
Veri�cation of Real-Time Systems

using Linear Relation Analysis

�

Nicolas Halbwachs, Yann-Erick Proy, Patrick Roumano�

Verimag, Centre Equation

2, avenue de Vignate

F-38610 Gieres,France

Abstract

Linear Relation Analysis [CH78] is an abstract interpretation devoted to the automatic

discovery of invariant linear inequalities among numerical variables of a program. In this

paper, we apply such an analysis to the veri�cation of quantitative time properties of two

kinds of systems: synchronous programs and linear hybrid systems.

1 Introduction

Embedded systems are generally critical. So, they constitute a privileged application �eld for

formal veri�cation techniques. Among these techniques, automatic veri�cation based on �nite

state abstractions has been very successfully developed and applied during the last decade.

However, embedded systems interact with their environment in real-time, and quantitative

time properties are very common in this �eld. So, more recently, considerable research e�orts

have been devoted to the veri�cation of real-time properties. As the addressed problems involve

numerical aspects, the approaches based on �nite state models no longer apply, in general. Such

problems, being undecidable in general, can be approached along three ways:

Many people propose methods and tools based on general or dedicated theorem proving

techniques (e.g., [AL91, Rus94]). Of course this approach is quite general, but requires a

signi�cant, and often prohibitive, amount of human help.

Other works have been devoted to the identi�cation of decidable subproblems

(e.g., [ACD93, HNSY92]) that can be automatically solved as �nite state problems. Al-

though interesting classes of decidable problems have been identi�ed, this approach lacks

generality, and is faced with the very high complexity of the veri�cation procedures.

A last track, which is considered in this paper, makes use of approximation.

Approximate veri�cation methods either provide de�nite results (\yes, the property is satis�ed",

or \no, it is violated") or fail (i.e., answer \I don't know"). The question, of course, is about the

precision of such techniques, i.e., the amount of \I don't know" answers you get. Notice that,

�

This work has been partly supported by ESPRIT-BRA action \REACT", by ESPRIT-LTR project \SYRF",

and by a grant from Schneider Electric.

1



from a practical point of view, getting an unconclusive answer is not worse than running out of

time or memory with a \complete" but exponential decision procedure.

Approximate veri�cation can bene�t from program analysis techniques, developed a long time

ago, to extract semantic properties to be used in compilers, either for static consistency checks or

for code optimization. Most of these techniques have been uni�ed in the framework of abstract

interpretation [CC77]. In this paper, we propose to adapt a speci�c abstract interpretation,

called linear relation analysis, to the veri�cation of real-time systems.

Linear relation analysis [CH78] is a method to discover linear relationships invariantly satis�ed

by the numerical variables of a program. It was �rst designed to check the consistency of array

accesses in sequential programs. The analysis associates with each control point of the program,

a system of linear inequalities characterizing an upper approximation of the set of states in which

the numerical variables can be when the program execution reaches the considered control point.

An important consequence is that, when the linear system associated with a control point is

unsatis�able, it means that the control point is not reachable by any program execution. So,

the analysis can be straightforwardly used to prove unreachability properties. Now, experience

shows that the essential goal, for embedded systems, is generally to ensure some critical safety

properties, expressing that something bad never happens, i.e., precisely, unreachability properties.

This paper recalls the fundamentals of linear relation analysis, and applies the method, with

some extensions, to two classes of real-time systems:

The �rst application concerns the veri�cation of programs written in synchronous lan-

guages [IEE91, Hal93b], for properties involving delay counters [Hal93a]. Although these

counters are bounded integer variables that could be taken into account by classical �nite

state methods, our analysis avoids the tremendous state explosion that would occur dur-

ing such an exhaustive state exploration. The analysis can be applied to any numerical

programs, but gives particularly good results in this �eld because of the simple behavior

of counters.

The second application concerns linear hybrid automata [ACHH93, AHH93, HPR94,

ACH

+

95], a model that has been proposed to describe systems involving variables evolving

continuously along the time. These systems are not �nite state, and their veri�cation is un-

decidable. We show that, thanks to slight extensions, linear relation analysis can cope with

such continuous evolutions, and give quite precise results with very good performances.

2 Linear Relation Analysis

The linear relation analysis [CH78, Hal79] is an application of the general method of abstract

interpretation proposed by P. & R. Cousot [CC77, CC92a]. It is an approximate analysis method

which discovers invariant linear relations among numerical variables of a dynamic system. We

informally recall its principles in this section.

2.1 Abstract interpretation

Abstract interpretation is a general method to �nd approximate solutions of �xpoint equations.

Most program analysis problems come down to solving a �xpoint equation x = F (x). Solving

such an equation generally raises two kinds of problems:

(1) The solution must be computed in a complex ordered domain (typically, the powerset of

the state space of a program). Elements of this domain must be e�ciently represented and

2



normalized; functions de�ned on the domain, and the ordering relation among the domain, must

be computed. A �rst approximation can take place at this level: instead of computing in the

complex domain C of concrete values, one can choose a simpler abstract domain A, connected to

C by means of two functions � : C 7! A ; 
 : A 7! C forming a Galois connection:

8x 2 C;8y 2 A; �(x) �

A

y () x �

C


(y)

where �

C

;�

A

respectively denote the order relations on C and A. The approximation of a

function F , from C to C, will be the function �(F ) = � � F � 
, from A to A. The basic result

is that, if C is a complete lattice, if F is increasing from C to C, then

�(lfp(F )) �

A

lfp(�(F ))

where lfp(F ) denotes the least �xpoint of F . So, computing the least �xpoint in the abstract

domain provides an upper approximation of the �xpoint in the concrete one.

(2) The iterative resolution of a �xpoint equation can involve in�nite (or even trans�nite) iter-

ations. In some cases, the abstraction performed in (1) is so strong that the abstract domain is

either �nite or of �nite depth (there is no in�nite, strictly increasing chain y

0

<

A

y

1

<

A

: : :). In

such a case, the resolution in the abstract domain converges in a �nite number of steps. However,

requiring the abstract domain to satisfy such a �niteness condition is very restrictive. Better re-

sults [CC77, CC92b] can often be obtained by performing another kind of approximation: When

the depth of the abstract domain is in�nite, speci�c operators may be de�ned to extrapolate

the limit of a sequence of abstract values. For an increasing sequence (computation of a least

�xpoint) one uses a widening operator, usually noted r, from A�A to A, satisfying the following

properties:

� 8y

1

; y

2

2 A; y

1

�

A

y

1

ry

2

and y

2

�

A

y

1

ry

2

� For any increasing chain (y

0

�

A

y

1

�

A

: : :), the increasing chain de�ned by y

0

0

= y

0

;

y

0

i+1

= y

0

i

ry

i+1

, is not strictly increasing (i.e., stabilizes after a �nite number of terms).

Now, to approximate the least �xpoint y of a function G:

y = lim

i�0

y

i

; with y

0

= ? (the least element of A) and y

i+1

= G(y

i

)

we can compute an ascending approximation sequence (y

0

i

)

i�0

:

y

0

0

= ? ; y

0

i+1

= y

0

i

rG(y

0

i

)

which converges after a �nite number of steps towards an upper approximation

�

y

of y . This

approximation can be made more precise by computing a descending approximation sequence

y

00

0

=

�

y

; y

00

i+1

= G(y

00

i

)

i.e., starting from

�

y

a standard sequence, without widening. Each term of the descending

sequence is an upper approximation of the least �xpoint y .

3



Partitioned systems: Assume the concrete domain C is the powerset of some set S of states,

and that S = K � S

0

, where K is a �nite set (typically, a set of control points). For each k 2 K,

let C

(k)

= fkg � 2

S

0

, and for each x 2 C, let x

(k)

= x \ C

(k)

. Clearly, for each x 2 C, the set

fx

(k)

j k 2 Kg is a �nite partition of x. Now, any �xpoint equation x = F (x) can be written as

a system of equations:

^

k2K

x

(k)

= F

(k)

(x

(1)

; x

(2)

; : : : ; x

(jKj)

)

where F

(k)

(x

(1)

; x

(2)

; : : : ; x

(jKj)

) = F (x

(1)

[ x

(2)

[ : : : [ x

(jKj)

) \ C

(k)

This partitioning can be used to make the results more precise, as follows: The partition can

obviously be re
ected in the abstract domain, by setting y

(k)

= �(x

(k)

), resulting in an abstract

system of equations

^

k2K

y

(k)

= G

(k)

(y

(1)

; y

(2)

; : : : ; y

(jKj)

)

We will say that k depends on k

0

if the value of G

(k)

(y

(1)

; y

(2)

; : : : ; y

(jKj)

) can depend on the value

of y

(k

0

)

. Let R

G

be this dependence relation on K. Let K

r

be a subset of K such that the graph

of R

G

restricted to K nK

r

has no loop. Then the convergence of the ascending approximation

sequence is guaranteed even if the widening operator is only applied to components belonging to

K

r

:

8k 2 K; y

0(k)

0

= ?

