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Abstract. Rigorous system design requires the use of a single powerful
component framework allowing the representation of the designed system
at different levels of detail, from application software to its implementa-
tion. This is essential for ensuring the overall coherency and correctness.
The paper introduces a rigorous design flow based on the BIP (Behavior,
Interaction, Priority) component framework [1]. This design flow relies
on several, tool-supported, source-to-source transformations allowing to
progressively and correctly transform high level application software to-
wards efficient implementations for specific platforms.

1 System Design

Traditional engineering disciplines such as civil or mechanical engineering are
based on solid theory for building artifacts with predictable behavior over their
life-time. In contrast, we lack similar constructivity results for computing en-
gineering: computer science provides only partial answers to particular system
design problems. With few exceptions in this domain, predictability is impos-
sible to guarantee at design time and therefore, a posteriori validation remains
the only means for ensuring their correct operation.

System design is facing several difficulties, mainly due to our inability to pre-
dict the behavior of an application software running on a given platform. Usually,
systems are built by reusing and assembling components that are, simpler sub-
systems. This is the only way to master complexity and to ensure correctness of
the overall design, while maintaining or increasing productivity. However, sys-
tem level integration becomes extremely hard because components are usually
highly heterogeneous: they have different characteristics, are often developed
using different technologies, and highlight different features from different view-
points. Other difficulties stem from current design approaches, often empirical
and based on expertise and experience of design teams. Naturally, designers
attempt to solve new problems by reusing, extending and improving existing
solutions proven to be efficient and robust. This favors component reuse and
avoids re-inventing and re-discovering designs. Nevertheless, on a longer term
perspective, this may also be counter-productive: designers are not always able
to adapt in a satisfactory manner to new requirements. Moreover, they a priori
exclude better solutions simply because they do not fit their know-how.
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System design is the process leading to a mixed software/hardware system
meeting given specifications. It involves the development of application software
taking into account features of an execution platform. The latter is defined by
its architecture involving a set of processors equipped with hardware-dependent
software such as operating systems as well as primitives for coordination of the
computation and interaction with the external environment.

System design radically differs from pure software design in that it should
take into account not only functional but also extra-functional specifications
regarding the use of resources of the execution platform such as time, memory
and energy. Meeting extra-functional specifications is essential for the design
of embedded systems. It requires evaluation of the impact of design choices on
the overall behavior of the system. It also implies a deep understanding of the
interaction between application software and the underlying execution platform.
We currently lack approaches for modeling mixed hardware/software systems.
There are no rigorous techniques for deriving global models of a given system
from models of its application software and its execution platform.

A system design flow consists of steps starting from specifications and leading
to an implementation on a given execution platform. It involves the use of meth-
ods and tools for progressively deriving the implementation by making adequate
design choices.

We consider that a system design flow must meet the following essential
requirements:

– Correctness: This means that the designed system meets its specifications.
Ensuring correctness requires that the design flow relies on models with well-
defined semantics. The models should consistently encompass system description
at different levels of abstraction from application software to its implementation.
Correctness can be achieved by application of verification techniques. It is de-
sirable that if some specifications are met at some step of the design flow, they
are preserved in all the subsequent steps.

– Productivity: This can be achieved by system design flows

– providing high level domain-specific languages for ease of expression
– allowing reuse of components and the development of component-based so-

lutions
– integrating tools for programming, validation and code generation

– Performance: The design flow must allow the satisfaction of extra-functional
properties regarding optimal resource management. This means that resources
such as memory, time and energy are first class concepts encompassed by formal
models. Moreover, it should be possible to analyze and evaluate efficiency in using
resources as early as possible along the design flow. Unfortunately, most of the
widely used modeling formalisms offer only syntactic sugar for expressing timing
constraints and scheduling policies. Lack of adequate semantic models does not
allow consistency checking for timing requirements, or meaningful composition
of features.
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– Parcimony: The design flow should not enforce any particular programming
or execution model. Very often system designers privilege specific programming
models or implementation principles that a priori exclude efficient solutions.
They program in low level languages that do not help discover parallelism or
non determinism and enforce strictly sequential execution. For instance, pro-
gramming multimedia applications in plain C may lead to designs obscuring
the inherent functional parallelism and involving built-in scheduling mechanisms
that are not optimal. It is essential that designers use adequate programming
models. Furthermore, design choices should be driven only by system specifica-
tions to obtain the best possible implementation.

