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1 I n t r o d u c t i o n  

Model checking is a powerful technique for the automatic verification of finite-state sys- 
tems [10, 13, 8]. A model-checking algorithm determines whether a finite-state system, 
represented by its 'state-transition graph, satisfies its specification given as a temporM 
logic formula. For speed independent or delay insensitive systems, the correctness can be 
proved by abstracting away real-time retMning only the sequencing of state-transitions. 
For such systems, model checking has a long history spanning over ten years, and has 
been shown to be useful in validating protocols and circuits [7]. Only recently there have 
been attempts to extend these techniques to verification of timing properties that explic- 
itly depend upon the actual magnitudes of the delays [15, 4, 2, 1, 18, 3]. Because of the 
practical need for some support for developing reliable real-time systems, the interest in 
studying these techniques further is considerable. The initial theoretical results indicate 
that the addition of timing constraints makes the model-checking problem harder: in ad- 
dition to the state-explosion problem inherent in qualitative model checking, now we also 
have to deal with the blow-up caused by the magnitudes of the delay bounds. Clearly, 
to make the proposed algorithms applicable to substantial examples there is a need to 
develop heuristics. In this paper, we show how to apply state-minimization techniques to 
verification algorithms for real-time systems. 

We use timed automata as a representation of real-time systems [12, 2]. A timed 
automaton provides a way of annotating a state-transition graph of the system with timing 
constraints. It operates with a finite-state control and a finite number of fictitious time- 
measuring elements called clocks. Various problems have been studied in the framework of 
timed automata [2, 1, 3, 9, 19]. Before we can say how we improve the existing algorithms, 
let us recall how these algorithms work. First notice that a state of a timed automaton 
needs to record the location of the control and the (real) values for all its clocks, and thus, 
a timed automaton has infinitely many states. The algorithms for timed automata rely 
on partitioning the mlcountable state space into finitely many regions and constructing a 
quotient called the region graph. States in the same region are in some sense equivalent, 
and the region graph is adequate for solving many problems. For instance, it can be 
used for testing emptiness of a timed automaton [2], real-time model-checking [1], testing 



341 

bisimulation equivalence [9], finding bounds on the delays [11], and controller synthesis 
[20]. The main hurdle in implementing such algorithms using the region graph is that it's 
too big - it is exponential in the number of clocks and in the length of timing constraints. 
Recently, to overcome this problem Henzinger et al. have shown how to compute certain 
timing properties of timed automata symbolically [16]. We propose another approach, 
namely, of applying a state-minimization algorithm while constructing the region graph 
to reduce its size. 

The objective of the minimization algorithm is to construct a minimal reachable re- 
gion graph from a timed automaton. Note that we want to construct such a minimal 
graph without constructing the full region graph first. Recently, algorithms have been 
proposed for performing simultaneously the teachability analysis and minimization from 
an implicitly defined transition system [5, 6, 17]. First we show how these algorithms can 
be adapted to our needs to construct the minimal region graph. Next we extend these 
methods to propose an algorithm for the problem of deciding whether a timed automa- 
ton meets a specification in TCTL - -  a real-time extension of the branching-time logic 
CTL. The minimal region graph, in itself, is not adequate for checking TCTL properties. 
Firstly, it does not incorporate the "non-Zeno" assumption about real-time behaviors 
which requires that time progresses without aaay bound along an infinite sequence of tran- 
sitions. Secondly, the minimization algorithm concerns only with reachability, and not 
with "timed" teachability (e.g. to check a temporal property of the form "within time 3" 
we need to check whether a sequence of transitions is possible within the specified bound 
3). We show how to refine the minimal region graph to incorporate these requirements, 
and this leads to an algorithm for model checking. A nice feature of the algorithm is that 
it splits the minimal graph only as much as needed depending on the TCTL-formula to 
be checked. We remind the reader that model-checking for TCTL has been shown to be 
computationally hard, namely, PSPACE-con-iplete [1]. However, examples indicate that 
the minimized region graph is much smaller than the worst-case exponential bound, and 
consequently, our methods should result in a big saving. 