8k 2 K

r

; y

0(k)

i+1

= y

0(k)

i

rG

(k)

(y

(1)

i

; y

(2)

i

; : : : ; y

(jKj)

i

)

8k 2 K nK

r

; y

0(k)

i+1

= G

(k)

(y

(1)

i

; y

(2)

i

; : : : ; y

(jKj)

i

)

The advantage is that the widening operator, which is the one which looses most information, is

applied less frequently.

2.2 Convex Polyhedra

The linear relation analysis is used to deal with systems whose states include a numerical part.

Let us de�ne the set of states to be S = N

n

�S

0

, where N is a numerical set (e.g., IN, ZZ or

jj

Q).

A state s 2 S is a pair hX; s

0

i, where X is a numerical vector and s

0

2 S

0

is the non-numerical

part of the state (it can contain a numerical part which is kept out of the analysis).

The concrete domain we consider is C = 2

S

, and the abstract one is P(

jj

Q

n

), the set of

convex polyhedra of

jj

Q

n

. Any subset x of S will be approximated by a closed convex polyhedron

�(x) 2 P(

jj

Q

n

), such that

hX; s

0

i 2 x =) X 2 �(x)

and any closed convex polyhedron P 2 P(

jj

Q

n

) will represent the set of states


(P ) = fhX; s

0

i j X 2 P \N

n

; s

0

2 S

0

g

2.2.1 Representations of polyhedra

So, our abstract values are closed convex polyhedra. Let us recall that a closed convex polyhedron

P (a polyhedron, for short) has two representations (see Fig. 1):

4



it is the set of solutions of a system of linear inequalities

P = fX j AX � Bg

where A is a m�n-matrix and B is a m-vector.

it is the convex closure of a system of generators, i.e., two �nite sets V and R (respectively

for \vertices" and \rays") of n-vectors such that

P = f

X

v

i

2V

�

i

:v

i

+

X

r

j

2R

�

j

:r

j

j �

i

� 0; �

j

� 0;

X

i

�

i

= 1g

These two representations are dual: If P is a polyhedron, its polar is the polyhedron P

�

=

fx j 8y 2 P; x:y � 1g, where x:y denotes the scalar product of x and y. P

�

always contains the

origin, and if P contains the origin, P

��

= P . If (V;R) is a system of generators of P , then

^

v2V

v:x � 1 ^

^

r2R

r:x � 0

is a system of inequalities of P

�

. Conversely, if P contains the origin, and if its system of

inequalities (AX � B) is normalized into A

0

X �

~

0 ^ A

1

X �

~

1, then the set of rows of the

matrices A

0

and A

1

respectively constitute the set of rays and of vertices of P

�

.

There exist e�cient algorithms [Che68, LeV92] for translating each representation into the

other; these algorithms also minimize the representations. The principle of the translation is the

following [Che68]: Assume (AX � B) is the system of inequalities of a polyhedron P . A system

of generators of P can be computed iteratively as follows:

Start with P

0

=

jj

Q

n

, the whole space, a system of generators of which is V

0

= f

~

0g (the

origin) and R

0

= f

~

i

1

; : : : ;

~

i

n

;�

~

i

1

; : : : ;�

~

i

n

g, where f

~

i

1

; : : : ;

~

i

n

g form a basis of

jj

Q

n

.

At step k, intersect P

k�1

with the kth inequality of P , say \aX � b": (1) any vertex

v 2 V

k�1

(resp. ray r 2 R

k�1

) such that av � b (resp. ar � 0) belongs to V

k

(resp.

R

k

); (2) for any pair (v; v

0

) of vertices in V

k�1

such that av > b and av

0

< b, their convex

combination

b�av

0

av�av

0

:v �

b�av

av�av

0

:v

0

belongs to V

k

; (3) for any pair (v; r) 2 V

k�1

�R

k�1

such

that either av > b and ar < 0, or av < b and ar > 0, their positive combination v+

b�av

ar

:r

belongs to V

k

; (4) for any pair (r; r

0

) of rays in R

k�1

such that ar > 0 and ar

0

< 0, their

positive combination (ar

0

):r � (ar):r

0

belongs to R

k

.

0

r

1

r

0

v

1

321

y

3

1

0

v

0

2

x

P =

(

(x; y) j

 

y � 1

x+ y � 3

�x+ y � 1

!)

V =

n

v

0

�

2

1

�

; v

1

�

1

2

�o

R =

n

r

0

�

1

0

�

; r

1

�

1

1

�o

Figure 1: A convex polyhedron and its 2 representations

5



P QP\Q

PtQ

Figure 2: Intersection and convex

hull

P [0=y]

P [x+ 1=x]P

x

y

Figure 3: Linear transformations

The system of generators computed by the algorithm above is not minimal. It can be minimized

as follows, using the system of inequalities of P : Let us say that a vertex v (resp. a ray r)

saturates an inequality ax � b if av = b (resp. ar = 0). Let Sat(v) (resp., Sat(r)) denote the

set of inequalities of P saturated by the vertex v (resp., the ray r). Then v is redundant if there

exists an other vertex v

0

with Sat(v) � Sat(v

0

) (and similarly for rays). Two vertices v and v

0

are mutually redundant if Sat(v) = Sat(v

0

). A minimal system of generator can be extracted

from (V;R) by discarding all redundant vertices and rays, and keeping only one representative

in each subset of mutually redundant vertices or rays. [LeV92] proposes an simpler and more

e�cient way to minimize a system of generators during its construction, based on the following

remark: Let n

1

be the dimension of the least hyperplane containing P , and n

2

be the dimension

of the greatest hyperplane contained in P . Then a point v (resp., a vector r) is an actual vertex

(resp., ray) of P if and only if it saturates n

1

� n

2

(resp., n

1

� n

2

� 1) inequalities of P .

2.2.2 Operations on polyhedra

We will use the following basic operations on polyhedra (see Fig. 2 and 3):

Intersection: The intersection of two convex polyhedra P and Q is a convex polyhedron whose

system of linear inequalities is the conjunction of those of P and Q.

Convex hull: The convex hull of two polyhedra P and Q (noted P t Q) is the least convex

polyhedron containing both P and Q. Its system of generators is the union of those of P and

Q. The convex hull is used as an upper approximation of union, since generally the union of two

convex polyhedra is not convex.

Linear transformation: We will use linear transformations resulting of the substitution of

linear expressions to variables. Let us de�ne a linear assignment to be a pair (A;B); A 2

jj

Q

n�n

; B 2

jj

Q

n

de�ning the function �x:Ax + B from

jj

Q

n

to

jj

Q

n

. The image of a polyhedron P

by a linear assignment (A;B) is fAx+B j x 2 Pg. If (V;R) is a system of generators of P , then

(V

0

= fAv+B jv 2 V g, R

0

= fAr jr 2 Rg) is a system of generators of the image of P by (A;B).

Test for emptyness: A polyhedron is empty if and only if it has no vertices.

Test for inclusion and equality: A polyhedron P , with system of generators (V;R), is

included in a polyhedron Q, de�ned by the system of inequalities AX � B, if and only if

6



(a)

PrQ

Q

P

x

y

(b)

PrQ

Q

P

x

y

Figure 4: Widening operation

8v 2 V; Av � B and 8r 2 R; Ar � 0 . The equality of two polyhedra is decided by showing

the double inclusion.

Widening: While the basic operations on abstract values are determined by the choice of

the abstract domain, the design of a widening operator is based on heuristics. The following

widening operator (hereafter called standard widening) was proposed in [Hal79]. Let P and Q

be two polyhedra. Roughly speaking, the widening PrQ is obtained by removing from the

system of P all the inequalities that are not satis�ed by Q. Fig. 4.a shows an example where

P = f(x; y) j 0 � y � x � 1g, Q = f(x; y) j 0 � y � x � 2g and PrQ = f(x; y) j 0 � y � xg.