We call rigorous a design flow which allows guaranteeing essential properties of
the specifications. Most of the rigorous design flows privilege a unique program-
ming model together with an associated compilation chain adapted for a given
execution model. For example, synchronous system design relies on synchronous
programming models and usually targets hardware or sequential implementa-
tions on single processors [2]. Alternatively, real-time programming based on
scheduling theory for periodic tasks, targets dedicated real-time multitasking
platforms [3].

A rigorous design flow should be characterized by the following:

– It should be model-based, that is all the software and system descriptions
used along the design flow should be based on a single semantic model. This
is essential for maintaining the overall coherency of the flow by guaranteeing
that a description at step n meets essential properties of a description at step
n − 1. This means in particular that the semantic model is expressive enough
to directly encompasses various types of component heterogeneity arising along
the design flow [4]:

– Heterogeneity of computation: The semantic model should encompass both
synchronous and asynchronous computation by using adequate coordina-
tion mechanisms. This should allow in particular, modeling mixed hard-
ware/software systems.

– Heterogeneity of interaction: The semantic model should enable natural and
direct description of various mechanisms used to coordinate execution of
components including semaphores, rendezvous, broadcast, method call, etc.

– Heterogeneity of abstraction: The semantic model should support the descrip-
tion of a system at different abstraction levels from its application software to
its implementation. This makes possible the definition of a clear correspon-
dence between the description of an untimed platform-independent behavior
and the corresponding timed and platform-dependent implementation.

– It should be component-based, that is it provides primitives for building com-
posite components as the composition of simpler components. Existing theoret-
ical frameworks for composition are based on a single operator e.g., product of
automata, function call. Poor expressiveness of these frameworks may lead to
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complicated designs: achieving a given coordination between components often
requires additional components to manage their interaction.

For instance, if the composition is by strong synchronization (rendezvous)
modeling broadcast requires an extra component to choose amongst the possible
strong synchronizations a maximal one. We need frameworks providing fami-
lies of composition operators for natural and direct description of coordination
mechanisms such as protocols, schedulers and buses.
– It should rely on tractable theory for guaranteeing correctness by construction
to avoid as much as possible monolithic a posteriori verification. Such a theory
is based on two types of rules:

– Compositionality rules for inferring global properties of composite compo-
nents from the properties of composed components e.g. if a set of components
are deadlock-free then for a certain type of composition the obtained com-
posite components is deadlock-free too. A special and very useful case of
compositionality is when a behavioral equivalence relation between compo-
nents is a congruence [5]. In that case, substituting a component in a system
model by a behaviorally equivalent component leads to an equivalent model.

– Composability rules ensuring that essential properties of a component are
preserved when it is used to build composite components.

The paper presents a rigorous design flow based on the BIP (Behavior, Inter-
action, Priority) component framework [1]. It is organized as follows. Section 2
introduces the underlying modeling framework and the main steps of the de-
sign flow. Subsection 2.1 presents the BIP language. Subsection 2.2 explains the
principle of translating different programming models into BIP. Subsection 2.3
introduces a method for compositional verification of BIP programs, especially
used for checking deadlock-freedom. Subsection 2.4 presents a method for in-
tegrating architectural constraints into the BIP model of application software
and subsection 2.5 presents a method for generating distributed implementa-
tions. The design flow is illustrated through non trivial examples in section 3.
In section 4, we conclude and discuss future work directions.

