Automated Verification of Multithreaded and Mobile Programs
via
Infinite-state Symbolic Model Checking

Giorgio Delzanno

D.1.S.1. - Dipartimento di Informatica e Scienze dell’Informazione

University of Genova

Grenoble, March 2003

Background

e Practical examples of multithreaded programs and protocols for
distributed systems often have
— unbounded data: generation of fresh names, ...
— unbounded control: spawning of new processes, ...
— unbounded data and control: multithreaded software

— process mobility: dynamic reconfiguration of the network

programs,. . .

e Can we still apply automated verification techniques when their

state-space becomes infinite in one or more dimensions?

Bounded control, unbounded data

Constraints to symbolically represent data

e Henzinger-Ho-Wong-Toi. HyTech: a Model Checker for Hybrid Systems,
CAV’97 BASED ON THE POLYHEDRA library

e Bultan-Gerber-Pugh. Symbolic Model Checking of Infinite State Systems
Using Presburger Arithmetics, CAV’97 BASED ON THE OMEGA LIBRARY

Unbounded control, bounded data

Constraints to symbolically represent sets of processes

Browne-Clarke-Grumberg. Reasoning about Networks with Many Identical
Finite State Processes, IC 1989

Bouajjani-Jonsson-Nilsson-Touili. Regular Model Checking, CAV 00
BASED ON REGULAR LANGUAGES

Esparza-Finkel-Mayr. Verification of Broadcast Protocols, LICS 99

Delzanno-Esparza-Podelski. Constraint-based Verification of Broadcast
Protocols, CSL 99

Delzanno-Raskin-Van Begin. Towards Verif. of Multithreaded Progranms,

TACAS 02
SYMBOLIC ANALYSIS FOR PETRI NETS

Unbounded data and parameterized control

e Abdulla-Jonsson. Verifying Networks of Timed Processes, TACAS’ 98

e Abdulla-Nylén. Better is Better than Well: On Efficient Verification of
Infinite-State Systems, LICS’00

BASED ON SYMBOLIC MODEL CHECKING

e Arons-Pnueli-Ruah-Xu-Zuck. Parameterized Verification with

Automatically Computed Inductive Assertions, CAV’01

BASED ON ABSTRACTIONS+DEDUCTIVE VERIFICATION

Current Research Line

Overall goal
To develop sound and fully-automatic methods based on constraint
programmang technology for the verification of concurrent systems
with
e unbounded control

e unbounded data

e process mobility
Practical applications
Consistency protocols for distributed systems with shared memory

Cache coherence protocols for multi-processors and multi-line caches

Security protocols

Abstractions of multithreaded programs

TDL: Thread Definition Language

A language for concurrent systems based on CFSMs enriched with
e local variables over an infinite name domain

e transitions of the form s — s'[p] where
— s and s’ are control locations,

— contains guards (z =y, ¢ # y) and assignments over local
variables and message templates,

— « 1s a channel expression

TDL: Thread Definition Language

A primitive for generations of new names x := new where z is

a local variable

A primite run T with « for spawning a new thread T with
initialization of local variables «

Rendez-vous communication: e!lm, e?m where

— ¢ (channel) is either a constant ¢ or a local variable z

— m (message) is a tuple (zq,...,x,) of (local) variables

Variables (ranging over an infinite domain of names) are used

as ports to achieve process mobility

A Challenge-Response Protocol

Thread Alice(local ida,ma,m4);

.. fresh
init 4 ——— gena[na = new|

!
gen M wait A [true]

?
watt o nA—<y>> stopalma = y|

Thread Bob(local idg,ng,mp);
c?(x
matp #) geng[np := x|

fresh
geng —— readyg[mp := new|

!
readyp "B <mBL, stoppg [true]

Initiator

Thread Main;

Local x;
.. id
inity; — create[xr := new|
new4q
create ——= initys[run Alice with idgy == x,na := L ,my := 1L, x:= 1]

create ———B, initpr[run Bob with idp :=x,np := L,mp := 1,z := 1]

Sample Run

Global configuration

(i, i), 1,)

\ .

" TV
used names local states

Run
({L,41,i2), (initar, L), (inita, i1, L, L), (initg, i, L, 1))

= ({L,i1,92}, (initar, L), (gena, i1, at, L), (initg, iy, L, L))

= ({L,11,19,a'}, (inityr, L), (waity,i1,at, 1), (genp,iz,at, L))

= ({L,141,42,a',a’}, (inityr, L), (waity,i1,al, L), (readyg, iz, a, a?))
= !

{J—a 7:17 7:27 a17 a’2}7 <ZnZtM7 J—>7 <St0pAa 7:17 a ,CL2>, <St0pBa 7:27 a17 CL2>>

The Verification of our Example is Challenging

e Suppose we want to prove that at the end of every session any
two agents who started the protocol eventually get to know

both nonces they exchanged

e This is a verification problem for a parameterized system in
which individual components have infinitely many possible

states (we generate fresh names and new threads)

Several Problems to Solve

e We need a specification language for parameterized systems

with unbounded local data
e We need an assertional language to specify safety properties

e We need sound and fully automatic procedures to validate the
specification against the desired property

Low Level Specification Language

Multiset Rewriting + Constraints

Multiset rewriting over first order atomic formulas (MSR) can
be used as a flexible specification language for concurrent
systems

MSR has been introduced to specity security protocols

— Locality of process definitions and communication via

rendez-vous

— First order terms as color for processes

The combination of MSR with a constraint system C can be
used to symbolically represent systems with heterogeneous data

structures

The resulting specification language is called MSR/(C)

MSR/(>, =) specification of the sample protocol

We use a global counter to manage fresh name generation
init — fresh(x) | initps(y) @ x> 0,y = 0.
fresh(z) | initps(y) — fresh(a') | create(y’) : =’ >4,y > =.
create(x) — initps(x’) | inito(id ,n',m’') : 2’ =x,id =z,n' =0,m’ =0.

create(x) — initpr(2') | initg(id',n’,m’') : ' =z,id =x,n' =0,m' = 0.