The intuition is clear: whenever an inequality is translated or rotated, it can do so in�nitely

many times, so it is removed. This operator clearly satis�es the properties of a widening: the

result contains both the operands, and since the system of inequalities of PrQ is a subset of the

one of P , the widening cannot be in�nitely iterated without convergence.

The actual operator is a bit more complicated: �rst, whenever P is empty, PrQ = Q.

Moreover, if P is included in a strict subspace of

jj

Q

n

, its minimal system of inequalities is not

canonical. It should be �rst rewritten into an equivalent system maximizing the number of

inequalities satis�ed by Q, and thus kept in the result. For instance, consider:

P = f(x; y) j x = 0 ^ y = 0g ; Q = f(x; y) j 0 � y � x � 1g

The system of inequalities of P can be �rst rewritten into P = f(x; y) j 0 � y � x � 0g before

performing the widening, which evaluates to PrQ = f(x; y) j 0 � y � xg (see Fig. 4.b) instead

of f(x; y) j 0 � y ^ 0 � xg, which would be obtained without rewriting. This optimization pre-

serves the widening properties. It is performed using the following algorithm [Hal79]: All the

inequalities of P satis�ed by Q are kept in the result, together with all the inequalities of Q that

are mutually redundant with an inequality of P , i.e., saturated by the same vertices and rays

of P . In the above example y � x is an inequality of Q that is mutually redundant with the

inequality 0 � x of P .

3 First Application: Delays in Synchronous Programs

3.1 Synchronous Programs and their Veri�cation

Synchronous programming has been proposed [IEE91, Hal93b] as a useful approach to describe

real-time control kernels. A synchronous program is supposed to instantly and deterministically

react to events coming from its environment. All synchronous languages share the same abstract

notion of time: the notion of physical (chronometric) time is replaced by a simple order among

7



events; the only relevant notions are the simultaneity and precedence of events. Physical time

does not play any special role; it is handled as an external event, exactly as any other event

coming from the program environment. This is called the multiform notion of time: Simply by

counting events, one can express delays counted in \meters" as well as in \seconds".

The advantages of this approach have been pointed out elsewhere. Synchronous languages are

simple and clean, they have been given simple and precise formal semantics, they allow especially

elegant programming style. They can be compiled into a very e�cient sequential code, using

a speci�c compiling technique: The control structure of the object code is a �nite automaton

which is synthesized by an exhaustive simulation of a �nite abstraction of the program.

Concerning program veri�cation, it has been argued [BS91, HLR92] that the practical goal,

for real-time programs, is generally to verify some simple logical safety properties: By a safety

property, we mean, as usual, a property that expresses that something will never happen, and

by a simple logical property, we mean a property that depends on logical dependences between

events, rather than on complex relations between numerical values. For the veri�cation of such

properties also, the synchronous approach has some advantages: Since the parallel composition

is synchronous, the desired properties of a program can be easily and modularly expressed by

means of an observer [HLR93], i.e., another program which observes the behavior of the �rst

one and decides whether it is correct. The veri�cation then consists in checking that the par-

allel composition of the program and its observer never causes the observer to complain. This

veri�cation can often be performed by traversing the �nite control automaton built by the com-

piler. Moreover, the automaton is generally much smaller than in the asynchronous case, where

non-deterministic interleaving of processes often results in state explosion.

However, the claim that usual critical properties of a real-time system do not depend on

numerical variable values can be disputed in one important aspect: they often depend on the

values of the delays involved in program control. Now, the �nite automata built by the compilers

and considered in the veri�cation do not re
ect these delays: Delays are counted by means of

integer variables, described in the interpretation associated with the automaton. For instance,

the Esterel compiler doesn't know that the statement \await 5 SECOND" takes more time than

\await 3 SECOND", and neither does any proposed veri�cation tool. In that sense, one can argue

that these tools have nothing to do with the veri�cation of \real-time" properties.

In this section, we show how the Linear Relation Analysis can be combined with the usual

veri�cation methods to take numerical delays into account in the generation of automata. Let

us take a small example, in Esterel

1

: We consider a car, about which we know that

� it stops within 4 seconds,

� if it doesn't stop before 10 meters, it bumps into an obstacle.

This simple behavior can be described as follows in Esterel:

trap END in

await 4 SECOND; emit STOP; exit END;

jj

await 10 METER; emit BUMP; exit END;

end.

This small program is made of two parallel processes embedded into a \trap" block. The �rst

1

All the examples will be given in Esterel, on the one hand, because it is probably the best-known synchronous

language, and on the other hand, because it contains speci�c statements to deal with delays. However, the method

described here can be applied to other languages.

8



321

TOO FAST!

T:=S:=D:=0

SECOND?T++<4?

S:=0

METER?S++=3?

METER?S++<3?

METER?S++<3?

D++=10?BUMP!

SECOND?T++=4?

S:=0;STOP!

D++<10?

Figure 5: An interpreted automaton

process that stops waiting, instantaneously emits a signal and performs an \exit END", which

terminates the whole block, thus killing the other process.

Now, assume we know also that the speed of the car is at most 2m/s. We can express this

knowledge in the program, by signaling an exception whenever 3 meters are perceived within a

second. The full program is as follows:

module car:

input METER, SECOND;

relation METER # SECOND;

output BUMP, STOP, TOO FAST;

trap END in

loop

await 3 METER; emit TOO FAST; exit END

each SECOND

jj

do

await 10 METER; emit BUMP; exit END

jj

await 4 SECOND; emit STOP; exit END

upto TOO FAST

end.

The \loop ... each SECOND" is started again each second. Thus, the exception TOO FAST

is only raised if three METER signals are received between two successive SECOND signals. In

that case, the whole program terminates because of the \exit END" statement.

From this program, the Esterel compiler builds an interpreted automaton similar to that

of Fig. 5 (where X++ denotes the value of X after incrementing it). It introduces 3 counters:

T for counting 4 seconds (the time), S for counting 3 meters each second (the speed), and D

for counting 10 meters (the distance). The structure of the automaton doesn't show that the

emission of BUMP is impossible.

Now, this automaton is a sequential program, dealing with 3 bounded integer variables. An

exhaustive simulation can be performed, which leads to a detailed, non interpreted, automaton

with 49 states and 146 transitions, on which the property can be checked. This solution has an

obvious drawback: The size of the detailed automaton clearly increases as the product of the

delays. Counting a time delay in milliseconds rather than in seconds will tremendously increase

the size of the automaton. So, our goal is to detect that some transitions of the interpreted

automaton cannot occur because of delay counting, without considering the detailed automaton.

For that, we apply our linear relation analysis.

9



Location 1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : fP

1

g

T=0; D=0; S=0; goto Location 2 : : : : : : : : : : : : : : : : : : : : : : fP

1;1;2

g

Location 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : fP

2

g

if SECOND then S=0;

if T++=4 then emit STOP; goto Location 3 : : : : : : : fP

1;2;3

g

end;

goto Location 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :fP

1;2;2

g

end;

if METER then

if S++=3 then emit TOO FAST; goto Location 3 : : fP

2;2;3

g

end;

if D++=10 then emit BUMP; goto Location 3 : : : : : : : fP

3;2;3

g

end;

goto Location 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :fP

2;2;2

g

end;

goto Location 2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : fP

3;2;2

g

Location 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : fP

3

g

goto Location 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :fP

1;3;3

g

Figure 6: The code of the automaton, with associated polyhedra

3.2 Delay Analysis

3.2.1 Interpreted Automata

The linear relation analysis is applied to automata produced by synchronous languages compilers.

Such an automaton is a �nite set of states | which will be called locations to distinguish them

from the global state of the automaton, involving also valuations of variables |, each of which

being associated with a piece of sequential code. This code is made of three kinds of statements:

Assignments: Those which do not assign counter variables will be ignored in the analysis.

An assignment to a counter variable either increments it, or decrements it, or resets it to

zero.

Tests select statements to be performed according to some conditions. The only conditions

that will be taken into account in the analysis are comparisons of counter variables with

integers.

Branching statements select the next location of the automaton. These statements termi-

nate the code executed in a location.

Fig. 6 gives the code of the automaton shown in Fig. 5.