The rest of the paper is organized as follows. Section 2 reviews the definitions of timed 
automata and region graphs. In Section 3 we review the minimization algorithm, and in 
the following section we show how to construct the minimal region graph using it. Section 
5 gives examples illustrating the construction of the minimal region graph. In the final 
section we consider extensions needed to do model checking for TCTL. 

2 Timed automata and region graphs 

In this section we recall the definition of timed automata and the principles of their analysis 
by means of finite region graphs [12, 2, 1]. 

2 .1  T i m e d  A u t o m a t a  

Timed automata have been proposed to model finite-state real-time systems. Each au- 
tomaton has a finite set of locations and a finite set of clocks which are real-valued 
variables. All clocks proceed at the same rate and measure the amount of time that has 
elapsed since they were started (or reset). Each transition of the system might reset some 
of the clocks, and has an associated enabling condition which is a constraint on the values 
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"i : = 0  

l < x < 2  

Figure 1: An example  of a t imed automaton 

of the clocks. A transit ion can be taken only if the current clock values satisfy its enabling 
condition. 

For example,  the au tomaton  of Figure 1 represents a system with four locations and two 
clocks x, and y. The  clock x gets initialized on thc transition from so to 81. At any instant,  
the value of x equals the t ime elapsed since the last t ime this transit ion was taken. The  
enabling condition associated with the s2 to sz transition expresses the following t iming 
constraint: the delay between the transition from So to 81 and the transit ion f rom s2 to 
sz has lower bound 1 and upper  bound 2. Similarly, the clock y constrains the transit ion 
from s3 to So to occur at least two units later than the transit ion from sl to s2. Thus 
to express a bound on the delay between two transitions, we reset a clock with the first 
transition, and associate an enabling condition with the other transition. 

For each transition, the enabling condition is required to be a convex polyhedron of 
~'~ (JR denotes the set of nonnegative reals, and n is the number  of clocks in the system),  
consisting of all the solutions of a system of linear inequalities of the form 

* x < k, x < k, x > k, x > k, where x is a clock and k is an integer, or 

�9 x - y _< k, x - y < k, where x and y are clocks and k is an integer. 

In this paper,  such a polyhedron will be called a (time) zone. Let Z ( n )  (or s imply Z)  be 
the set of zones of ]R '~. We consider also a set of reset actions `4(n) (or s imply .3.), which 
are functions from IP~ ~ to IR'*. For each a E ,4, there is a set of indexes I~ C {1 . . .  n} such 
that  

0 if i E I~ 
V ~ E  lW~,Vi= 1 , . . . , n ,  a(~')[i] = ~'[i] otherwise 

A t imed au tomaton  G is a tuple (S, C, sims, T)  where 

1. S is a finite set of locations, 

2. C = { X l , . . . ,  x~} is a set of clocks, 

3. s~,~it E S is an initial location, 

4. T c S x Z ( n )  x ,4(7,) x S is a transition relation. A transition (s, z, a, s') in T will 
be denoted by s z,a s~" 
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The automaton G starts with the control at the location s~,m with all its clocks ini- 
t ialized to 0. The values of all the clocks increase uniformly with time. At any point in 
time, the automaton can make a transition, if the current values of the clocks belong to 

Z~{Z) . the associated zone. The transitions are instantaneous. With each transition s s', the 
clocks in I~ get reset to 0 and start counting time with respect to that  transition. At any 
instant, the state of the system can be fully described by specifying the current location 
and the values of all its clocks. So, a stale of the system is a pair (s,~), where s E S and 
I E  JR". 

Now we can define a t imed consecution relation on the states of a t imed automaton. 
For & e IR, a state (s', 2 )  is said to be &-successor of another state (s, :~), written (s, i )  =~ 
(s', x'), iff either 

�9 & = 0 and there is a transition s z,a s' E T such that  i E z and x' equals a(x),-" or 

�9 ~ > 0 and s' = s and z '  = i + g (where g denotes the n-tuple [&, ~,.. .] E IR/'). 

