
Minimization of Timed Transition Systems

R. Alur C. Courcoubetis
AT&T Bell Laboratories University of Crete
Murray Hill, New Jersey Heraklion, Greece

D. Dill, H. Wong-Toi
Stanford University
Stanford, California

N. Halbwachs
IMAG Institute

Grenoble, France

1 I n t r o d u c t i o n

Model checking is a powerful technique for the automatic verification of finite-state sys-
tems [10, 13, 8]. A model-checking algorithm determines whether a finite-state system,
represented by its 'state-transition graph, satisfies its specification given as a temporM
logic formula. For speed independent or delay insensitive systems, the correctness can be
proved by abstracting away real-time retMning only the sequencing of state-transitions.
For such systems, model checking has a long history spanning over ten years, and has
been shown to be useful in validating protocols and circuits [7]. Only recently there have
been attempts to extend these techniques to verification of timing properties that explic-
itly depend upon the actual magnitudes of the delays [15, 4, 2, 1, 18, 3]. Because of the
practical need for some support for developing reliable real-time systems, the interest in
studying these techniques further is considerable. The initial theoretical results indicate
that the addition of timing constraints makes the model-checking problem harder: in ad-
dition to the state-explosion problem inherent in qualitative model checking, now we also
have to deal with the blow-up caused by the magnitudes of the delay bounds. Clearly,
to make the proposed algorithms applicable to substantial examples there is a need to
develop heuristics. In this paper, we show how to apply state-minimization techniques to
verification algorithms for real-time systems.

We use timed automata as a representation of real-time systems [12, 2]. A timed
automaton provides a way of annotating a state-transition graph of the system with timing
constraints. It operates with a finite-state control and a finite number of fictitious time-
measuring elements called clocks. Various problems have been studied in the framework of
timed automata [2, 1, 3, 9, 19]. Before we can say how we improve the existing algorithms,
let us recall how these algorithms work. First notice that a state of a timed automaton
needs to record the location of the control and the (real) values for all its clocks, and thus,
a timed automaton has infinitely many states. The algorithms for timed automata rely
on partitioning the mlcountable state space into finitely many regions and constructing a
quotient called the region graph. States in the same region are in some sense equivalent,
and the region graph is adequate for solving many problems. For instance, it can be
used for testing emptiness of a timed automaton [2], real-time model-checking [1], testing

341

bisimulation equivalence [9], finding bounds on the delays [11], and controller synthesis
[20]. The main hurdle in implementing such algorithms using the region graph is that it's
too big - it is exponential in the number of clocks and in the length of timing constraints.
Recently, to overcome this problem Henzinger et al. have shown how to compute certain
timing properties of timed automata symbolically [16]. We propose another approach,
namely, of applying a state-minimization algorithm while constructing the region graph
to reduce its size.

The objective of the minimization algorithm is to construct a minimal reachable re-
gion graph from a timed automaton. Note that we want to construct such a minimal
graph without constructing the full region graph first. Recently, algorithms have been
proposed for performing simultaneously the teachability analysis and minimization from
an implicitly defined transition system [5, 6, 17]. First we show how these algorithms can
be adapted to our needs to construct the minimal region graph. Next we extend these
methods to propose an algorithm for the problem of deciding whether a timed automa-
ton meets a specification in TCTL - - a real-time extension of the branching-time logic
CTL. The minimal region graph, in itself, is not adequate for checking TCTL properties.
Firstly, it does not incorporate the "non-Zeno" assumption about real-time behaviors
which requires that time progresses without aaay bound along an infinite sequence of tran-
sitions. Secondly, the minimization algorithm concerns only with reachability, and not
with "timed" teachability (e.g. to check a temporal property of the form "within time 3"
we need to check whether a sequence of transitions is possible within the specified bound
3). We show how to refine the minimal region graph to incorporate these requirements,
and this leads to an algorithm for model checking. A nice feature of the algorithm is that
it splits the minimal graph only as much as needed depending on the TCTL-formula to
be checked. We remind the reader that model-checking for TCTL has been shown to be
computationally hard, namely, PSPACE-con-iplete [1]. However, examples indicate that
the minimized region graph is much smaller than the worst-case exponential bound, and
consequently, our methods should result in a big saving.

The rest of the paper is organized as follows. Section 2 reviews the definitions of timed
automata and region graphs. In Section 3 we review the minimization algorithm, and in
the following section we show how to construct the minimal region graph using it. Section
5 gives examples illustrating the construction of the minimal region graph. In the final
section we consider extensions needed to do model checking for TCTL.