We will take advantage of this control structure to get a partitioned system. A state of the

program is a triple (`;X; Y ), where ` is a location of the automaton, X is a vector of counter

values, and Y is a vector of values of other variables (e.g., those giving the presence of external

signals) which will be ignored. With each location ` of the automaton, we will associate a

polyhedron P

`

, which will be an approximation of the set

fX j 9Y; (`;X; Y ) is a reachable state of the programg

10



Since we are interested in determining what transitions can occur and what locations can be

reached, we will also associate a polyhedron with each branching statement, which will approxi-

mate the set of possible valuations of the counters when executing those statements: Let P

i;`

0

;`

be the polyhedron associated with the i-th \goto location `" statement appearing in the code of

location `

0

. Fig. 6 shows the polyhedra to be computed for our small example.

Clearly P

`

is the convex hull of all the P

i;`

0

;`

, and P

i;`

0

;`

is computed from P

`

0

according to the

statements executed along the branch leading to the i-th \goto location `" appearing in the code

of `

0

. The transformation of polyhedra resulting from assignments is straightforward, using linear

transformations of polyhedra. For tests, three cases occur: Let F

t

, F

f

be the transformations

corresponding respectively to entering the \then" and \else" branches of a test, Then,

if the condition is not a linear expression of the counters, it is ignored, and both F

t

and F

f

are the identity function �P:P .

if the condition is of the form \X

i

� k", where X

i

is a counter and k is an integer constant,

then F

t

= �P:P \ fX j X

i

� kg ; F

f

= �P:P \ fX j X

i

� k + 1g.

if the condition is of the form \X

i

= k", then

F

t

= �P:P \ fX j X

i

= kg

F

f

= �P:(P \ fX j X

i

� k + 1g) t (P \ fX j X

i

� k � 1g)

Notice that we take advantage of the fact that counters are integer variables, by setting

:(X

i

� k) � (X

i

� k + 1) and that the non-convex set P \ fX j X

i

6= kg is approximated by

the convex hull of the two polyhedra P \ fX j X

i

� k + 1g and P \ fX j X

i

� k � 1g.

Here are the de�nitions of the polyhedra corresponding to our example:

P

1

= true (initial location)

P

2

= P

1;1;2

t P

1;2;2

t P

2;2;2

t P

3;2;2

P

3

= P

1;2;3

t P

2;2;3

t P

3;2;3

t P

1;3;3

P

1;1;2

= P

1

[0=T ][0=S][0=D]

P

1;2;3

= P

2

[0=S][T+1=T ]\ f(T; S;D) j T = 4g

P

1;2;2

= (P

2

[0=S][T+1=T ]\ f(T; S;D) j T � 3g)

t(P

2

[0=S][T+1=T ]\ f(T; S;D) j T � 5g)

P

2;2;3

= P

2

[S+1=S] \ f(T; S;D) j S = 3g

P

3;2;3

= Q[D+1=D] \ f(T; S;D) j D = 10g

P

2;2;2

= (Q[D+1=D] \ f(T; S;D) j D � 9g) t (Q[D+1=D]\ f(T; S;D) j D � 11g)

with Q = (P

2

[S+1=S] \ f(T; S;D) j S � 2g) t (P

2

[S+1=S] \ f(T; S;D) j S � 4g)

P

3;2;2

= P

2

P

1;3;3

= P

3

3.2.2 Widening strategies

The points where the widening is performed are selected among location entry points. Although

the Esterel compiler generates a dummy transition looping on each location, we do not have

to perform a widening in each of these loops where no action is performed. So, we consider

11



only the transitions containing actions on counters, and we select a location in each loop of such

transitions. In our example, we select location 2, which belongs to any loop, and change the

equation of P

2

:

P

2

= P

2

r (P

1;1;2

t P

1;2;2

t P

2;2;2

t P

3;2;2

)

Moreover, our experimentations show that both the precision and the performances of the analysis

are improved by the following modi�cations:

Widening \up to": One can choose a �xed set of linear inequalities, say M , and de�ne a

new \widening up to M" operator r

M

as follows: Pr

M

Q is the intersection of the standard

widening PrQ with all the inequalities in M that are satis�ed by both P and Q. For instance,

if a counter x is declared to be of subrange type 0::10, if the domain of x is �rst fx = 0g and

then f0 � x � 1g, it is reasonable to widen this domain to f0 � x � 10g instead of f0 � xg.

It is a way of guessing an invariant | a guess that can be found false at a next step. This

heuristic changes neither the property of the widening nor the correctness of the result. In many

cases, not only it avoids the necessity of the decreasing sequence | since the increasing sequence

reaches a �xpoint | but also it provides a more precise result. In the case of our counters, a

set of inequalities M is associated with each widening location. This set is selected to be all

the linear relations which make the control remain in the location. The intuition behind this

choice is the following: Assume ` is a location whose only outgoing transition is guarded by

the condition \x++=10" and that ` is entered with x=0. Then, since the control remains in `

(possibly incrementing or decrementing x) unless x becomes equal to 10, x is likely to remain

smaller than 9 as long as the control is in `. In our example, the location 2 is left when either

T++=4 or S++=3 or D++=10. The set of inequalities limiting the widening is

fT � 3 ; T � 4 ; S � 2 ; S � 3 ; D � 9 ; D � 10g

Non-regular behavior: Any widening operator is chosen under the assumption that a pro-

gram behaves regularly: When we get fx = y = 0g at the �rst step, and f0 � y � x � 1g

at the second step, this assumption of regularity consists of guessing that we are likely to get

f0 � y � x � 2g at the third step, and so on; this is why the standard widening extrapolates

the limit to f0 � y � xg. Now, the assumption of regularity is obviously abusive in one case:

when a path in the loop becomes possible at step n, the e�ect of this path is obviously out

of the scope of the extrapolation before step n (since the actions performed on this path have

never been taken into account). So, if the polyhedron associated with a widening point depends

on some polyhedra which become non-empty at step n, the extrapolation performed before can

be questioned. In such a case, the extrapolation will be performed from the �rst non-empty

solution: In our example, if one of P

(n)

1;1;2

; P

(n)

1;2;2

; P

(n)

2;2;2

; P

(n)

3;2;2

is not empty whereas it was at step

n� 1, we will take

P

(n+1)

2

= P

(1)

2

r (P

(n)

1;1;2

t P

(n)

1;2;2

t P

(n)

2;2;2

t P

(n)

3;2;2

)

because P

(1)

2

is the �rst non-empty version of P

2

.

12



3.3 Examples

3.3.1 The \car" example

Let us detail the analysis of the very simple program we considered so far. The system of

equations has been given in x3.2.1. Let us recall (cf. x3.2.2) that the only widening location is

Location 2, and that the widening is performed up to the following inequalities:

M = fT � 3 ; T � 4 ; S � 2 ; S � 3 ; D � 9 ; D � 10g

The successive computation steps are the following:

Step 0: Initially, all the polyhedra are empty.

Step 1: The �rst iteration in the loop provides:

P

(1)

2

= P

(1)

1;1;2

= fT = S = D = 0g

P

(1)

1;2;2

= P

(1)

2

[T + 1=T ][0=S]\ fT � 3g) t (P

(1)

2

[T + 1=T ][0=S]\ fT � 5g)

= fT = 1; S = D = 0g

Q = (P

(1)

2

[S + 1=S] \ fj S � 2g) t (P

(1)

2

[S + 1=S] \ fS � 4g)

= fS = 1; T = D = 0g

P

(1)

2;2;2

= (Q[D + 1=D] \ fD � 9g) t (Q[D + 1=D] \ fD � 11g)

= fS = D = 1; T = 0g

and so P

(1)

1;1;2

t P

(1)

1;2;2

t P

(1)

2;2;2

= fT � 0; S = D � 0; S + T � 1g

Step 2: The widening is applied, and we get:

P

(2)

2

= fT = S = D = 0gr

M

fT � 0; S = D � 0; S + T � 1g

= f0 � S = D � 2; 0 � T � 3g

P

(2)

1;2;2

= P

(2)

2

[T + 1=T ][0=S]\ fT � 3g) t (P

(2)

2

[T + 1=T ][0=S]\ fT � 5g)

= fS = 0; 0 � D � 2; 1 � T � 3g

Q = (P

(2)

2

[S + 1=S] \ fj S � 2g) t (P

(2)

2

[S + 1=S] \ fS � 4g)

= f1 � S = D + 1 � 2; 0 � T � 3g

P

(2)

2;2;2

= (Q[D + 1=D] \ fD � 9g) t (Q[D + 1=D] \ fD � 11g)