A state (s', z') is said to be a successor of another state (s, i ) ,  written (s, i )  =V (s', ~ ) ,  iff 

there exists a & E ~ such that  (s, 1) :~ (s', z'~). 
The behavior of a timed automaton can now be formally defined using the consecution 

relation =~. A run of the automaton started in a state (s, ~') is obtained by iterating the 
relation =~. Formally, a run r is an infinite sequence of locations si E S, clock vectors 

E ~ " ,  and t ime values ~i E IR of the form 

Note that  the above definition allows more than one transitions to occur at the same 
time. This means that ,  the time of the clocks is stopped, and the system can perform 
instantaneously several transitions which are enabled one after the other; each transition is 
enabled by the clock values which the previous one produced. Such an assumption allows 
the modeling of simultaneous actions of different components by interleaving; however, it 
is not essential for our algorithms. 

The run r is called progressive iff the sequence of sums ~.~=o&i is unbounded. This 
requirement corresponds to the "non-Zeno" constraint which rules out the runs in which 
an infinite number of transitions occur in a bounded interval of time. Thus the actual 
behavior of a real-time system gives rise only to progressive runs, and hence, while checking 
temporal properties of a timed automaton, we will restrict attention only to the progressive 
runs. 

2 . 2  R e g i o n  g r a p h s  

The key to solving verification problems for timed automata is construction of a finite 
region graph [1]. This solution constructs a specific region graph, we generalize this notion 
here. 

A region F _C S x IR" is a set of states. Typically F will be of the form {(s, i )  [ E E Z}, 
denoted by (s ,Z) ,  for a zone Z. For a state (s,~) in a region F and a region F ' ,  the 
consecution relation (s, .~) :r F ~ holds iff one of the following two conditions are met: 
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�9 Elapse of time: Starting from the state (s, ~), as time elapses, the state enters the 
region F '  while staying in the region F U F I along the way. That is, for some 5 > 0, 
(s, ~ + 5) E F', and the set of states {(s, ~ + 5') I 0 < 5' < 5} is entirely included in 
the region F U F'. 

�9 Eventual explicit transition: Starting from the state (s,:~), the state stays in the 
region F as time elapses, and then enters F 1 because of an explicit transition. That 
is, for some 5 > 0 and some (s', x') E F 1, the set { (s, ~ + 5 3) I 0 < 51 _< 5} is entirely 

included in F,  and (s,~ + ~) ~ (s',x3). 

A partition R of the state space S x ]pn into regions is said to be stable iff 

1. R is stable with respect to the elapsing of time: For every (s, if) in F,  if (s, if} can 
lead to a region F t E R by letting the time elapse, then every other state (s 1, f ')  in 
F can also lead to F I by letting the time elapse. 

2. R is stable with respect to explicit transitions: For every (s, ~ in F,  if (s, ~) can lead 
to a region F '  E R by eventually enabling an explicit transition, then every other 
state (s I, x "~) in F can also lead to F t by eventually enabling an explicit transition 
(not necessarily the same transition as (s, 3)). 

Intuitively, stability of R means that all states in a region axe equivalent with respect 
to the reachablhty analysm: ff for some state (s, x) E F,  there m a state (s ,  x ) E F 

-* * I I 1 I I such that (s,x) =~ (s ,~) ,  then for every state / u , ~  E F there is a state (u ,~)  E F 
�9 I I such that (u, ~ ==~ (u,  y ). Also our definitions ensure that the paths leading (s, ~) and 

(u, y') to F I visit the same sequence of regions of R along the way. Thus, the reachability 
questions about the states of a timed automaton can be reduced to reachability questions 
about the regions of a stable partition. In general, given an initial partition of the state 
space, we will be interested in constructing a partition that is stable and refines the initial 
partition (a partition R refines another partition R ~ if every region F of R is entirely 
contained in some region F 1 of RI). This motivates the following definition. 

A region graph corresponding to a timed automaton G and an initial partition Ro of 
the state space of G, is a graph RG(G, Ro) = (R, E) such that 

1. R is a stable partition of S • ~n ,  

2. R refines the initial partition Ro, and 

3. there is an edge from F to F '  in E i f f  (s, ~) =~ F'  for some state (s, ~) in F. 