2 The BIP Design Flow

BIP [1] (Behavior, Interaction, Priority) is a general framework encompassing
rigorous design. It uses the BIP language and an associated toolset supporting
the design flow. The BIP language is a notation which allows building complex
systems by coordinating the behavior of a set of atomic components. Behavior
is described as a finite-state automaton extended with data and functions de-
scribed in C. The transitions of the Petri are labelled with guards (conditions on
the state of a component and its environment) as well as functions that describe
computations on local data. The description of coordination between compo-
nents is layered. The first layer describes the interactions between components.
The second layer describes dynamic priorities between the interactions and is
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used to express scheduling policies. The combination of interactions and priori-
ties characterizes the overall architecture of a component. It confers BIP strong
expressiveness that cannot be matched by other languages [6]. BIP has clean
operational semantics that describe the behavior of a composite component as
the composition of the behaviors of its atomic components. This allows a di-
rect relation between the underlying semantic model (transition systems) and
its implementation.

The BIP design flow uses a single language to ensure consistency between the
different design steps. This is mainly achieved by applying source-to-source trans-
formations between refined system models. These transformations are proven
correct-by-construction, that means, they preserve observational equivalence and
consequently essential safety properties. Functional verification is applied only to
high level models for checking safety properties such as invariants and deadlock-
freedom. To avoid inherent complexity limitations, the verification method ap-
plies compositionality techniques implemented in the D-Finder tool.

Integration of
Communication Protocols

Distributed System
Model in S/R−BIP

Code
Generation

Deployable
Code

Performance
Analysis

Mapping

D−Finder

Software
Application

Platform

System

SW Model in BIP

HW Execution
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Integration of
Architectural Constraints

Application
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Fig. 1. BIP Design Flow
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The design flow involves 4 distinct steps:

1. The translation of the application software into a BIP model. This allows its
representation in a rigorous semantic framework. There exist translations of
several programming models into BIP including synchronous, data-flow and
event driven models.

2. The generation of an abstract system model from the BIP model representing
the application software, a model of the target execution platform as well as
a mapping of the atomic components of the application software model into
processing elements of the platform. The obtained model takes into account
hardware architecture constraints and execution times of atomic actions. Ar-
chitecture constraints include mutual exclusion induced from sharing phys-
ical resources such as buses, memories and processors as well as scheduling
policies seeking optimal use of these resources.

3. The generation of a concrete system model obtained from the abstract model
by expressing high level coordination mechanisms e.g., interactions and prior-
ities by using primitives of the execution platform. This transformation usu-
ally involves the replacement of atomic multiparty interactions by protocols
using asynchronous message passing (send/receive primitives) and arbiters
ensuring overall coherency e.g. non interference of protocols implementing
different interactions.

4. The generation of executable, monolithic C/C++ or MPI code from sets
of interacting components executed by the same processor. This allows ef-
ficient implementation by avoiding overhead due to coordination between
components.

The BIP design flow is entirely supported by the BIP language and its associated
toolset, which includes translators from various programming models, verifica-
tion tools, source-to-source transformers and C/C++-code generators for BIP
models.

2.1 The BIP Language

The BIP language, introduced in [1], supports a design flow for building systems
from atomic components. It ses connectors, to specify possible interaction pat-
terns etween components, and priorities, to select amongst possible interactions.

Atomic components are finite-state automata that are extended with vari-
ables and ports. Variables are used to store local data. Ports are action names,
and may be associated with variables. They are used for interaction with other
components. States denote control locations at which the components await for
interaction. A transition is a step, labeled by a port, from a control location to
another. It has associated a guard and an action, that are respectively, a Boolean
condition and a computation defined on local variables. In BIP, data and their
transformations are written in C.

For a given valuation of variables, a transition can be executed if the guard
evaluates to true and some interaction involving the port is enabled. The exe-
cution is an atomic sequence of two microsteps: (i) execution of the interaction
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involving the port, which is a synchronization between several components, with
possible exchange of data, followed by (ii) execution of internal computation
associated with the transition.