= f1 � S = D � 2; 0 � T � 3g

and P

(2)

1;1;2

t P

(2)

1;2;2

t P

(2)

2;2;2

= f0 � S � D � 2T + S;D � 2; T � 3g

Step 3:

P

(3)

2

= f0 � S � D � 2T + S; T � 3; D � 2g

P

(3)

1;2;2

= fS = 0; 0 � D � 2; 1 � T � 3g

P

(3)

2;2;2

= f1 � S � D � 2T + S; T � 3; D � 3; S � 2g

and P

(3)

1;1;2

t P

(3)

1;2;2

t P

(3)

2;2;2

= f0 � S � D � 2T + S;D � S + 2; T � 3; D � 3; S � 2g

13



Location 1

T=0; D=0; S=0;

goto Location 2 : : : : : : : : : : : : : : : : : : : : : : : :fT = S = D = 0g

Location 2 : : : : : : : : : : : : : f0 � S � D � 2T + S; T � 3; S � 2g

if SECOND then S=0;

if T++=4 then

emit STOP;

goto Location 3 : : : : : : : : : fS = 0; 0 � D � 8; T = 4g

end;

goto Location 2 : : : : : : : fS = 0; 0 � D � 2T; 1 � T � 3g

end;

if METER then

if S++=3 then

emit TOO FAST;

goto Location 3 : : : : fS = 3; 2 � D � 2T + 2; T � 3g

end;

if D++=10 then

emit BUMP;

goto Location 3 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : f;g

end;

goto Location 2 : : :f1 � S � D � 2T + S; T � 3; S � 2g

end;

Location 3

f3T + S � 12 � 3T + 4S; 2S � 3D � 6T + 2S; S � 3g

goto Location 3

Figure 7: Results of the analysis of the \car" example

Step 4:

P

(4)

2

= f0 � S � D � 2T + S; T � 3; S � 2g

P

(4)

1;2;2

= fS = 0; 0 � D � 2T; 1 � T � 3g

P

(4)

2;2;2

= f1 � S � D � 2T + S; T � 3; S � 2g

and since P

(4)

1;1;2

t P

(4)

1;2;2

t P

(4)

2;2;2

t P

(4)

3;2;2

t P

(4)

1;3;2

= P

(4)

2

the sequence converges on a �xpoint.

The polyhedra which do not belong to the loop evaluate to:

P

1;2;3

= fS = 0; 0 � D � 8; T = 4g

P

2;2;3

= fS = 3; 2 � D � 2T + 2; T � 3g

P

3;2;3

= ;

The �nal results are shown on Fig. 7. From the fact that P

3;2;3

is empty, we conclude that

the corresponding transition cannot occur, and that the BUMP signal is never emitted in the

Esterel program. This analysis needs 0.1 sec of CPU time, on a SUN-Sparc 10 workstation.

14



#s � 10

ON TIMELATE

INITIAL

ON BRAKE

d+ 10 � #b

1 � #b�#s � d+ 10

0 � d � 9 #b � 10

STOPPED

�10 � #b�#s � �1 �9 � #b�#s � 9

#s � 0

#b � 0 19 � 9#s+#b

1 � #b�#s � 19

Figure 8: Result of the subway example, with one train

3.3.2 A subway speed regulation system

Our next example is extracted from an actual proposal for an automatic subway. It concerns

a (simpli�ed version of a) speed regulation system avoiding collision. Each train detects beacons

that are placed along the track, and receives the \second" from a central clock. Ideally, a train

should encounter one beacon each second. So the space left between beacons rules the speed of

the train. Now, a train adjusts its speed as follows: Let #b and #s be respectively the number

of encountered beacons and the number of received seconds.

when #b � #s+10, the train notices it is early, and puts on the brake as long as #b > #s.

Continuously braking makes the train stop before encountering 10 beacons.

when #b � #s� 10, the train is late, and will be considered late as long as #b < #s. A

late train signals it to the central clock, which does not emit the \second" as long as at

least one train is late.

The results of the analysis of a simulation program for one train are shown in Fig. 8. Notice

that the absolute di�erence j#b � #sj is shown to be bounded. Notice also that the bound

19 has been discovered, although it does not appear in any condition of the program. For two

trains, the analysis shows that the di�erence #b

1

�#b

2

of the number of beacons encountered

by each train remains in the interval [�29;+29]. So, if they are initially separated by more than

29 beacons, no collision can occur. The analysis for one train needs 0.4 sec of CPU time, while

the one for two trains takes 8.2 sec.

4 Second Application: Linear Hybrid Systems

Our second application �eld concerns hybrid automata. These automata have been pro-

posed [MMP91, ACHH93] to model systems involving both discrete and continuous variables.

A hybrid automaton is a �nite automaton associated with a �nite set of variables continuously

varying in dense time. Each transition of the automaton can be guarded by a condition on these

variables, and can perform an action modifying their values (discrete change). In each location

2

of the automaton, the variables continuously vary, according to a system of di�erential equations

associated with the location.

2

As in the preceding section, since we deal with interpreted automata, the control states of these automata will

be called locations, to distinguish them from the global state of the system, made of a location and a valuation of

the variables.

15



In this section, we consider a class of linear hybrid automata (which has been identi�ed

elsewhere [KPSY93, ACHH93, AHH93]), where guards are (general) linear conditions, actions

are assignments of linear expressions, and in each location of which variable derivatives are

(symbolic) constants subject to linear inequalities. This class is general enough to handle many

practical problems, and the linear restrictions allow easy symbolic representation. The linear

relation analysis is particularly suitable for the analysis of linear hybrid systems, on one hand

because it copes with continuous variables, and on the other hand, because the behavior of these

variables is naturally linear.

4.1 Linear Hybrid Automata

Before de�ning linear hybrid automata, we make precise some notions: Let Var = fx

1

; : : : ; x

n

g

be the set of variables. A linear constraint is given by a triple (a; �; b) where a 2 ZZ

n

, b 2

ZZ and � 2 R = f<;�;=;�; >g. It characterizes the subset of

jj

Q

n

made of all the vectors

X satisfying aX � b. Notice that, for obvious computational reasons, we restrict ourselves to

integer coe�cients and rational values. A conjunction of m linear constraints, given by a triple

(A;R;B) 2 (ZZ

n

)

m

� R

m

� ZZ

m

, will be simply called a linear system. A linear assignment is

given by a pair (A;B); A 2 ZZ

n�n

; B 2 ZZ

n

and de�nes the function �X:AX +B.

De�nition: A linear hybrid automaton H = fLoc;Var ; Init ;Trans ;D; Invg consists of 6 com-

ponents:

A �nite set Loc of locations

A �nite set Var of variables, supposed to be functions of dense time . Let n = Card (Var ).

A valuation X is a vector of

jj

Q

n

, giving the value of each variable in Var . A state is a pair

(`;X) where ` is a location and X is a valuation.

A labeling function Init which assigns to each location ` a linear system Init(`), speci-

fying the set of initial valuations, if the automaton is started in location `. If Init(`) is

unsatis�able, the automaton cannot be started in `.

A �nite set Trans of transitions. Each transition � = (`; 
; �; `

0

) consists of a source location

` 2 Loc, a target location `

0

2 Loc, a guard 
, which is a linear system over Var , and an

action �, which is a linear assignment to Var . A transition � = (`; 
; �; `

0

) is enabled in a

state (`;X) if and only if 
(X) holds. The state (`

0

; �(X)) is then the transition successor

of (`;X) by � .

A labeling function D which assigns to each location ` a linear system D(`) constraining

variable's derivatives: If the automaton reaches a location ` with valuation X, after staying

in ` for a delay �, the valuation will be X + �

_

X where the vector of derivatives

_

X satis�es

the system D(`).

A labeling function Inv which assigns to each location ` a linear system Inv(`) constraining

variables: The automaton can only stay in location ` as long as the current valuation

satis�es Inv(`).

At any instant, the state of the automaton is given by a control location and a valuation of the

variables. The state can change in two ways:

16



an enabled discrete transition can instantaneously change both the control location and

the current variable valuation;

a time delay can change only the valuation according to a vector of derivatives satisfying

the constraints on derivatives associated with the current location; such a delay can only

take place as long as the valuation satis�es the invariant associated with the location.