2 Timed automata and region graphs

In this section we recall the definition of timed automata and the principles of their analysis
by means of finite region graphs [12, 2, 1].

2 .1 T i m e d A u t o m a t a

Timed automata have been proposed to model finite-state real-time systems. Each au-
tomaton has a finite set of locations and a finite set of clocks which are real-valued
variables. All clocks proceed at the same rate and measure the amount of time that has
elapsed since they were started (or reset). Each transition of the system might reset some
of the clocks, and has an associated enabling condition which is a constraint on the values

342

x:--~O

"i : = 0

l < x < 2

Figure 1: An example of a t imed automaton

of the clocks. A transit ion can be taken only if the current clock values satisfy its enabling
condition.

For example, the au tomaton of Figure 1 represents a system with four locations and two
clocks x, and y. The clock x gets initialized on thc transition from so to 81. At any instant,
the value of x equals the t ime elapsed since the last t ime this transit ion was taken. The
enabling condition associated with the s2 to sz transition expresses the following t iming
constraint: the delay between the transition from So to 81 and the transit ion f rom s2 to
sz has lower bound 1 and upper bound 2. Similarly, the clock y constrains the transit ion
from s3 to So to occur at least two units later than the transit ion from sl to s2. Thus
to express a bound on the delay between two transitions, we reset a clock with the first
transition, and associate an enabling condition with the other transition.

For each transition, the enabling condition is required to be a convex polyhedron of
~'~ (JR denotes the set of nonnegative reals, and n is the number of clocks in the system),
consisting of all the solutions of a system of linear inequalities of the form

* x < k, x < k, x > k, x > k, where x is a clock and k is an integer, or

�9 x - y _< k, x - y < k, where x and y are clocks and k is an integer.

In this paper, such a polyhedron will be called a (time) zone. Let Z (n) (or s imply Z) be
the set of zones of]R '~. We consider also a set of reset actions `4(n) (or s imply .3.), which
are functions from IP~ ~ to IR'*. For each a E ,4, there is a set of indexes I~ C {1 . . . n} such
that

0 if i E I~
V ~ E lW~,Vi= 1 , . . . , n , a(~')[i] = ~'[i] otherwise

A t imed au tomaton G is a tuple (S, C, sims, T) where

1. S is a finite set of locations,

2. C = { X l , . . . , x~} is a set of clocks,

3. s~,~it E S is an initial location,

4. T c S x Z (n) x ,4(7,) x S is a transition relation. A transition (s, z, a, s') in T will
be denoted by s z,a s~"

343

The automaton G starts with the control at the location s~,m with all its clocks ini-
t ialized to 0. The values of all the clocks increase uniformly with time. At any point in
time, the automaton can make a transition, if the current values of the clocks belong to

Z~{Z) . the associated zone. The transitions are instantaneous. With each transition s s', the
clocks in I~ get reset to 0 and start counting time with respect to that transition. At any
instant, the state of the system can be fully described by specifying the current location
and the values of all its clocks. So, a stale of the system is a pair (s,~), where s E S and
I E JR".

Now we can define a t imed consecution relation on the states of a t imed automaton.
For & e IR, a state (s', 2) is said to be &-successor of another state (s, :~), written (s, i) =~
(s', x'), iff either

�9 & = 0 and there is a transition s z,a s' E T such that i E z and x' equals a(x),-" or

�9 ~ > 0 and s' = s and z ' = i + g (where g denotes the n-tuple [&, ~,.. .] E IR/').

A state (s', z') is said to be a successor of another state (s, i) , written (s, i) =V (s', ~) , iff

there exists a & E ~ such that (s, 1) :~ (s', z'~).
The behavior of a timed automaton can now be formally defined using the consecution

relation =~. A run of the automaton started in a state (s, ~') is obtained by iterating the
relation =~. Formally, a run r is an infinite sequence of locations si E S, clock vectors

E ~ " , and t ime values ~i E IR of the form

Note that the above definition allows more than one transitions to occur at the same
time. This means that , the time of the clocks is stopped, and the system can perform
instantaneously several transitions which are enabled one after the other; each transition is
enabled by the clock values which the previous one produced. Such an assumption allows
the modeling of simultaneous actions of different components by interleaving; however, it
is not essential for our algorithms.