Composite components are defined by assembling sub-components (atomic or
composite) using connectors. Connectors relate ports from different subcompo-
nents. They represent sets of interactions, that are, non-empty sets of ports that
have to be jointly executed. For every such interaction, the connector provides
the guard and the data transfer, that are, respectively, an enabling condition
and an exchange of data across the ports involved in the interaction.

Finally, priorities provide a mean to coordinate the execution of interactions
within a BIP system. They are used to specify scheduling or similar arbitration
policies between simultaneously enabled interactions. More concretely, priorities
are rules, each consisting of an ordered pair of interactions associated with a
condition. When the condition holds and both interactions of the corresponding
pair are enabled, only the one with higher-priority can be executed.

Figure 2 shows a graphical representation of an example model in BIP. It
consists of atomic components Sender, Receiver1 and Receiver2. The behavior
of Sender is described as an automaton with control locations Idle and Active.
It communicates through port s which exports the variable x. Components Re-
ceiver1 and Receiver2 are composed by the connector C1, which represents a
rendezvous interaction between ports r1 and r2, leading to the composite com-
ponent Receivers. The composite exports C1 as port r. As a result of the data
transfer in C1, the sum of the local variables y1 and y2 is exported as v through
the port r, and y1, y2 eventually receive the value of v. The system is the com-
position of Sender and Receivers using the connector C2 which represents a
broadcast interaction from the Sender to the Receivers. When the broadcast
occurs, as a result of the composed data transfer, the Sender gets the sum of y1
and y2, and each Receiver gets the value x from the Sender.

Active
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work

print(y2)

r2

r2

Active

Idle

work

print(y1)

r1

r1

Active

work

x:=f(x)

s

[x<M]

s

rint w
up: {w:=x }

down: {x,v:=v,w}

int v
up: { v:=y1+y2 }

down: {y1,y2:=v,v}

C2

C1

Sender Receiver1 Receiver2
Receivers

Idle

Fig. 2. An example of a BIP system
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2.2 Translating Application Software into BIP

The first step in our design flow requires the generation of a BIP model for the
application software. We have developed a general method for generating BIP
models from languages with well-defined operational semantics. The principle of
the method is depicted in Figure 3. It involves the following three steps for a
given application software written in a language L:

1. Translation of atomic components of the source language into BIP com-
ponents. The translation focuses on the definition of adequate interfaces.
It encapsulates and reuses data structures and functions of the application
software,

2. Translation of coordination between components of the application software
into connectors and priorities in the target BIP model,

3. Generation of a BIP component modeling the operational semantics of L.
This component plays the role of an engine coordinating the execution of
the application software components.

Application Software
written in L

Execution Engine
for L in BIP

BIP Model of the
Application Software

Operational Semantics
of L

Fig. 3. Principle of translating application software

We have developed BIP model generators for several programming models used
by embedded system developers including Lustre [2], MATLAB/SimulinkTM, the
ArchitectureAnalysis andDesign Language AADL, NesC/TinyOS, the Distributed
Operation Layer DOL [7], the programming model GeNoM [8], etc. The generated
models preserve the structure and their size is linear with respect to the size of the
initial programs. They are easy to understand by developers in source languages.
These facts confirm the adequacy and expressive power of BIP.
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2.3 Compositional Verification by Using D-Finder

Monolithic verification of component-based systems often requires computing the
product of their atomic components by using interleaving and synchronization.
In general, the size of this product is prohibitive and cannot be handled without
manual intervention. In a series of recent works, it has been advocated that com-
positional techniques could be used to cope with state explosion in verification
of concurrent systems. A key issue is the existence of composition frameworks
ensuring compositionality, which is, establishing global properties of composite
components from properties of their constituent components.

A compositional verification method for BIP based on invariant computation
is presented in [9]. This method computes increasingly stronger invariants for
composite components as conjunctions of local invariants for atomic components
and interaction invariants characterizing the composition glue. Local component
invariants are generated by static (and individual) analysis of atomic compo-
nents. Interaction invariants are generated from abstractions of the composite
to be verified.