More formally, a run of the automaton is a �nite or in�nite sequence

s

0

!

t

0

_

X

0

s

1

!

t

1

_

X

1

s

2

!

t

2

_

X

2

: : :

of states s

i

= (`

i

;X

i

), nonnegative reals t

i

and vectors of derivatives

_

X

i

(

_

X

i

satisfying D(`

i

))

such that X

0

satis�es Init(`

0

) and for all i � 0,

for all t 2 [0; t

i

[, X

i

+

_

X

i

t satis�es Inv(`

i

)

the state s

i+1

is a transition successor of the state s

0

i

= (`

i

;X

i

+

_

X

i

t

i

).

An in�nite run diverges if the in�nite sum

P

i�0

t

i

diverges. With such a divergent run, we can

associate a behavior, which is a total function � from time to valuations de�ned as follows:

�(t) = X

i(t)

+

_

X

i(t)

(t�

X

j<i(t)

t

j

); where i(t) = minf k j

k

X

j=0

t

j

> t g

A state (`;X) is reachable i� there exists a divergent run and an instant t such that

` = `

i(t)

and X = X

i(t)

+

_

X

i(t)

(t�

X

j<i(t)

t

j

)

Let Reach denote the set of reachable states.

We will represent a hybrid automaton by means of a directed graph, whose nodes represent

the locations and edges represent transitions. Let us illustrate the use of the model by means of

some classical examples.

4.2 Examples

4.2.1 A water-level monitor:

The water level in a tank is controlled through a monitor, which continuously senses the water

level and turns a pump on and o�. The water level changes as a piecewise-linear function over

time: when the pump is o�, the water level, denoted by the variable w, falls by 2 inches per

second; when the pump is on, the water level rises by 1 inch per second. Suppose that initially

the water level is 1 inch and the pump is turned on. We wish to keep the water between 1 and

12 inches. But from the time that the monitor signals to change the status of the pump to the

time that the change becomes e�ective, there is a delay of 2 seconds. Thus the monitor must

signal to turn the pump on before the water level falls to 1 inch, and it must signal to turn the

pump o� before the water level reaches 12 inches.

The hybrid automaton of Figure 9 describes a water level monitor that signals whenever the

water level passes 5 and 10 inches, respectively. The automaton has four locations: in locations `

0

and `

1

, the pump is turned on; in locations `

2

and `

3

, the pump is o�. The clock x is used to

specify the delays: whenever the automaton control is in location `

1

or `

3

, the signal to switch

17



w < 10

_x = 1

_w = 1

x < 2

_x = 1

_w = 1

x < 2

_x = 1

_w = �2

w > 5

_x = 1

_w = �2

w = 10! x := 0

signal pump o�

x = 2switch o�switch onx = 2

signal pump on

w = 5! x := 0

w := 1

`

0

`

1

`

2

`

3

Figure 9: Water-level monitor

the pump o� or on, respectively, was sent x seconds ago. On each transition, we give the guard

and the action (if any). In each location, we give the label, the invariant, and the constraints on

derivatives. For instance, the invariant associated with location `

3

is x < 2, and the derivatives

of x and w are 1 and �2, respectively.

4.2.2 Fischer mutual exclusion protocol:

This example describes a parameterized multi-

rate timed system. It is a timing-based algo-

rithm that implements mutual exclusion for a

distributed system with skewed clocks. Con-

sider an asynchronous shared-memory system

that consists of two processes P

1

and P

2

with

atomic read and write operations. Each process

has a critical section and at each instant, at most

one of the two processes is allowed to be in its

critical section. Mutual exclusion is ensured by

a version of Fischer's protocol [Lam87], which

we describe �rst in pseudocode. The code exe-

cuted by process P

i

(i = 1; 2) is shown beside.

repeat

repeat

await k = 0

k := i

delay b

until k = i

Critical section

k := 0

forever

The two processes P

1

and P

2

share a variable k, and process P

i

is allowed to be in its critical

section i� k = i. Each process has a private clock. The statement \delay b" delays a process for

at least b time units as measured by the process's local clock. Furthermore, each process takes

at most a time units, as measured by the process's clock, for a single write access to the shared

memory (i.e., for the assignment k := i). The values of a and b are the only information we have

about the timing behavior of processes. Clearly, the protocol ensures mutual exclusion only for

certain values of a and b. If both private processor clocks proceed at precisely the same rate,

then mutual exclusion is guaranteed i� a < b.

To make the example more interesting, we assume that the private clocks of the processes P

1

and P

2

proceed at di�erent rates, namely, the rate of the local clock of P

2

is between 0.9 and 1.1

times the rate of the clock of P

1

.

The resulting system could be modeled by the product of two hybrid automata, each of which

modeling one process. Instead, for clarity in the further treatment of this example, we give an

18



x := 0

y�a

true !

x � b

y�a

x � b

0:9� _y�1:1

x�a

_x = 1

_x = 1

0:9� _y�1:1

true

_x = 1

_x = 1

0:9� _y�1:1

_x = 1

0:9� _y�1:1

true

0:9� _y�1:1

0:9� _y�1:1

true

true

true

x := y := 0

`

3

`

0

`

1

true

`

2

true !

_x = 1

`

4

true

`

5

Figure 10: Fischer protocol (simpli�ed)

abstract view of the system, where the behavior of P

2

is abstracted. Fig. 10 gives the behavior

of P

1

with only the relevant interactions with P

2

. Variables x and y are used to count delays,

with respect to P

1

's and P

2

's local clock, respectively. In location `

0

, P

1

is idle, in `

1

, it has read

k = 0. On the transition from `

1

to `

2

, P

1

is supposed to set k to 1, so it is the last time P

2

can

read k = 0. In `

2

, P

1

waits for b; two transitions may occur:

either the delay b expires, and P

1

enters the critical section (`

4

),

or P

2

sets k to 2 (`

3

) thus forbidding P

1

to enter the critical section.

In `

4

, P

1

is in the critical section; if P

2

may set k to 2, it may also enter the critical section,

and the mutual exclusion is violated (location `

5

).

4.2.3 A scheduler:

Our last example is a task scheduler. We consider two classes of tasks, activated by interrupts.

Interrupt I

1

(resp. I

2

) occurs at most once each 10 (resp. 20) time units and activates a task of

the �rst (resp. second) class, which takes 4 (resp. 8) time units. Tasks of the second class have

priority, and can preempt other tasks. We want to show that a task of the second class never

waits.

We use two timers, c

i

(i = 1; 2), to count the delay elapsed since the last interrupt I

i

. The

assumptions about interrupt frequencies can be expressed by the automaton of Fig. 11.(a). Con-

cerning tasks, (see Fig. 11.(b)), we use two other timers, x

i

(i = 1; 2), to count the execution time

of tasks, and two counters k

i

(i = 1; 2), to count the number of pending tasks in each class (these

counters are discrete variables, their derivative is supposed to be 0 in any location).

A typical behavior of this automaton is to start in location `

0

(idle), then receiving an

interrupt I

1

and activating a task 1 (in location `

1

) for 4 time units | counted by the timer

x

1

. If, during this execution, an interrupt I

2

occurs, the task 1 is suspended, and the scheduler

executes a task 2 (in location `

2

) for 8 time units | counted by x

2

. Notice that the timer x

1

19



(b). Tasks

true

_x

1

= 0

_x

2

= 0

Idle

Task2

true

_c

1

= 1

_c

2

= 1

I

1

!; c

1

:= 0

c

1

� 10!

I

2

!; c

2

:= 0

(a). Interrupts

c

2

� 20!

Task1

k

2

:= k

2

+ 1

I

1

?!

I

2

?!

k

1

:= k

1

+ 1

_x

2

= 1x

2

= 8 ^ k

2

� 1 ^ k

1

� 1

! k

2

:= k

2

� 1;x

2

:= 0

x

1

= 4 ^ k

1

� 2!

k

1

:= k

1

� 1;x

1

:= 0

x

2

= 8 ^ k

2

� 2!

k

1

:= k

1

+ 1

I

1

?!

! k

2

:= k

2

� 1; x

2

:= 0

x

2

= 8 ^ k

2

� 1 ^ k

1

= 0

_x

2

= 0

k

2

:= k

2

� 1;x

2

:= 0

_x

1

= 1

x

2

� 8

I

1

?!

k

1

:= 1

k

1

:= k

1

� 1;x

1

:= 0

I

2

?!

k

2

:= 1

I2?! k

2

:= 1

x

1

= 4 ^ k

1

� 1!

x

1

� 4

_x

1

= 0

Figure 11: The scheduler

is only frozen in `

2

, so, on termination of all the pending tasks 2, the suspended task 1 can be

completed. The occurrence of an interrupt which does not have priority upon the active task

only results in incrementing the corresponding counter.