The run r is called progressive iff the sequence of sums ~.~=o&i is unbounded. This
requirement corresponds to the "non-Zeno" constraint which rules out the runs in which
an infinite number of transitions occur in a bounded interval of time. Thus the actual
behavior of a real-time system gives rise only to progressive runs, and hence, while checking
temporal properties of a timed automaton, we will restrict attention only to the progressive
runs.

2 . 2 R e g i o n g r a p h s

The key to solving verification problems for timed automata is construction of a finite
region graph [1]. This solution constructs a specific region graph, we generalize this notion
here.

A region F _C S x IR" is a set of states. Typically F will be of the form {(s, i) [E E Z},
denoted by (s ,Z) , for a zone Z. For a state (s,~) in a region F and a region F ' , the
consecution relation (s, .~) :r F ~ holds iff one of the following two conditions are met:

344

�9 Elapse of time: Starting from the state (s, ~), as time elapses, the state enters the
region F ' while staying in the region F U F I along the way. That is, for some 5 > 0,
(s, ~ + 5) E F', and the set of states {(s, ~ + 5') I 0 < 5' < 5} is entirely included in
the region F U F'.

�9 Eventual explicit transition: Starting from the state (s,:~), the state stays in the
region F as time elapses, and then enters F 1 because of an explicit transition. That
is, for some 5 > 0 and some (s', x') E F 1, the set { (s, ~ + 5 3) I 0 < 51 _< 5} is entirely

included in F, and (s,~ + ~) ~ (s',x3).

A partition R of the state space S x]pn into regions is said to be stable iff

1. R is stable with respect to the elapsing of time: For every (s, if) in F, if (s, if} can
lead to a region F t E R by letting the time elapse, then every other state (s 1, f ') in
F can also lead to F I by letting the time elapse.

2. R is stable with respect to explicit transitions: For every (s, ~ in F, if (s, ~) can lead
to a region F ' E R by eventually enabling an explicit transition, then every other
state (s I, x "~) in F can also lead to F t by eventually enabling an explicit transition
(not necessarily the same transition as (s, 3)).

Intuitively, stability of R means that all states in a region axe equivalent with respect
to the reachablhty analysm: ff for some state (s, x) E F, there m a state (s , x) E F

-* * I I 1 I I such that (s,x) =~ (s ,~) , then for every state / u , ~ E F there is a state (u ,~) E F
�9 I I such that (u, ~ ==~ (u, y). Also our definitions ensure that the paths leading (s, ~) and

(u, y') to F I visit the same sequence of regions of R along the way. Thus, the reachability
questions about the states of a timed automaton can be reduced to reachability questions
about the regions of a stable partition. In general, given an initial partition of the state
space, we will be interested in constructing a partition that is stable and refines the initial
partition (a partition R refines another partition R ~ if every region F of R is entirely
contained in some region F 1 of RI). This motivates the following definition.

A region graph corresponding to a timed automaton G and an initial partition Ro of
the state space of G, is a graph RG(G, Ro) = (R, E) such that

1. R is a stable partition of S • ~n ,

2. R refines the initial partition Ro, and

3. there is an edge from F to F ' in E i f f (s, ~) =~ F' for some state (s, ~) in F.

Clem'ly, we can define a region graph in which every region contains a single state. But
this is not useful, because a timed automaton has infinitely many states. The following
proposition, which is the main result of [2], states that it can always be folded into a finite
region graph:

P ropos i t ion : For any timed automaton G and the initial partition Ro = {(s, ~n)]
s E S}, there exists a finite region graph RG(G, Ro). []

The proof of this proposition is based on the existence of the detailed region graph
DRG(G) (the initial partition is assumed to contain a region (s, JR2) for every location

345

s). The constructive proof defines an equivalence relation TM on IR2. Let c be the largest
constant used in defining a zone Z used in an enabling condition of G. Then, for ~ and
ff in IR.", define 2 ~ ff iff for every zone Z E Z that is defined using integer constants not
greater than c, ~ E Z iff ff E Z. This equivalence relation has the following properties:

�9 The quotient [IK"/=~] is finite.

�9 S x [IR2/~] is a stable partition of S x IK =.

Any region graph is adequate for doing a finite teachability analysis, however, as we
will see later, it is not fine enough to do TCTL model-checking. On the other hand,
the detailed region graph is adequate to solve the model-checking problem. The only
stumbling block is its size: the number of regions of DRG(G) is o(n!lSlc-).

So, the problems of interest, which will be addressed in the remainder of the paper, are

�9 Is it possible to symbolically build a region graph smaller than the detailed region
graph?

�9 Is it possible to use such a reduced region graph to perform full TCTL model-
checking?