The method is based on the following rule:

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧

i Φi) ∧ Ψ ⇒ Φ
‖γ{Bi}i < Φ >

The rule allows to prove invariance of property Φ for systems obtained by using
an n-ary composition operation || parameterized by a set of interactions γ. Φ is
implied by the conjunction of invariants Φi of components Bi and an interaction
invariant Ψ . The latter expresses constraints on the global state space induced
by interactions. In [9], we have shown that Ψ can be computed automatically
from abstractions of the system to be verified. These are the composition of finite
state abstractions of the components Bi with respect to their invariants Φi.

The method has been recently improved to take advantage of the incremen-
tality of the design process. Incremental system design proceeds by adding new
interactions to existing sets of components. Each time an interaction is added,
it is possible to verify whether the resulting system violates a given property
and discover design errors as soon as they appear. The incremental verification
method [10] uses sufficient conditions ensuring the preservation of invariants
when new interactions are added along the component construction process. If
these conditions are not satisfied, new invariants are generated by reusing in-
variants of the interacting components. Reusing invariants reduces considerably
the verification effort.

The above methods have been implemented in the D-Finder tool [11] for
checking deadlock-freedom of systems described in BIP. Experimental results on
classical benchmarks (as illustrated in Figure 4) show that D-Finder can be ex-
ponentially faster than well-established verification tools. Nonetheless, D-Finder
has been also successful for the verification of complex software applications, as
illustrated later in section 3.
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2.4 Integrating Architectural Constraints in BIP

We developed in [12] a rigorous method for generating a model which faithfully
represents the behavior of a mixed hardware/software system from a model of its
application software and a model of its underlying hardware architecture. The
method takes as input a model of the application software in BIP, a model of the
hardware architecture (in XML) and a mapping associating communication op-
erations of the application software with execution/communication paths in the
architecture. It builds a model of the corresponding mixed hardware/software
system in BIP. This system model can be simulated and analyzed for the verifi-
cation of functional and extra-functional properties.

The method consists in progressively enriching the application software model
by doing:

1. Integration of hardware components used in the system model and,
2. Application of a sequence of source-to-source transformations to synthesize

hardware dependent software routines implementing communication by using
the hardware components.

The transformations are proved correct-by-construction, that is, they
preserve functional properties of the application software.
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The system model is parameterized and allows flexible integration of specific
target architecture features, such as arbitration policy, throughput, latency for
buses and scheduling policy, execution speed, etc. We have defined a library
of BIP atomic components that characterize multi-processor tiled architectures,
including models for hardware components (e.g., processor, memory) and for
hardware-dependent software components (e.g., FIFO channel read/write, bus
controllers, schedulers).

The method has been implemented and integrated in the BIP toolset. We
used the DOL framework [7] as a frontend to describe the application software,
hardware architectures and mapping specifications. The backend of the tool pro-
duces the system model in BIP, which can be analyzed by the BIP tool chain
for:

– Code generation for simulation/validation on a Linux PC
– Functional correctness using the D-Finder tool, checking for deadlocks
– Performance analysis (e.g. delay computation), based on simulation and sta-

tistical model checking

We generated different system models of an MJPEG decoder running on a sim-
plified MPARM platform. The decoder is described in DOL [7], and consists
of five processes communicating asynchronously through FIFO channels. The
process description consists of about 2500 lines of C. The description is auto-
matically translated into the application software model, which is about 10000
lines of BIP. This model is purely functional and can be analyzed with D-Finder
to assess its correctness. It has been mapped on a MPARM platform consisting
of three processors, their local memories, and a global shared memory, with all
being connected via a global bus. Different mappings were considered, leading
to different system models. These models have been used for performance anal-
ysis. Using simulation, we measured computation and communication times for
relevant parts of the application software. As future work, we intend to use these
results in order to build (simpler) statistical abstractions of the system models
on which properties can be validated using statistical model-checking.