Core Protocol

init 4 (id,n,m)| fresh(u) — gena(id’,n',m’) | fresh(u')

uw' >n',n' >u,m =m,id =1d.

gen 4 (idi,n,m)| initg(id2, u,v) — wait(id},n’,m’) | genp(id,,u’,v")

n' =n,m' =m,u’ =n,v =v,id| = idy,id, = ids

geng(id,n,m)| fresh(u) — readyp(id',n’,m') | fresh(u’)

u' >m',m' >u,n’ =n,id =id.

wait A (id1,n, m)| readyp (ida, u,v) —> stopa(idi,n’,m’) | stopp(id,,u’,v")

n=u,n =nm =v,u =u,v =wv,id] =idy,id) = idy.
stopa (id,n,m) — inito(id’,n',m') : n’ =0,m' =0,:id" = 1d.

stopp(id,n,m) — initg(id',n’,m') : n’ =0,m' =0,:d’ = id.

Configuration and Run
A Configuration is a multiset M of ground atomic formulas

One Step Rewriting

init (i, 4,1)|initg(a, b, c)|init o(r, s, t)| fresh(k) =

gena(i, j',1) linitg(a, b, c)|init o(r, s, t)| fresh(k')

using the instance rule
init (1, 7,0)|fresh(k) — gena(i,5',1) | fresh(k') withk' > j' > k

Reachability M is reachable if init = M

Properties and Assertional Language

Parameterized Verification

e Let S be the set of good configurations. The corresponding
safety property holds if for any M

if init = M then M €S

e Dually, let U be the set of bad configurations, then the property
holds if

init & Pre*(U)
where Pre*(U) = {M | M=>M' M cU}

e We have to explore a potentially infinite number of

configurations

Symbolic Representation of Configurations

e Unsafe States can be represented as the constrained

configuration:

stopa(ii,n1, my) | stopg(iz,ng, ma) : ny = ng, my > mo.

stopa(is,n3,m3) | stopp(ig,ng, mg) : N3 = Ny, My > M3.
e if we consider its upward-closed denotations

[U] = { stopa(i,n,m) | stopp(j,n,m’) & M
\v/ i? j7 n? m # m/7

V configuration M }

e defined in general as follows

M:p] ={N |o(M)=<N, o solution of ¢ }

Verification Procedures

Backward Reachability

I =Initial States '

V

U =Unsafe States

VoV

V

minimal violations

Pre-image

From

p(u) | p(v) : true

using the rule

w(x) | t(y) — pa’) [¢y) -

we get

p(u) |w(z) [ty):z =y

but also
p(u) | p(v) | w(z) | t(y) : =

Computation

Y

Entailment

e We define an ordering based on AC unification and on the

entailment relation of the underlying constraints:
e For instance

p(z,y) | q(z) | r(u) 1z >y,y==2

entails
(') | p(z,y') 2’ >y
e Infact,
p(x,y) | q¢(z) and q(2") | p(z’,y") unify via x = 2",y =y, 2z = 2’

' >y, x' =2 entails 2’ > v'.

Enforcing Termination

Invariant Strengthening
e We observe that

[U] € [UT]

implies init ¢ Pre*(U)
init ¢ Pre*(U’)

e This idea can be viewed as a static widening

Widening

e We can apply abstractions working on the components of the
symbolic representation

a(M :) = ap(am(M) : ac(p))

and extend it to Pre as follows Pre,(S) = a(Pre(S5))

Sufficient Conditions for Guarantee of Termination

e Monadic constrained configurations with constraints like
r=yand x>y
p(x) | qy) « z>y

e Constrained configurations whose constraints are separable

with respect to positions in atomic formulas

p(z,y) | qlu,2) : x=u,y>=z

Towards Security Protocols

e The combination of constraints and uninterpreted function
symbols can be used to naturally encode several protocols used
for security

fresh(nonce(z)) —

fresh(nonce(y)) | stepl(pk(a),{n,pk(b))) | net(enc(pk(b),{nc(n),pk(a)))) :
a>0,b>0y>n,n>cx

e We can extend the symbolic verification procedure to the new
class of specifications

— Contrary to forward exploration, in the symbolic backward
approach it is not necessary to generate new constants

Conclusions

Push-button verification method for infinite-state concurrent systems

based on the paradigm of symbolic model checking and constraints

Potential application to nominal process calculi with unbounded

control, fresh name generation, and name mobility
Potential application to verification of security protocols
Specialized data structures are needed to scale up

Abstractions/accelerations are needed for terminations (class of

widening operators for security protocols?)