3 Minimizat ion Algor i thm

Bouajjani et al [6] (see also [5]) describe a general algorithm to directly generate a minimal
state graph from an implicit description (e.g., a program). Let us briefly recall this
algorithm, before adapting it to the generation of region graphs.

We start from a transition system S = (S, so, ~) , where S is the set of states, So E S is
the initial state, and ~C_ S x S is the transition relation. A state s is said to be accessible
from so if and only if So~*S, where --** denotes the reflexive-transitive closure of --*. For
a state s and a set X C S, we will use the notation s =~ X to denote s ~ s' for some
s' E X. Let p be a partition of S. A class X E p is said to be stable with respect to p if
and only if

VY E p. [(3x E X, x ~ Y) implies (Vx E X, x =~ Y)].

A partition p is a bisimulation if and only if every class of p is stable with respect to p.
The reduction of S according to a partition p is the transition system Sip given by

(Acc(p), [s0]p,-%), where

�9 Acc(p) is the set of classes of p which contain at least one state accessible from So;

�9 [s0]p denotes the class of p which contains so;

�9 X ~ p Y i f f x ~ Y f o r s o m e x E X .

Given a transition system S and an initial partition po, the algorithm described in [6]
explicitly builds the transition system SI~, where ~ is the coarsest bisimulation compatible
with p0 (that is, every class of po is a union of classes of ~). The termination of the
algorithm requires that the bisimulation ~ must have a finite number of classes. The
algorithm is given below, with the following notations:

346

�9 The function split "splits" a class X of a parti t ion p into a minimal set of subclasses
which are all stable wi th respecL to p;

�9 For a class X of p, postp(X) denotes the set of classes of p which contain at least
one state directly accessible from a state of X: posta(X) = {Y I 3x E X, x =~ Y}.

�9 Conversely, pv%(X) denotes the set of classes of p which contain at least one state
from which a state of X is directly accessible: prep(X) = {Y] 3y 6]I, y =~ X} .

In the following algorithm, p is the current partition, a is the set of classes of p which
have been found accessible from (the class of) the initial state, and a is the set of classes
of p which have been found stable with respect to p.

M i n i m i z a t i o n A l g o r i t h m :

p = po; ~ = {[sol.}; ~ = 0;

while a # o" do

choose X in a \ cr;

let a ' = split(X, p);

if a ' = {X} then

o- := r u { x } ; ,~ := ~ u postp(x);
else

a := c~ \ {X};

if 3Y 6 a ' such that so 6 Y then a := a U {Y};

a := a \ prep(X);
p := (p \ { x }) u ,~';

fi

od

4 C o n s t r u c t i n g t h e m i n i m a l r e g i o n g r a p h

Given a t imed automaton G = (S, C, si~it,T), we can use the algorithm of Section 3
to generate a minimal region graph. Recall that the automaton G can be viewed as a
transition system over S •]II n with the initial s ta te (3inlt,6) and the transition relation

=~ (which is the union of :~, 8 > 0). For simplicity of implementation, we require every
region F to be of the form (s, Z) for a zone Z. We start with some definitions.

The set of time predecessors of a zone Z is

For zones Z and Z', Z \ Z' is some set of disjoint zones such that the set {Z'} U Z \ Z '
forms a parti t ion of Z, and

z u z ' = { z n z ' } u (z \ z ') u (z ' \ z) .

347

We generalize this operator to accept any finite number of arguments: For any finite set
k {Za , . . . , Zk} of zones, Ili=lZi is a partition of I..J~=lZi into a set { Z [, . . . , Z~} of disjoint

zones, such that for each i = 1 . . . k, j = 1 . . . p , either Zj C Zi or Zj N Zi = 0. The
operator LI extends over regions also: (s, Z) LI (s, Z') = {(s, Z") I Z" e Z U Z'}.

In order to adapt the algorithm of Section 3 to generate a minimal region graph, we
could define the "precondition" function: pre(F) is the set of states (s', x') which may
lead to some (s, ~) E F either by letting the time elapse (if s = s'), or by an explicit
transition. For a region F = (s, Z) this definition translates to:

pre((s,Z)) = (s , Z /) U U (s ' , (a - ' (Z) n z) /) .
z~a

S t = ,~$

However, such a formalization doesn't take into account the fact that one cannot reach
(s, Z) from (s, Z') without going through some zone Z" "separating" Z' from Z. For
instance, one cannot reach (s, {x > 2}) from (s, {x < 1}) without going through (s, {1 <
x < 2}) (Recall the definition of (s, g) =~ F ' for stability of regions from Section 2). In
fact, we cannot formalize the right abstractlon of "time elapsing", by means of a single
precondition function. Instead of looking for such a precondition, we will make precise
in what case a region may directly lead to another region (following [16]), and use this
notion to define the function for splitting a region into stable regions.