2.5 Generating Distributed Implementations

To generate distributed implementations from BIP models it is necessary to
transform these models into S/R-BIP models. These are a subclass of models
where multi-party interaction is replaced by protocols using S/R (Send/Receive)
primitives. Then, from S/R-BIP models and a mapping of atomic components
into processing elements of a platform it is possible to generate efficient C/C++
or MPI-code.

We developed in [13] a general method for generating distributed implemen-
tations from BIP models. The method uses the following sequence of correct-by-
construction transformations, that preserve observational equivalence:

1. We transform a BIP system model into a S/R-BIP system model such that
(i) atomicity of transitions in the original model is broken by separating
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interaction and computation, and (ii) multi-party interactions of the source
model are replaced by protocols using send/receive primitives. Moreover, the
target S/R-BIP model is structured in three layers:
(a) The component layer consists of a transformation of atomic components

in the original model.
(b) The interaction protocol layer consists of a set of components, each host-

ing a user-defined subset of interactions from the original BIP model.
This layer detects enabledness of interactions and executes them after
resolving conflicts either locally or assisted by the third layer.

(c) The conflict resolution protocol layer resolves conflicts requested by the
interaction protocol layer. This protocol resolves a committee coordina-
tion problem [14] using, so far, one distributed algorithm amongst (i)
fully centralized, (ii) token-ring, and (iii) dining philosophers [15,14].

2. We generate from the obtained 3-layer S/R-BIP model and a mapping of its
atomic components on processors, either a MPI program, or a set of plain
C/C++ programs that use TCP/IP communication. The generation consists
in statically composing atomic components running on the same processor
to obtain a single observationally equivalent component, and consequently
reduced coordination overhead at runtime.
The composition operation has been implemented in the BIP2BIP tool, by
using three elementary source-to-source transformations:
(a) Component flattening, which replaces the hierarchy on components by

a set of hierarchically structured connectors applied on atomic compo-
nents;

(b) Connector flattening, which computes for each hierarchically structured
connector an equivalent flat connector;

(c) Component composition, which composes atomic components to get an
atomic component.

We conducted a set of experiments [16,13] to analyze the behavior and perfor-
mance of the generated code using different scenarios (i.e., different partitioning
of interactions, choice of committee coordination algorithm, mapping). Our ex-
periments clearly show that particular configurations are suitable for different
topology, size of the distributed system, communication load, and of course, the
structure of the initial BIP model.

Table 1 taken from [16] summarizes experimental results obtained for dif-
ferent distributed implementations of a bitonic sorting algorithm [17]. We run
experiments for three platform configurations denoted m × c, for m intercon-
nected machines with c cores each. The table provide the total sorting time for
arrays of size k×104 elements, and k = 20, 40, 80, 160. As can be seen, execution
times for handwritten MPI are slightly better than for plain C++ with TCP/IP
communication. For example, the execution time for sorting an array of size
80 × 104, for the configuration 2 × 2 is: 240 seconds for MPI, and 390 seconds
for plain C++.

In the case of S/R-BIP models auto-generated as described earlier, it is fre-
quent that some of the atomic components and engines cannot run in parallel.
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Table 1. Total sorting time for different implementations of a bitonic sorting algo-
rithm (handwritten or generated, with or without optimisation) deployed on different
execution platforms ( m × c denotes m interconnected machines with c cores each) on
unsorted arrays of size k × 104 elements

MPI (handwritten) Plain C++ with TCP/IP MPI (generated)
optimised - no no yes no no yes

m × c 1 × 1 2 × 2 4 × 1 1 × 1 2 × 2 2 × 2 4 × 1 2 × 2 2 × 2

k = 20 80 14 14 96 23 24 24 63 24

k = 40 327 59 60 375 96 96 100 271 96

k = 80 1368 240 240 1504 390 391 397 964 394

k = 160 5605 1007 958 6024 1539 1548 1583 4158 1554

Therefore, they can be composed without losing any parallelism. For the bitonic
sorting example, the original S/R-BIP model has 7 atomic components (4 atomic
components and 3 engines), and can be transformed into a merged S/R-BIP
model containing only 4 components, while preserving all the parallelism.