4.3 Linear relation analysis and linear hybrid automata

4.3.1 Forward collecting semantics of linear hybrid automata

Let us recall that Reach denotes the set of reachable states. For any location `, we note Reach

`

the set of reachable valuations at location `:

Reach

`

= fX j (`;X) 2 Reachg

We will characterize the tuple (Reach

`

)

`2Loc

by means of a system of �xpoint equations. This

system will be constructed in a \forward" way, in the sense that, for each location `, Reach

`

will

be de�ned as a function of the sets Reach

`

0

, where `

0

runs over the source location of transitions

incoming to `:

Reach

`

= F

`

�

fReach

`

0

j (`

0

; 
; �; `) 2 Transg

�

We �rst introduce some operations on sets of valuations. Let � = (A;B) be a linear assignment,

and S be a set of valuations. We note �(S) the image of S by �:

�(S) = fAX +B j X 2 Sg

Let D be a linear system (supposed to be a domain of derivatives), and S be a set of valuations.

We note S%D the set of valuations that can be obtained by letting the variables continuously

20



evolve, according to a constant derivative belonging to D, and starting from a valuation belonging

to S:

S%D = fX + td jX 2 S; d 2 D ; t 2

jj

Q

�0

g

This operator will be called the time elapse operator.

Now, we are able to de�ne the set Reach

`

:

Reach

`

=

0

B

@

0

B

@

Init(`) [

[

(`

0

;
;�;`)2Trans

�(Reach

`

0

\ 
) \ Inv(`)

1

C

A

%D(`)

1

C

A

\ Inv(`)

This equation expresses that a reachable valuation in location ` satis�es the invariant Inv(`),

and is obtained by letting the time elapse from either an initial valuation or from an incoming

valuation satisfying the invariant (notice that, since the invariant de�nes a convex domain, and

since the continuous time-elapsing transformation is linear, any time-elapsing behavior starting

from a valuation satisfying the invariant and leading to a valuation satisfying the invariant, con-

tinuously satis�es the invariant). An incoming valuation is obtained from a valuation associated

with the source location of an incoming transition, satisfying the guard of the transition, as the

result of the action of the transition.

We will use this characterization of Reach

`

as a basis to apply the linear relation analysis.

First, we need some new features:

The time-elapse operator on polyhedra must be realized;

Since we work on continuous domains, we can no longer limit ourselves to closed polyhedra:

strict inequalities must be taken into account.

4.3.2 Extension of the analysis

Time elapse operator: Let us recall that, if D be a polyhedron representing a domain of

derivatives, and P is a polyhedron, then

P%D = fX + td jX 2 P; d 2 D ; t 2

jj

Q

�0

g

This operator is easily implemented as follows: Let (V;R), (V

0

; R

0

) be the respective systems of

generators of P and D. Then (V ; R [ V

0

[R

0

) is a system of generators of P%D.

Strict inequalities: The case of strict inequalities was not considered in previous applications

of the method, since only discrete integer variables were considered. In fact, strict inequalities

can easily be handled, by adding an auxiliary variable, say ", with 0 � " � 1, replacing any strict

inequality aX > b by aX�"�b, and checking that " is not null when checking for polyhedron

emptyness and inclusion. More precisely, if AX � B ^ A

0

X > B

0

is the system of inequalities

of a polyhedron P of

jj

Q

n

, let

b

P be the polyhedron of

jj

Q

n+1

de�ned by the system

AX � B ^A

0

X � " � B

0

^ 0 � " � 1

We note

b

X the extended vector of variables, and

b

A

b

X �

b

B the system of constraints of

b

P . Let

b

V

be the set of vertices of

b

P , and

b

V

>0

, the subset of those vertices whose "-component is strictly

positive. Then,

21



Test for emptyness: A polyhedron P is empty if and only if

b

V

>0

is empty.

Test for inclusion: We note

_

P

the closure of P , i.e., the polyhedron de�ned by the same

system of constraints as P where all the inequalities are considered to be loose. If v 2

b

V

>0

, we note v# its projection onto

jj

Q

n

according to " (i.e., the result of removing the "

component of v). Then P is included in another polyhedron Q if and only if

_

P

�

_

Q
and

8v 2

b

V

>0

; v#2 Q .

4.4 Applications to examples

Let us illustrate the use of our method on the examples given in section 4.2. We will give some

details about the analysis of the water-level monitor, and simply the results obtained for the

other two examples.

4.4.1 Water-level monitor

The system of equations corresponding to the water-level monitor is the following:

P

`

0

= ((fw = 1g t (P

`

3

\ fx = 2g \ fw < 10g))%f _x = _w = 1g) \ fw < 10g

P

`

1

= (((P

`

0

\ fw = 10g)[x := 0] \ fx < 2g)%f _x = _w = 1g) \ fx < 2g

P

`

2

= (((P

`

1

\ fx = 2g \ fw > 5g))%f _x = 1; _w = �2g) \ fw > 5g

P

`

3

= (((P

`

2

\ fw = 5g)[x := 0] \ fx < 2g)%f _x = 1; _w = �2g) \ fx < 2g

We choose `

0

as the only widening location, thus replacing P

`

0

's de�nition by

P

`

0

= (P

`

0

r((fw=1g t (P

`

3

\ fx=2g \ fw<10g))%f _x= _w=1g)) \ fw<10g

The resolution converges after 3 iterations, needs 0.3 seconds of CPU time, and provides the

following results:

P

`

0

= f1 � w < 10g

P

`

1

= fw = x+ 10 ^ 0 � x < 2g

P

`

2

= f2x +w = 16 ^ 4 � 2x < 11g

P

`

3

= f2x +w = 5 ^ 0 � x < 2g

from which we can easily conclude that

1 � w < 10 in location `

0

10 � w < 12 in location `

1

5 < w � 12 in location `

2

1 < w � 5 in location `

3

22



4.4.2 Fischer mutual exclusion protocol

We give the results of the analysis of the mutual exclusion protocol of x4.2.2:

P

`

0

= fa � 0 ^ b � 0g

P

`

1

= fb � 0 ^ 0 � x � ag

P

`

2

= fa � 0 ^ b � 0 ^ 9x � 10y � 11xg

P

`

3

= fa � 0 ^ b � 0 ^ 9x � 10y � 11xg

P

`

4

= fa � 0 ^ b � 0 ^ 9x � 10y � 11x ^ b � xg

P

`

5

= f0 � b � x ^ 9x � 10y � 11x ^ 9b � 10a ^ 10a+ 11x � 10y + 11bg

These results are obtained after two iterations, and the analysis takes 0.4 seconds of CPU time.

Remember that `

5

is the location where the mutual exclusion can be violated. Since, in P

`

5

, we

have the constraint 10a � 9b, this location is not reachable if 9b > 10a. So, the analysis shows

that 9b > 10a is a su�cient condition for the mutual exclusion to hold. In fact, this condition is

also necessary, which shows that the analysis is precise. This example shows how, by dealing with

symbolic constants (here the delays a and b), the analysis can be used to adjust some parameters

to ensure a desired property.

4.4.3 The scheduler

For the scheduler (x4.2.3), the analysis gives (in 4 iterations and 0.6 sec.) the following results:

in the \idle" location: c

1

� 0 ^ c

2

� 0 ^ x

1

= x

2

= k

1

= k

2

= 0

\task 1" running: k

1

� 1 ^ 0 � x

1

� 4 ^ c

1

� 0 ^ c

2

� 0 ^ k

2

= x

2

= 0

\task 2" running: 0 � c

2

= x

2

� 8 ^ 0 � x

1

� 4 ^ c

1

� 0 ^ x

1

� 4k

1

^ k

2

= 1

So the analysis succeeds in showing that k

2

� 1, which means that a task of the second class

never waits. But it fails to show that k

1

� 2, a fact that clearly appears from a straightforward

simulation. Notice that this imprecision is not due | as it often happens | to the widening,

but comes from the convex hull approximation

3

.

5 Implementation: The Polka Tool

This work has been implemented into a tool, named Polka, which o�ers the following services:

A library of operations on polyhedra. The computations are made in rational numbers.

A \desk calculator", built on top of the library, allows the available operations to be

interactively invoked.