Clem'ly, we can define a region graph in which every region contains a single state. But 
this is not useful, because a timed automaton has infinitely many states. The following 
proposition, which is the main result of [2], states that it can always be folded into a finite 
region graph: 

P ropos i t ion  : For any timed automaton G and the initial partition Ro = {(s, ~n)  ] 
s E S}, there exists a finite region graph RG(G, Ro). [] 

The proof of this proposition is based on the existence of the detailed region graph 
DRG(G) (the initial partition is assumed to contain a region (s, JR2) for every location 
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s). The constructive proof defines an equivalence relation TM on IR2. Let c be the largest 
constant used in defining a zone Z used in an enabling condition of G. Then, for ~ and 
ff in IR.", define 2 ~ ff iff for every zone Z E Z that is defined using integer constants not 
greater than c, ~ E Z iff ff E Z. This equivalence relation has the following properties: 

�9 The quotient [IK"/=~] is finite. 

�9 S x [IR2/~] is a stable partition of S x IK =. 

Any region graph is adequate for doing a finite teachability analysis, however, as we 
will see later, it is not fine enough to do TCTL model-checking. On the other hand, 
the detailed region graph is adequate to solve the model-checking problem. The only 
stumbling block is its size: the number of regions of DRG(G) is o(n!lSlc-). 

So, the problems of interest, which will be addressed in the remainder of the paper, are 

�9 Is it possible to symbolically build a region graph smaller than the detailed region 
graph? 

�9 Is it possible to use such a reduced region graph to perform full TCTL model- 
checking? 

3 Minimizat ion  Algor i thm 

Bouajjani et al [6] (see also [5]) describe a general algorithm to directly generate a minimal 
state graph from an implicit description (e.g., a program). Let us briefly recall this 
algorithm, before adapting it to the generation of region graphs. 

We start from a transition system S = (S, so, ~ ) ,  where S is the set of states, So E S is 
the initial state, and ~C_ S x S is the transition relation. A state s is said to be accessible 
from so if and only if So~*S, where --** denotes the reflexive-transitive closure of --*. For 
a state s and a set X C S, we will use the notation s =~ X to denote s ~ s' for some 
s' E X. Let p be a partition of S. A class X E p is said to be stable with respect to p if 
and only if 

VY E p. [(3x E X, x ~ Y) implies (Vx E X, x =~ Y)]. 

A partition p is a bisimulation if and only if every class of p is stable with respect to p. 
The reduction of S according to a partition p is the transition system Sip given by 

(Acc(p), [s0]p,-%), where 

�9 Acc(p) is the set of classes of p which contain at least one state accessible from So; 

�9 [s0]p denotes the class of p which contains so; 

�9 X ~ p Y i f f x ~ Y f o r s o m e x E X .  

Given a transition system S and an initial partition po, the algorithm described in [6] 
explicitly builds the transition system SI~, where ~ is the coarsest bisimulation compatible 
with p0 (that is, every class of po is a union of classes of ~). The termination of the 
algorithm requires that the bisimulation ~ must have a finite number of classes. The 
algorithm is given below, with the following notations: 
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�9 The function split "splits" a class X of a parti t ion p into a minimal set of subclasses 
which are all stable wi th  respecL to p; 

�9 For a class X of p, postp(X) denotes the set of classes of p which contain at least 
one state directly accessible from a state of X: posta(X) = {Y  I 3x E X, x =~ Y}.  

�9 Conversely, pv%(X) denotes the set of classes of p which contain at least one state 
from which a state of X is directly accessible: prep(X) = {Y  ] 3y 6 ]I, y =~ X} .  

In the following algorithm, p is the current partition, a is the set of classes of p which 
have been found accessible from (the class of) the initial state, and a is the set of classes 
of p which have been found stable with respect to p. 

M i n i m i z a t i o n  A l g o r i t h m :  

p = po; ~ = {[sol.}; ~ = 0; 

while a # o" do 

choose X in a \ cr; 

let a '  = split(X, p); 

if a ' =  {X} then 

o- :=  r u { x } ;  ,~ :=  ~ u postp(x); 
else 

a := c~ \ {X}; 

if 3Y 6 a '  such that  so 6 Y then a := a U {Y}; 

a := a \ prep(X); 
p :=  (p \ { x } ) u  ,~'; 

fi 

od 

4 C o n s t r u c t i n g  t h e  m i n i m a l  r e g i o n  g r a p h  

Given a t imed automaton G = (S, C, si~it,T), we can use the algorithm of Section 3 
to generate a minimal region graph. Recall that  the automaton G can be viewed as a 
transition system over S • ]II n with the initial s ta te  (3inlt,6) and the transition relation 

=~ (which is the union of :~, 8 > 0). For simplicity of implementation,  we require every 
region F to be of the form (s, Z) for a zone Z. We start  with some definitions. 