The performance gain obtained by using static composition on 2 dual-core
machines (2×2 setting) is shown in Table 1. Observe that the performance of the
C++ implementation is approximately identical in both cases, with or without
optimisation. This is because TCP/IP communication is interrupt-driven. Thus,
if a component is waiting for a message, it does not consume CPU time. On the
other hand, MPI uses active waiting, which results in CPU time wasting when
components are waiting. Since we have four cores for more processes (seven), the
MPI code generated from the original S/R-BIP model is much slower than the
plain C++ code. Nevertheless, reducing the number of components to one per
core by composition allows the MPI code to reach the same speed as the C++
implementation.

3 Case Studies

BIP has been applied to several non trivial case studies. These include the com-
ponentization of a MPEG encoder [18] and of the control software of the DALA
robot of LAAS [19]. Another case study is modeling TinyOS-based wireless sen-
sor networks [20]. Moreover, BIP has been also used for modeling, verification
and performance evaluation of a self-stabilizing distributed reset algorithm [21].

3.1 MJPEG Decoder

The MJPEG decoder application software reads a sequence of MJPEG frames
and displays the decompressed video frames. The process network of the applica-
tion software is illustrated in Figure 5. It contains five processes SplitStream (SS),
SplitFrame (SF), IqzigzagIDCT (IDCT), MergeFrame (MF) and MergeStream
(MS), and nine communication FIFO channels C1, . . . , C9. The total lines of
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ARM1 ARM2 ARM3 ARM4 ARM5

Shared

IqzigzagIDCTSplitFrame MergeStreamMergeFrameSplitStream

C6

C1

C2

C3

C4

C5

C7 C8

C9

Fig. 5. MJPEG Decoder application software and a mapping

Table 2. Mapping Description of the processes and the FIFOs

ARM1 ARM2 ARM3 ARM4 ARM5
1 all
2 SS, SF , IQ MF , MS
3 SS, SF IQ, MF , MS
4 SS, SF IQ MF , MS
5 SS, MS SF IQ MF
6 SS SF IQ MF MS
7 SS, SF IQ MF , MS
8 SS SF IQ MF MS

Shared LM1 LM2 LM3 LM4
1 all
2 C6, C7 C1, C2, C3, C4, C5 C8, C9
3 C3, C4, C5, C6 C1, C2 C7, C8, C9
4 C3, C4, C5, C6, C7 C1, C2 C8, C9
5 all
6 all
7 C6, C7 C1, C2, C3, C4, C5 C8, C9
8 C1, C2 C3, C4, C5, C6 C7 C8, C9

C code describing the behavior of the application software processes is approxi-
mately 1600.

We analyzed the effect of eight different mappings on the total computation
and communication delay for decoding a frame. The process and the FIFO map-
pings are illustrated on Table 2.

For these mappings a system model contains around 50 BIP atomic compo-
nents and 220 BIP interactions, and consists of approximately 6K lines of BIP
code, generating around 19.5K lines of C code for simulation.

The total computation and communication delays for decoding a frame for
different mappings are shown in Figure 6. Mapping (1) produces the worst com-
putation delay as all processes are mapped to a single processor. Mapping (2)
uses two processors, but still the performance does not improve much. Mapping
(3) drastically improves performance as the computation load is balanced. The
other mappings cannot further enhance performance as the load cannot be fur-
ther balanced, even if more processors are used. The communication overhead is
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Fig. 6. Mjpeg Performance Analysis Results

reduced if we map more FIFOs to the local memories of the processors. The bus
and memory access conflicts are shown in Figure 6. As more FIFOs are mapped
to the local memory, the shared bus contention is reduced. However, this might
increase the local memory contention, as shown for (8).