A prototype analyzer of hybrid automata. Automata are described in a hybrid extension

of the Argos formalism [Mar92].

3

For the same example, [HH94] solves the problem by changing the control structure of the automaton, by

distinguishing the locations according to the values of k

1

and k

2

. They get exact results, but of course, such

a change in the structure could not be found automatically, and may involve an explosion of the size of the

automaton.

23



6 Conclusion

In this paper, we adapted Linear Relation Analysis to the veri�cation of two classes of real-time

systems, which appeared to be particularly good application �elds for this technique:

In the delay analysis presented in Section 3, the considered variables are counters. Now,

from the reduced set of operations allowed on counter variables, the range of these variables

is very likely to be a convex polyhedron | or, more precisely, the set of points with integer

coordinates that belong to a convex polyhedron.

Hybrid systems, considered in Section 4, are also good application �eld: Linear Relation

Analysis is well-suited to dense domains, and, of course, the restriction to linear hybrid

automata �ts well with the capabilities of the analysis.

For many classical examples, the analysis succeeds in proving the relevant properties, and often

provides precise results. In case of failure, the precision can be improved by several means:

It is often the case that the widening operation looses too much information. In such a

case, the results can be improved by delaying the application of the widening: The widening

approximation is only applied after n iterations, where n is a parameter of the analysis tool,

which allows a convenient compromise to be chosen between the precision of the result and

the complexity of the analysis.

When the convex approximation is responsible of the failure (as in the scheduler example,

x4.4.3), the results can be improved by choosing a more detailed control structure. This

aspect deserves further investigations: In many cases, the number of control states is

prohibitive. So, the choice of a suitable control structure with respect to the property to

be proved, is an important problem; the use of symbolic BDD-based techniques for the

control part [DWT95] should be considered for that.

A last solution, when the veri�cation fails, is to apply backward analysis: Let Bad

0

be the

set of states that violate the property and have been found reachable by the analysis. One

can compute backward (using a precondition function) an upper approximation of the set

Bad

1

of states that can lead to Bad

0

, and show that Bad

1

does not intersect the set Init

of initial states. Otherwise, the process can be iterated, by forward computing an upper

approximation of the states reachable from Bad

1

\ Init and so on. Such forward/backward

approximations have been applied by [HH94].

An important goal of the paper was to show that approximate analysis by abstract inter-

pretation is an interesting alternative (or complement) both to (�nite) state exploration and to

theorem proving.

In the �nite state case, approximate analysis can avoid state explosion: from a practical point

of view, a theoretically terminating decision procedure is of little interest if its high complexity

limits its usage to toy problems. This idea of using approximation to speed up the convergence of

veri�cation based on state exploration encounters some success in the �eld of timed and hybrid

systems [HH94, WTD95, DWT95].

For undecidable problems, approximate analysis provides fully automatic tools for conserva-

tive veri�cation. Even when the veri�cation fails, the synthesized invariants can be used in a

theorem proving approach.

24



Acknowledgements: We are indebted to regretted Herv�e Leverge for his very e�cient algorithm com-

puting the convex hull, which is the basis of our implementation. We thank also Pascal Raymond, who

gave us the basic idea for dealing with strict inequalities, and Florence Maraninchi, who adapted the Argos

compiler which allowed signi�cant examples to be analyzed.

References

[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking in dense real-time. Informa-

tion and Computation, 104(1):2{34, 1993. Preliminary version appears in the Proc.

of 5th LICS, 1990.

[ACH

+

95] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero,

J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical

Computer Science B, 138:3{34, January 1995.

[ACHH93] R. Alur, C. Courcoubetis, T. A. Henzinger, and Pei-Hsin Ho. Hybrid automata: an

algorithmic approach to the speci�cation and analysis of hybrid systems. InWorkshop

on Theory of Hybrid Systems, Lyngby, Denmark, October 1993. LNCS 736, Springer

Verlag.

[AHH93] R. Alur, T. A. Henzinger, and Pei-Hsin Ho. Automatic symbolic veri�cation of em-

bedded systems. In RTTS93, 1993.

[AL91] M. Abadi and L. Lamport. An old-fashioned recipe for real time. In J.W. de Bakker,

C. Huizing, W. P. de Roever, and G. Rozenberg, editors, Rex Workshop on Real-

Time: Theory in Practice, DePlasmolen (Netherlands). LNCS 600, Springer Verlag,

June 1991.

[BS91] F. Boussinot and R. de Simone. The Esterel language. Proceedings of the IEEE,

79(9):1293{1304, September 1991.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for static

analysis of programs by construction or approximation of �xpoints. In 4th ACM

Symposium on Principles of Programming Languages, POPL'77, Los Angeles, Jan-

uary 1977.

[CC92a] P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-

grams. Journal of Logic Programming, 13(1{4):103{179, 1992. (Also, Research Report

LIX/RR/92/08, Ecole Polytechnique).

[CC92b] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing

approaches to abstract interpretation. In M. Bruynooghe and M. Wirsing, editors,

PLILP'92, Leuven (Belgium), January 1992. LNCS 631, Springer Verlag.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables

of a program. In 5th ACM Symposium on Principles of Programming Languages,

POPL'78, Tucson (Arizona), January 1978.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear pro-

gramming problem. U.S.S.R. Computational Mathematics and Mathematical Physics,

8(6):282{293, 1968.

25



[DWT95] D. DiIl and H. Wong-Toi. Veri�cation of real-time systems by successive over- and

under-approximations. In P. Wolper, editor, 7th International Conference on Com-

puter Aided Veri�cation, CAV'95, Liege (Belgium), July 1995. LNCS 939, Springer

Verlag.

[Hal79] N. Halbwachs. D�etermination automatique de relations lin�eaires v�eri��ees par les

variables d'un programme. Th�ese de 3e cycle, University of Grenoble, March 1979.

[Hal93a] N. Halbwachs. Delay analysis in synchronous programs. In Fifth Conference on

Computer-Aided Veri�cation, CAV'93, Elounda (Greece), July 1993. LNCS 697,

Springer Verlag.

[Hal93b] N. Halbwachs. Synchronous programming of reactive systems. Kluwer Academic Pub.,

1993.

[HH94] T. A. Henzinger and P.-H. Ho. Model checking strategies for hybrid systems. In

Conference on Industrial Applications of Arti�cial Intelligence and Expert Systems,

1994.

[HLR92] N. Halbwachs, F. Lagnier, and C. Ratel. An experience in proving regular networks

of processes by modular model checking. Acta Informatica, 29(6/7):523{543, 1992.

[HLR93] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the veri�ca-

tion of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, Third

Int. Conf. on Algebraic Methodology and Software Technology, AMAST'93, Twente,

June 1993. Workshops in Computing, Springer Verlag.

[HNSY92] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking for

real-time systems. In LICS'92, June 1992.

[HPR94] N. Halbwachs, Y.-E. Proy, and P. Raymond. Veri�cation of linear hybrid systems by

means of convex approximations. In B. LeCharlier, editor, International Symposium

on Static Analysis, SAS'94, Namur (Belgium), September 1994. LNCS 864, Springer

Verlag.

[IEE91] Another look at real-time programming. Special Section of the Proceedings of the

IEEE, 79(9), September 1991.

[KPSY93] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: a class of decid-

able hybrid systems. In Workshop on Theory of Hybrid Systems, Lyngby, Denmark,

October 1993. LNCS 736, Springer Verlag.

[Lam87] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer

Systems, 5(1):1{11, 1987.

[LeV92] H. LeVerge. A note on Chernikova's algorithm. Research Report 635, IRISA, February

1992.

[Mar92] F. Maraninchi. Operational and compositional semantics of synchronous automa-

ton compositions. In CONCUR'92, Stony Brook, August 1992. LNCS 630, Springer

Verlag.

26



[MMP91] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In RexWorkshop

on Real-Time: Theory in Practice, DePlasmolen (Netherlands), June 1991. LNCS

600, Springer Verlag.

[Rus94] J. Rushby. A formally veri�ed algorithm for clock synchronization under a hybrid

fault model. In 13th ACM Symp. on Principles of Distributed Computing, PODC'94,

Los Angeles, August 1994.

[WTD95] H. Wong-Toi and D. Dill. Aproximations for verifying timing properties. In Theo-

ries and Experiences for Real-Time System Development, chapter 7. World Scienti�c,

1995.

27