The set of time predecessors of a zone Z is 

For zones Z and Z',  Z \ Z'  is some set of disjoint zones such that  the set {Z'} U Z \ Z '  
forms a parti t ion of Z, and 

z u z ' = { z n z ' }  u ( z \ z ' )  u ( z ' \ z ) .  
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We generalize this operator to accept any finite number of arguments: For any finite set 
k {Za , . . . ,  Zk} of zones, Ili=lZi is a partition of I..J~=lZi into a set { Z [ , . . . ,  Z~} of disjoint 

zones, such that for each i = 1 . . .  k, j = 1 . . . p ,  either Zj C Zi or Zj N Zi = 0. The 
operator LI extends over regions also: (s, Z) LI (s, Z') = {(s, Z") I Z" e Z U Z'}. 

In order to adapt the algorithm of Section 3 to generate a minimal region graph, we 
could define the "precondition" function: pre(F)  is the set of states (s', x') which may 
lead to some (s, ~) E F either by letting the time elapse (if s = s'), or by an explicit 
transition. For a region F = (s, Z) this definition translates to: 

pre((s,Z)) = ( s , Z / )  U U ( s ' , ( a - ' ( Z )  n z) / ) .  
z~a  

S t  = ,~$  

However, such a formalization doesn't  take into account the fact that  one cannot reach 
(s, Z) from (s, Z') without going through some zone Z" "separating" Z'  from Z. For 
instance, one cannot reach (s, {x > 2}) from (s, {x < 1}) without going through (s, {1 < 
x < 2}) (Recall the definition of (s, g) =~ F '  for stability of regions from Section 2). In 
fact, we cannot formalize the right abstractlon of "time elapsing", by means of a single 
precondition function. Instead of looking for such a precondition, we will make precise 
in what case a region may directly lead to another region (following [16]), and use this 
notion to define the function for splitting a region into stable regions. 

Let Z ~  Z' denote the set of ~ E Z for which there exists 6 E IR. such that g + g E Z' 
and ~ + 6' E Z tO Z'  for all 0 < 5' < 5. It is easy to show that Z ~ Z'  is a zone. 

Now the stability of a region can be expressed as follows. A region (s, Z) is stable with 
respect to another region (s', Z ') if and only if 

�9 i f s = s ' t h e n Z # Z '  E { Z , 0 } , a n d  

�9 for every transition s *'~) s' 1, 

- either a(Z fl z) N Z' = 0 (this includes the case where Z N z = 0), 

- or a(Z N z) C_ Z' and Z ~ (Z N z) equals Z. 

From this definition, we derive the function split: For any locations s, s' (s # s'), for any 
zones Z, Z t, 

split((s, Z), (s', Z'))  = (s,  Z)  II I I  (s,  Z "~" (Z  n z n a-'(z')))  
3 z v a )  8 ! 

split( (s, Z), (s, Z') ) = (s, Z) 11 (s, Z 1~ Z') IJ 
$ 

u (s, z ~ ( z  n z n a-'(z')))  
Z~a 

I S  

Now all the definitions needed for applying the algorithm can be given. Let p be any 
partition of the states into regions, and let (s, Z) be a region. Then, 

p,-~((s, z))  = {(s, z') ~ p I z'  ~t z # O) u U {(s', z') ~ p I a(Z' n ~) n z # 0}, 
,~jO, 

Sand this includes the case where s = s' and there is a looping transition on s. 
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_ 2  

Figure 2: The timed automaton of Example 1 

pos t . ( ( s ,  z ) )  = {(., z') e p I z ~t z' # 0} u U {(~',z')epla(znz)nz'#~}, 
z ~ a  

} s t 

split((s,Z),p)= II split((~,Z),(s',Z')). 
(s',Z')~p 

To implement the algorithm, we simply need efficient ways for representing zones and 
computing simple operations on them such as Z II Z', g ~ Z', a(Z),  and a-a(Z). 

