been implemented in C. As mentioned above they share many
common routines.

The input to the program comnsists of a description of a timed graph. The output indicates
whether the graph is empty or not. Composite timed graphs may be specified as the product of
individual time graphs. The input is passed through lex-yacc preprocessors to generate source code,
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setanl

setel

VARIABLE-X

Figure 3: Automata for Mutual Exclusion Protocol

sefzl setz(}

\/

enterl, enter2
enterl!, enter?

setz(

Figure 4: Mutual exclusion specification
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which is then compiled and executed. This allows constants to be hard-wired into the executable
code: thus the exact amount of space required can be allocated to each DBM. An example input
listing appears in the appendix.

As classes are generated, they are stored in a global name table with pointers used to maintain
the necessary stacking and queueing data-structures. Although not specified explicitly by the
algorithms, information is stored to allow faster checks for stability. For each class (¢, Z), there are
pointers to classes which may be directly accessible from some state in (g, Z). These are maintained
bidirectionally so that whenever a class is split it is easy to determine which classes may now be
unstable.

The check for strongly connected components is done using Tarjan’s algorithm [Tar72].

9.2 Results

The train-gate controller was tested for two cases. When the specification constant is ' = 10, the
controller meets its specification, and there are no violating runs. For K = 5, the specification is
not satisfied.

In the timed mutual exclusion example, setting Ap > 8. allows the possibility of two processes
entering their critical sections at the same time. The three implementations were tested for the
values Ag = 5 and 6. = 12, for which the specification is met, and Ag = 5 and §, = 4, where the
specification is violated. Results were produced for up to 4 processes.

We analyzed the performance of the set-reachability (SR) algorithm, the minimization algorithm
of Lee and Yannakakis (MAII), and two versions of the minimization algorithm of Boujjani et al
(MAI). We considered two simple selection strategies for splitting unstable regions in MAIL: LIFO
ordering, where the region most recently determined to be unstable is split next, and FIFO order,
where unstable regions are split in the order they are detected.

The results in Figure 5 were obtained on a DEC 5100 with 40 MB of main memory.

9.3 Comparison

Correctness vs Incorrectness : The first observation is that it is easier to prove a system
behaves correctly than to prove it violates its specification. This is because proving non-emptiness
of a timed system necessitates the iterative generation of a set-graph that respects the fairness
constraints for the progressiveness requirement on every clock. On the other hand, emptiness may
be detected much earlier.

Removing Regions Not on Fair Runs : Between iterations of adding fairness constraints for
each clock, the implementation removes regions known at the time not to lie on any fair runs.
Although the comparative results are given above, this optimization leads to reductions in compu-
tation time of around 50those examples where there were fair runs in the timed graph.

Minimization vs Set-Reachability : The results are slightly surprising in that the naive
set-reachability algorithm often outperforms the minimization algorithms. We outline two possible
reasons why it executes faster. First, the minimization algorithms require time to check classes for
stability. Second, splitting classes into stable subclasses is an expensive operation: its counterpart in
the set-reachability algorithm is simply to find the images of a class under all transitions. However
the graphs constructed from each of the minimization algorithms are smaller than those generated
by the SR algorithm, and this fact may prove crucial for larger examples.
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MAI
“ SR LIFO FIFO MAIL
Example || Time [ Mem || Time | Mem || Time [ Mem || Time | Mem
MUTEX-2 1] 1 1] 1 1T 1 5] 2
MUTEX 3.0 i ) 3 3 3 3 6 3
MUTEX-3 2 2 8 3 8 3 146 5
MUTEX-3-e 108 13 803 7 887 6 — —
MUTEX-4 45 16 496 9 192 8 — —
MUTEX-4-e — * — — — — — e
GTC 1 1 6 3 6 3 12 3
GTC-e — — 57 4 57 4 155 10

— indicates could not allocate more memory
% indicates managed to complete first iteration
MUTEX-i indicates i processes in mutual exclusion protocol
GTC Gate, train, controller example
- indicates example contains error run, specification not satisfied
Time is measured in seconds, and memory in Megabytes

PFigure 5: Results Table

Minimization Algorithms I and II : Our implementation of MAI outperforms MAII. We
believe this is due to two factors. First, MAII has extra overhead in deciding which class to split
next (this work is performed by the “search” routine). Second, our implementation requires extra
overhead in marking blocks with regions rather than states. This necessitates updating the marked
region. An alternative would be to use floating point arithmetic and implement new routines for
finding successors.