Let Z ~ Z' denote the set of ~ E Z for which there exists 6 E IR. such that g + g E Z'
and ~ + 6' E Z tO Z' for all 0 < 5' < 5. It is easy to show that Z ~ Z' is a zone.

Now the stability of a region can be expressed as follows. A region (s, Z) is stable with
respect to another region (s', Z ') if and only if

�9 i f s = s ' t h e n Z # Z ' E { Z , 0 } , a n d

�9 for every transition s *'~) s' 1,

- either a(Z fl z) N Z' = 0 (this includes the case where Z N z = 0),

- or a(Z N z) C_ Z' and Z ~ (Z N z) equals Z.

From this definition, we derive the function split: For any locations s, s' (s # s'), for any
zones Z, Z t,

split((s, Z), (s', Z')) = (s, Z) II I I (s, Z "~" (Z n z n a-'(z')))
3 z v a) 8 !

split((s, Z), (s, Z')) = (s, Z) 11 (s, Z 1~ Z') IJ
$

u (s, z ~ (z n z n a-'(z')))
Z~a

I S

Now all the definitions needed for applying the algorithm can be given. Let p be any
partition of the states into regions, and let (s, Z) be a region. Then,

p,-~((s, z)) = {(s, z') ~ p I z' ~t z # O) u U {(s', z') ~ p I a(Z' n ~) n z # 0},
,~jO,

Sand this includes the case where s = s' and there is a looping transition on s.

348

_ 2

Figure 2: The timed automaton of Example 1

pos t . ((s , z)) = {(., z') e p I z ~t z' # 0} u U {(~',z')epla(znz)nz'#~},
z ~ a

} s t

split((s,Z),p)= II split((~,Z),(s',Z')).
(s',Z')~p

To implement the algorithm, we simply need efficient ways for representing zones and
computing simple operations on them such as Z II Z', g ~ Z', a(Z), and a-a(Z).

5 E x a m p l e s

We will demonstrate the effectiveness of minimization procedure on simple examples.

5.1 E x a m p l e 1

We consider first the very simple timed automaton shown on Fig. 2.
We start with an initiM partition which only distinguishes regions according to their

node component: p = Po --- {Co, Ca, C2, C3}, with Ci = (s;, ~2) for i = O, 1, 2,3. Since
the initial state belongs to Co, we have a = {Co}, a = 9.

So, we consider first X = Co. Obviously split(Co, C~) = split(Co, Ca) = {Co), since there
is no transition from so to s2 or s3. So, split(Co, p) = split(Co, Ca) = {Coo, Con}, with

Coo = (So, {y < 2}) C o a = (S o , { y > 2 })

The initial state (So, {x = y = 0}) belongs to Coo, so a is updated to {Coo). Considering
X = Coo, we find it stable with respect to p = {Coo, Con, C1, C~, C3}, since all of its
elements can lead to Con and to Ca. So, we get a = {Coo, Cox, Ca} and a = {Coo).

The region X = Cox is stable with respect to p, and it doesn't lead to any other region.
Considering X = Ca, we find

split(Ca, Coo) = split(Ca, Cox) = split(Ca, C3) = {Ca)

Cooo

Col

349

Clol C21

Figure 3: The minimal region graph of Example 1

SO
,put(c,, p) = ,pIi t(c, , c=) = {C,o, c~,}

with
C10 = (21, {x ~ y}) Cll = (Sl, {x ~> y})

Splitting C1 questions about the stability of Coo, wtfich is removed from a, and considered
again.

N o w , w e h a v e p = {Coo, Co~,C~o, CmC~,C3}, ~ = {Coo, Co,}, ~ = {Co~} a n d X =

Coo. We get split(Coo, p) = split(Coo, C~o) = split(Coo, G~) = {Cooo, Coox}, with

Cooo = (So, {x < y < 2}) C o o t = (S o , { y < 2 A y < x })

The initial state belongs to C0oo which is stable, and can lead either to Col or to Clo. We
get p = {Cooo, Cooi, Col, Clo, Cl:t, 02, Ca}, ot = {Cooo, Cox, Cio}, ~r = {Cooo, Col}.