5 E x a m p l e s  

We will demonstrate the effectiveness of minimization procedure on simple examples. 

5.1 E x a m p l e  1 

We consider first the very simple timed automaton shown on Fig. 2. 
We start with an initiM partition which only distinguishes regions according to their 

node component: p = Po --- {Co, Ca, C2, C3}, with Ci = (s;, ~2) for i = O, 1, 2,3. Since 
the initial state belongs to Co, we have a = {Co}, a = 9. 

So, we consider first X = Co. Obviously split(Co, C~) = split(Co, Ca) = {Co), since there 
is no transition from so to s2 or s3. So, split(Co, p) = split(Co, Ca) = {Coo, Con}, with 

Coo = (So, {y < 2}) C o a = ( S o , { y > 2 } )  

The initial state (So, {x = y = 0}) belongs to Coo, so a is updated to {Coo). Considering 
X = Coo, we find it stable with respect to p = {Coo, Con, C1, C~, C3}, since all of its 
elements can lead to Con and to Ca. So, we get a = {Coo, Cox, Ca} and a = {Coo). 

The region X = Cox is stable with respect to p, and it doesn't lead to any other region. 
Considering X = Ca, we find 

split(Ca, Coo) = split(Ca, Cox) = split(Ca, C3) = {Ca) 
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Figure 3: The minimal region graph of Example 1 

SO 
,put(c,, p) = ,pIi t(c, ,  c=) = {C,o, c~,} 

with 
C10 = (21, {x ~ y}) Cll = (Sl, {x ~> y}) 

Splitting C1 questions about the stability of Coo, wtfich is removed from a, and considered 
again. 

N o w ,  w e  h a v e  p = {Coo, Co~,C~o, CmC~,C3},  ~ = {Coo, Co,}, ~ = {Co~}  a n d  X = 

Coo. We get split(Coo, p) = split(Coo, C~o) = split(Coo, G~) = {Cooo, Coox}, with 

Cooo = (So, {x < y < 2}) C o o t = ( S o , { y < 2 A y < x } )  

The initial state belongs to C0oo which is stable, and can lead either to Col or to Clo. We 
get p = {Cooo, Cooi, Col, Clo, Cl:t, 02, Ca}, ot = {Cooo, Cox, Cio},  ~r = {Cooo, Col}. 

X = 010 is found stable with respect to p, leading to C2 and C3, which become both 
accessible. X = C2 is split into 

C~o = <s~, {= <_ 2}) c~, = <s~, {x > 2}) 

so Clo must  be considered again. It is split into 

C, oo = (8,, {x _< y A x <_ 2}) ClO1 = (81, {2 < X <~ y}) 

COOO is also considered again, it is found stable and leads to C1oo. 
We have p ={Cooo, Cool,Cloo, Clol ,C20,C21,C3},  ot ..~ {Cooo, Col,ClOO} and a = 

{Cooo, C01}. Now, Cloo is found stable, leading to Clol, C20 and C3. ClOl is stable and 
leads to C=1 and to Ca. C~0 is stable, and leads to C~1 and Ca. C21 and Ca are stable. The 
resulting graph is shown on Fig. 3. Notice that  the detailed region graph of this example 
has 160 regions, 24 of which are accessible. 
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x > 2  ~ < o  
y : = 0  L ~  - '~  

Figure 4: The timed automaton of Example 2 

5.2 Example  2 

Let us slightly complexify our example as shown by Fig. 4. The first steps of the 
algorithm are similar, but now C101 can lead to Co01 which becomes accessible. Cool is 
found stable, leading to Cn. Cn is stable and leads to Ca. Our reduced graph has 9 
accessible regions, instead of 40 in the detailed graph. 

6 M o d e l  c h e c k i n g  f o r  T C T L  

In this section we show how to use the algorithm for constructing the minimal region 
graph to check properties specified in the branching-time logic TCTL. 