10 Conclusion and further work

We have implemented three algorithms for checking the emptiness of a timed transition system.
These were applied to two examples to measure their comparative performance. Preliminary re-
sults indicate that memory usage is a more limiting factor than time, and that the minimization
algorithms, which produce far smaller graphs, are more likely to be successful on larger examples.
However, much work needs to be done to make these algorithms more efficient in practice. Pos-
sible heuristics include regular checks that regions lie on fair runs (if they do not they may be
discarded), and developing efficient yet simple strategies for choosing which region to split next.
The algorithms also need to be tested on a wider variety of examples.

The ideas described here for analyzing timed transition systems can be used to solve problems
other than emptiness: for example testing bisimulation equivalence of two timed graphs [Cer91],

finding simulation relations between timed graphs, timed model-checking [ACD90, ACH+92, HNSY92],

and synthesizing supervisory controllers for timed discrete event systems [WTH91]. It would be
interesting to see how well the algorithms perform on these problems.
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Appendix — Sample Input Listing

—— Fischer’s timed mutual exclusion algorithm

define(DELTA_B, 5)
define(delta_c, 12)

PRODUCT {

PROCESS { ——- P 1
STATES (a b ccs ) ;
INITSTATE a ;
EVENTS (setxl startil enterl setx0 ) ;
FAIRNESS (a b ¢ ¢s);
CLOCKS (y1);

TRANS (
a, starti -> b : TRUE : vy1 ;
b, setxl -> ¢ : yI<DELTA_B : y1 ;
¢, enterl -> ¢s : yi>delta_c : H
¢s, setx0 -> a : TRUE : ;
Y
¥
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PROCESS { —— P 2
STATES (a b c ¢cs ) ;
INITSTATE a;
EVENTS (setx2 start2 enter2 setx0 );
FAIRNESS (a b ¢ ¢s );
CLOCKS (y2);
TRANS (
a, start2 -=> b : TRUE : y2 ;
b, setx2 -> ¢ : y2<DELTA_B :
¢, entex2 -> cg : y2>delta_c : H
c¢s, setx0 -> a : TRUE : H
) s

PROCESS { -- Variable-x

STATES (s0 si s2) ; -- indicates value of x variable.

INITSTATE s0;

EVENTS (starti setxl enteri
start2 setx2 enter2
setx0
Y5

FAIRNESS ( s0 si s2);

CLOCKS ();

TRANS (
s0, setx0 -> s0 : TRUE : ;
s1, setx0 -> s0 : TRUE : ;
s2, setx0 -> sQ : TRUE : ;

-—- for each process a set of trangition ’emabling conditions’
80, starti -> s0 : TRUE : ;

s0, setxl -> s1 : TRUE : ;

sl, setxl -> s1 : TRUE : ;

s2, setxl ~> s1 : TRUE : ;

sl, enterl -> s1 : TRUE : ;

80, start2 -> s0 : TRUE : ;

s0, setx2 -> s2 : TRUE : ;

sl, setx2 -> s2 :+ TRUE : ;

52, setx2 -> s2 : TRUE : ;

52, enter2 -> 32 : TRUE : ;
Y

PROCESS { -- spec complement, mutex viclated
STATES { nonein onein twoin );
INITSTATE nonein;

EVENTS (enterl enter2 setx0);
FATRNESS ( twoin );
CLOCKS ();
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TRANS (

nonein, setx0 -> nonein :
onein, setx) -> nonein :
nonein, enterl -> onein :
cnein, enteri -> twoin :
nonein, enter2 -> onein :
onein, enter2 -> tweoin ;

TRUE :
TRUE :

TRUE

.
.

TRUE :
TRUE :

TRUE
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