X = 010 is found stable with respect to p, leading to C2 and C3, which become both
accessible. X = C2 is split into

C~o = <s~, {= <_ 2}) c~, = <s~, {x > 2})

so Clo must be considered again. It is split into

C, oo = (8,, {x _< y A x <_ 2}) ClO1 = (81, {2 < X <~ y})

COOO is also considered again, it is found stable and leads to C1oo.
We have p ={Cooo, Cool,Cloo, Clol ,C20,C21,C3}, ot ..~ {Cooo, Col,ClOO} and a =

{Cooo, C01}. Now, Cloo is found stable, leading to Clol, C20 and C3. ClOl is stable and
leads to C=1 and to Ca. C~0 is stable, and leads to C~1 and Ca. C21 and Ca are stable. The
resulting graph is shown on Fig. 3. Notice that the detailed region graph of this example
has 160 regions, 24 of which are accessible.

350

x > 2 ~ < o
y : = 0 L ~ - '~

Figure 4: The timed automaton of Example 2

5.2 Example 2

Let us slightly complexify our example as shown by Fig. 4. The first steps of the
algorithm are similar, but now C101 can lead to Co01 which becomes accessible. Cool is
found stable, leading to Cn. Cn is stable and leads to Ca. Our reduced graph has 9
accessible regions, instead of 40 in the detailed graph.

6 M o d e l c h e c k i n g f o r T C T L

In this section we show how to use the algorithm for constructing the minimal region
graph to check properties specified in the branching-time logic TCTL.

6.1 The logic TCTL

Let us briefly review the logic TCTL of [1]. It is a reM-time extension of the branching-
time logic CTL of [14]. The syntax of TCTL allows putting subscripts on the temporal
operators of CTL to restrict their scope in time. Thus one can write 3<~<3 p meaning
"along some run within time 3." Formally, let AP be a set of atomic propositions, then
the formulas r of TCTL are defined inductively as:

r := p I -,r I r A r I 3r162 I vr162

where p is in AP and c is an integer and ,,~ stands for one of the binary relations <,>, =,
_<, >.

Informally, 3 ~bl U<cr means that for some run, there exists an initial prefix of time
length less than c such that r holds at the last state of the prefix, and r holds at all
its intermediate states. Similarly, V r L/<cr means that for every run, there is an initial
prefix with the above property. Formally, the semantics of TCTL is defined with respect to
continuous computation trees, but for our purposes it suffices to interpret TCTL formulas
over timed automata. To interpret TCTL formulas over a timed automaton, first we need
to know which atomic propositions are true in every location of the automaton. A labeled
timed automaton is a pair (G, #), where G is a timed automaton aud # is a labeling
function from the locations of G to 2 ~P.

351

Given a
inductively

labeled timed automaton (G,/~), we define the satisfaction relation (s, g) ~ r
as follows:

p iff p e ~t(s).
- r (,, z) V: r
r A ~b~ iff both (s, g) ~ +~ and (~, E) ~ r
2 r ld~~42 iff for some progressive run r of G starting at (s, s r

Vr162 iff for every progressive run r of G starting at is, g),

For a run r = (80, x'~) ~:~ (sl,x']) : ~ . . . , the relation r ~ r holds iff there exists k
and $ < ~k such that (1) (~i+ Zi<k*/) ,,, c, and (2) (sk,:~) ~ r and (3) for all 0 < i < k,
for all 0 < 5' < 61, (si, x-] + 6 -~) ~ ~bl, and (4) for all 0 < (~' < 6, (si, x~ + 6";) ~ r

A labeted timed automaton (G, #) satisfies a TC~lWL-formula ~b iff (s,,,i,, 0') ~ r The
model-checking problem for TCTL is to dccide if (G, #) satisfies r The problem is known
to be PSPACE-complete [1].

6.2 Model checking algorithm

We sketch how to adapt the minimization algorithm to do model-checking for TCTL. Let
(G,/t) be the labeled timed automaton with state space S x JR". For a TCTL-formula
r let F~ be the set of states (s, s such that i s, ~7) ~ r The detailed region graph of [1]
is adequate for TCTL model-checking: for any TCTL-formula r the set Fr is a union of
regions of the detailed region graph. Now our objective is to construct the set F~ through
only a "minimal" splitting. In our analysis, the set F# will always be a union of regions
of the form (s, Z) for Z E Z.