6.1 The logic TCTL 

Let us briefly review the logic TCTL of [1]. It is a reM-time extension of the branching- 
time logic CTL of [14]. The syntax of TCTL allows putting subscripts on the temporal 
operators of CTL to restrict their scope in time. Thus one can write 3<~<3 p meaning 
"along some run within time 3." Formally, let AP be a set of atomic propositions, then 
the formulas r of TCTL are defined inductively as: 

r := p I -,r I r A r I 3r162 I vr162 

where p is in AP and c is an integer and ,,~ stands for one of the binary relations <,>,  =, 
_<, >. 

Informally, 3 ~bl U<cr means that for some run, there exists an initial prefix of time 
length less than c such that r holds at the last state of the prefix, and r holds at all 
its intermediate states. Similarly, V r L/<cr means that for every run, there is an initial 
prefix with the above property. Formally, the semantics of TCTL is defined with respect to 
continuous computation trees, but for our purposes it suffices to interpret TCTL formulas 
over timed automata. To interpret TCTL formulas over a timed automaton, first we need 
to know which atomic propositions are true in every location of the automaton. A labeled 
timed automaton is a pair (G, #), where G is a timed automaton aud # is a labeling 
function from the locations of G to 2 ~P. 
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Given a 
inductively 

labeled timed automaton (G,/~), we define the satisfaction relation (s, g) ~ r 
as follows: 

p iff p e ~t(s). 
- r  (,, z) V: r 
r A ~b~ iff both (s, g) ~ +~ and (~, E) ~ r 
2 r ld~~42 iff for some progressive run r of G starting at (s, s r 

Vr162 iff for every progressive run r of G starting at is, g), 

For a run r = (80, x'~) ~:~ (sl,x']) : ~ . . . ,  the relation r ~ r holds iff there exists k 
and $ < ~k such that (1) (~i+ Zi<k*/) ,,, c, and (2) (sk,:~) ~ r and (3) for all 0 < i < k, 
for all 0 < 5' < 61, (si, x-] + 6 -~) ~ ~bl, and (4) for all 0 < (~' < 6, (si, x~ + 6";) ~ r 

A labeted timed automaton (G, #) satisfies a TC~lWL-formula ~b iff (s,,,i,, 0') ~ r The 
model-checking problem for TCTL is to dccide if (G, #) satisfies r The problem is known 
to be PSPACE-complete [1]. 

6.2 Model checking algorithm 

We sketch how to adapt the minimization algorithm to do model-checking for TCTL. Let 
(G,/t) be the labeled timed automaton with state space S x JR". For a TCTL-formula 
r let F~ be the set of states (s, s such that i s, ~7) ~ r The detailed region graph of [1] 
is adequate for TCTL model-checking: for any TCTL-formula r the set Fr is a union of 
regions of the detailed region graph. Now our objective is to construct the set F~ through 
only a "minimal" splitting. In our analysis, the set F# will always be a union of regions 
of the form (s, Z) for Z E Z.  

The construction of Fr is defined inductively on the structure of r The cases when r 
is an atomic proposition, or is a boolean combination are simple: 

F-,§ = ( S •  

The interesting case is when r is a "timed until" formula. For simplicity of presen- 
tation, we only consider the case when r is of the form 3<>~cr (that is, 3 true H~r162 or 
V(>~~r the changes necessary to handle the "until" formulas should be obvious. 

First consider an unbounded temporal formula r = 3<~r (that is, 30_>0r Suppose 
we have constructed the set :PC. Let P~ be the partition of the states of G into two 
regions: Fr and F-,r Now we run the minimization algorithm of Section 4 to construct 
a region graph RG(G, P~) = (R, E). Since R refines Re, for any region F of R, either 

holds at all states in F or -~r holds in all states in F.  Suppose we want to determine 
the truth of the formula ~b at the state (s, g) in the region F of R. From the semantics of 
TCTL, it follows that  r holds at (s, ~.) iff some state in Fr appears on a progressive run of 
G starting at i s, ~). Since every finite run can be extended to obtain a progressive infinite 
run, r holds at (s, E) iff some state in F~ is reachable from (s, s This holds precisely 
when a region F '  E R such that F ~ _C Fr is reachable from F in the region graph. Thus, 
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the desired set F~ is a union of regions F for which some F' C_ F~ is reachable from F in 
(R,E). 