The construction of Fr is defined inductively on the structure of r The cases when r
is an atomic proposition, or is a boolean combination are simple:

F-,§ = (S •

The interesting case is when r is a "timed until" formula. For simplicity of presen-
tation, we only consider the case when r is of the form 3<>~cr (that is, 3 true H~r162 or
V(>~~r the changes necessary to handle the "until" formulas should be obvious.

First consider an unbounded temporal formula r = 3<~r (that is, 30_>0r Suppose
we have constructed the set :PC. Let P~ be the partition of the states of G into two
regions: Fr and F-,r Now we run the minimization algorithm of Section 4 to construct
a region graph RG(G, P~) = (R, E). Since R refines Re, for any region F of R, either

holds at all states in F or -~r holds in all states in F. Suppose we want to determine
the truth of the formula ~b at the state (s, g) in the region F of R. From the semantics of
TCTL, it follows that r holds at (s, ~.) iff some state in Fr appears on a progressive run of
G starting at i s, ~). Since every finite run can be extended to obtain a progressive infinite
run, r holds at (s, E) iff some state in F~ is reachable from (s, s This holds precisely
when a region F ' E R such that F ~ _C Fr is reachable from F in the region graph. Thus,

352

the desired set F~ is a union of regions F for which some F' C_ F~ is reachable from F in
(R,E).

6.2.1 Progress iveness

Now consider the formula r = VOr Suppose we construct the region graph RG(G, Re) =
(R, E) as before. Now, r holds at (8, ~') E F iff some state in Fr appears on every
progressive run of G starting at (s, ~). However, this is not equivalent to saying that
every infinite path in the region graph, starting at F, contains some region F ~ _ Fr To
determine the truth of r we need to account for the progressiveness assumption while
constructing the region graph.

From the results in [1] it follows that the progressiveness assumption can be modeled
as fairness constraints on the detailed region graph which require that a path of DRG(G)
infinitely often visits certain sets of regions. In particular, these constraints require that
for every clock i, the constraint ~[i] = 0 or :~[i] > c~ holds at infinitely many regions
along the path (here, cl is the largest constant in a constraint involving x in the enabling
conditions of G). We can use this fact to handle progressiveness in our reduced region
graphs. For each clock i, let _R,. be the partition of the states of G into three regions:

R ~ = {{8,~) I~[i1 = 0}, R>~'{(s,~) I~[i] > c,}, R~~ I 0 < ~[i1 _< el}.

Now, as the initial partition we choose the coarsest partition R~ that refines Rr and also
refines 174 for each clock i. The next step is to construct a region graph RG(G, R~) =
(R, E). An infinite path in this region graph is called progressive iff for every i = 1 . . . n:

�9 it contains an infinite number of regions F C R ~ U R >~.

�9 it contains an infinite number of regions F C R <c' U R >~'.

The set F~ is now the union of regions F in the region graph such that every progressive
path starting at F contains a region F ~ _Ftb.

6.2.2 T i m e d Reachab i l i t y

Now consider a formula r = 30<3r To compute whether r holds at a state, we need to
determine whether some state in 17q can be reached within 3 time units. The region graph
constructed for the case r = 3 0 r has information only about reachability, but not about
"timed" readaability. The timed reachability analysis can be performed by introducing an
auxiliary clock x0. The new state space is S x ll~ n+l, and the timed consecution relation =~
on this new space is defined as before; the transitions corresponding to the elapse of time
increment the value of x0 along with the other clocks, and the transitions corresponding
to the change of location do not depend upon the value of x0 and leave x0 unchanged.
For ~? C]R '~ and t E ~ , let [t]s denote the (n + 1)-vector that assigns t to the clock Xo
and agrees with ~ on the values of the remaining n clocks. Conversely, for ~ E JR2 +x, let
:~" denote the n-vector obtained by discarding the value of the clock x0.

To compute the value of r at (8, ~) we consider the paths starting at {a, [0]~). The
value of x0 is 0 at the beginning of the path and at later points its value reflects the elapsed
time. The formula r holds at (s, .g} iff there is a state (u, ~ reachable from (s, [0]~) (in

353

the extended state space) such that •[01 < 3 and (s, ~) E Fr To test this condition,
we construct a region graph for the extended state space S • IR, "+1. The initial partition
needs to distinguish between the cases Xo = 0, 0 < x0 < 3, and x0 > 3 and also on the
basis of the truth of r

Let R~ be the partition of S • ll~ "+1 into two regions: F~, = {(s,a~)] (s,~'*) E Fr
and its complement. Let/ to be the partition of the state space into three regions:

R8 = I [0] = 0}, Io < < 3}, I [0] >_ 3}.