6.2.1 Progress iveness  

Now consider the formula r = VOr Suppose we construct the region graph RG(G, Re) = 
(R, E) as before. Now, r holds at (8, ~') E F iff some state in Fr appears on every 
progressive run of G starting at (s, ~). However, this is not equivalent to saying that 
every infinite path in the region graph, starting at F,  contains some region F ~ _ Fr To 
determine the truth of r we need to account for the progressiveness assumption while 
constructing the region graph. 

From the results in [1] it follows that the progressiveness assumption can be modeled 
as fairness constraints on the detailed region graph which require that a path of DRG(G) 
infinitely often visits certain sets of regions. In particular, these constraints require that 
for every clock i, the constraint ~[i] = 0 or :~[i] > c~ holds at infinitely many regions 
along the path (here, cl is the largest constant in a constraint involving x in the enabling 
conditions of G). We can use this fact to handle progressiveness in our reduced region 
graphs. For each clock i, let _R,. be the partition of the states of G into three regions: 

R ~ = {{8,~) I~[i1 = 0}, R>~'{(s,~) I~[i] > c,}, R~~ I 0 < ~[i1 _< el}. 

Now, as the initial partition we choose the coarsest partition R~ that refines Rr and also 
refines 174 for each clock i. The next step is to construct a region graph RG(G, R~) = 
(R, E). An infinite path in this region graph is called progressive iff for every i = 1 . . .  n: 

�9 it contains an infinite number of regions F C R ~ U R >~. 

�9 it contains an infinite number of regions F C R <c' U R >~'. 

The set F~ is now the union of regions F in the region graph such that every progressive 
path starting at F contains a region F ~ _Ftb. 

6.2.2 T i m e d  Reachab i l i t y  

Now consider a formula r = 30<3r To compute whether r holds at a state, we need to 
determine whether some state in 17q can be reached within 3 time units. The region graph 
constructed for the case r = 3 0 r  has information only about reachability, but not about 
"timed" readaability. The timed reachability analysis can be performed by introducing an 
auxiliary clock x0. The new state space is S x ll~ n+l, and the timed consecution relation =~ 
on this new space is defined as before; the transitions corresponding to the elapse of time 
increment the value of x0 along with the other clocks, and the transitions corresponding 
to the change of location do not depend upon the value of x0 and leave x0 unchanged. 
For ~? C ]R '~ and t E ~ ,  let [t]s denote the (n + 1)-vector that assigns t to the clock Xo 
and agrees with ~ on the values of the remaining n clocks. Conversely, for ~ E JR2 +x, let 
:~" denote the n-vector obtained by discarding the value of the clock x0. 

To compute the value of r at (8, ~) we consider the paths starting at {a, [0]~). The 
value of x0 is 0 at the beginning of the path and at later points its value reflects the elapsed 
time. The formula r holds at (s, .g} iff there is a state (u, ~ reachable from (s, [0]~) (in 
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the extended state space) such that •[01 < 3 and (s, ~ )  E Fr To test this condition, 
we construct a region graph for the extended state space S • IR, "+1. The initial partition 
needs to distinguish between the cases Xo = 0, 0 < x0 < 3, and x0 > 3 and also on the 
basis of the truth of r 

Let R~ be the partition of S • ll~ "+1 into two regions: F~, = {(s,a~) ] (s,~'*) E Fr 
and its complement. Let/ to be the partition of the state space into three regions: 

R8 = I [0] = 0}, Io < < 3}, I [0] >_ 3}. 

As the initial partition R~ we choose the coarsest partition that refines both R o and 
Ro above, and build the region graph RG(G, R'~) = (R, E). Now, the truth of r can be 
evaluated by a simple teachability analysis on this region graph. The set F~ C S • JR. "+1 is 
union of the regions F C/ '~  of R for wlfich there is a region F' C F$N(R~ <3) reachable 
from F. The set F~ C_ S • lR" is simply the projection of F~: { ( s , ~ )  I (s,g) e F$}. 

For a formula r = 3<)~cr the algorithm is the same; the initial partition now distin- 
guishes between the cases E[0] = 0 and 0 < ~[0] ,~ c and 0 < E[0] 7 L c. The analysis for 
r = V<>~cr is similar; the initial partition now needs to account for the progressiveness 
assumption also (as in the case of V<>r 
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