As the initial partition R~ we choose the coarsest partition that refines both R o and
Ro above, and build the region graph RG(G, R'~) = (R, E). Now, the truth of r can be
evaluated by a simple teachability analysis on this region graph. The set F~ C S • JR. "+1 is
union of the regions F C/ '~ of R for wlfich there is a region F' C F$N(R~ <3) reachable
from F. The set F~ C_ S • lR" is simply the projection of F~: { (s , ~) I (s,g) e F$}.

For a formula r = 3<)~cr the algorithm is the same; the initial partition now distin-
guishes between the cases E[0] = 0 and 0 < ~[0] ,~ c and 0 < E[0] 7 L c. The analysis for
r = V<>~cr is similar; the initial partition now needs to account for the progressiveness
assumption also (as in the case of V<>r

R e f e r e n c e s

[1] R.. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In
Proceedings of the Fifth IEEE Symposium on Logic in Computer Science, pages 414-
425, 1990.

[2] R.. Alur and D. Dill. Automata for modeling real-time systems. In Automata, Lan-
guages and Programming: Proceedings of the 17th ICALP, Lecture Notes in Com-
puter Science 443, pages 322-335. Springer-Verlag, 1990.

[3] R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. In Proceed-
ings of the Tenth ACM Symposium on Principles of Distributed Computing, pages
139-152, 1991.

[4] R. Alur and T. Henzinger. A really temporal logic. In Proceedings of the 30th IEEE
Symposium on Foundations of Computer Science, pages 164-169, 1989. Journal
version to appear in the Journal of the ACM.

[5] A. Bouajjani, J. Fernandez, and N. Halbwachs. Minimal model generation. In Pro-
ceedings of the Second Workshop on Computer-Aided Verification, Rutgers Univer-
sity, 1990.

[6] A. Bouajjani, J. Fernandez, N. Italbwachs, P. Raymond, and C. Ratel. Minimal state
graph generation. Science of Computer Programming, 1992. To appear.

[7] M. Browne, E. Clarke, D. Dill, and B. Mishra. Automatic verification of sequential
circuits using temporal logic. IEEE Transactions on Computers, C-35(12):1035-1044,
1986.

354

[8] J. Burch, E. Claa'ke, D. Dill, L. Hwang, and K. L. McMillan. Symbolic model check-
ing: 102o states and beyond. In Proceedings of the Fifth [EEE Symposium on Logic
in Computer Science, pages 428-439, 1990.

[9] K. Cerans. Decidability of bisimulation equivalence for parallel timer processes. In
Proceedings of ChaImers Workshop on Concurrency, Goteborg, 1991.

[10] E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal-logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244-263, 1986.

[11] C. Courcoubetis and M. Yannakalds. Minimum and maximum delay problems in real-
time systems. In Proceedings of the Third Workshop on Computer-Aided Verification,
Aalborg University, Denmark, 1991.

[12] D. Dill. Timing assumptions and verification of finite-state concurrent systems. In
J. Sifakis, editor, Automatic Verification Methods for Finite State Systems, Lecture
Notes in Computer Science 407. Springer-Verlag, 1989.

[13] E. Emerson and C. Lei. Modalities for model-checking: Branching time logic strikes
back. In Proceedings of the 12th ACM Symposium on Principles of Programming
Languages, pages 84-96, 1985.

[14] E. A. Emerson and E. M. Clarke. Using branching-time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2:241-266, 1982.

[15] E. A. Emerson, A. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal tea-
soning. Presented at the First Workshop on Computer-aided Verification, Grenoble,
France, 1989.

[16] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking for real-
t ime systems. In Proceedings of the Seventh IEEE Symposium on Logic in Computer
Science, 1992. To appear.

[17] D. Lee and M. Yannakakis. Online minimization of transition systems. In Proceedings
of ACM Symposium of Theory of Computing, 1992. To appear.

[18] H. Lewis. A logic of concrete time intervals. In Proceedings of the Fifth IEEE
Symposium on Logic in Computer Science, pages 380-389, 1990.

[19] X. Nicollin, J. Sifalds, and S. Yovine. From ATP to timed graphs and hybrid systems.
In Proccedings of REX workshop "Real-time: theory in practice", Lecture Notes in
Computer Science 600. Springer-Verlag, 1991.

[20] H. Wong-Toi and G. Itoffmann. The control of dense real-time discrete event systems.
In Proceedings of the 30th IEEE Conference on Decision and Control, pages 1527-
1528, 1991.