3.2 Heterogeneous Communication System

This case study deals with a distributed heterogeneous communication system
(HCS) providing an all electronic communication infrastructure, typically for
cabin communication in airplanes or for building automation. HCS contains
various devices such as sensors (video camera, smoke detectors, temperature,
pressure, etc.) and actuators (loudspeakers, light switches, temperature control,
signs, etc.) connected through a wired Ethernet network to a central server. The
server runs a set of services to monitor the sensors and to control the actuators.
The devices are connected to the server using network access controllers.

The architecture and functionality delivered by HCS are highly heteroge-
neous. The system includes different hardware components, which run different



16 A. Basu et al.

protocols and software services ensuring functions with different characteris-
tics and degree of criticality e.g, audio streaming, clock synchronization, sensor
monitoring, video surveillance, etc. Moreover, HCS has to guarantee stringent
requirements, such as reliable data transmission, fault tolerance, timing and syn-
chronization constraints. For example, the latency for delivering alarm signals
from sensors, or for playing audio announcements should be smaller than cer-
tain predefined thresholds. Or, the accuracy of clock synchronization between
different devices, should be guaranteed under the given physical implementation
of the system.

Complete details of this case study can be found in [22]. We have developed
a structural model of HCS using BIP. At top level, the structure of the model
follows the natural decomposition into physical elements e.g., server, network ac-
cess controllers and devices are the top-level components. Moreover, these com-
ponents are connected and interact according to the wired network connections
defined in the original system. Then, one level down, every (physical) compo-
nent has a functional decomposition. Inner subcomponents provide features for
network operation (e.g., packet delivery, filtering, routing, scheduling, ...), proto-
cols (e.g., clock synchronization) or services (e.g., audio/video streaming, event
handling, etc.)

The overall complexity of this case study is extremely high. A model for a
relevant functional subsystem required approximately 300 atomic components
and 1900 connectors in BIP. Almost all atomic components have timed behav-
ior. They totalize approximately 250 clocks variables to express all timing con-
straints. Moreover, the use of large domain data (e.g., packet numbers) and
complex data structures (e.g., FIFO queues of packets) made the state space of
the model extremely huge. One single state needs approximately 400 bytes to be
represented. Furthermore, the state space has a heterogeneous structure which
prevents its compact representation using symbolic techniques based on BDDs.

We have been interested to verify the clock synchronization protocol i.e., the
application used to synchronize the clocks of all devices within the system. The
challenge is to guarantee that the protocol maintains the difference between a
master clock (running on the server) and all the slave clocks (running on devices)
under some bound. A first major difficulty is network communication which
makes all applications interfering and therefore requires exploration of the whole
model. A second difficulty comes from the time granularity i.e., one microsecond,
needed to perform faithful observations. These two factors significantly restrict
brute-force simulation approaches: 1 second system lifetime needs approximately
10 minutes simulation time with microsecond precision on the BIP model.

To overcome these difficulties, we proposed in [22] a new verification technique
which combines random simulation and statistical model checking. We have been
able to derive exact bounds on clock synchronization for all devices in the sys-
tem. We also computed probabilities of clock synchronization for smaller values
of the bound. Being able to provide such information is of clear importance,
especially when the exact bounds are too high with respect to user’s require-
ments. In particular, we have shown that the bounds strongly depend on the
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position of the device in the network. We also estimated the average and worst
proportion of failures per simulation for smaller bounds i.e., how often the clock
synchronization exceeds the given bound on some arbitrary run.

4 Discussion and Future Work

We have shown that the BIP component framework, and the associated design
flow and supporting tools allow rigorous and effective system design. A key idea
is the application of correctness-preserving source-to-source transformations to
progressively refine the application software model by taking into account hard-
ware architecture constraints as well as coordination mechanisms used for the
collaboration between processors in a distributed implementation. Verification
is used to check essential properties as early as possible in the design flow. To
avoid complexity limitations, the verification process is incremental and compo-
sitional. When the validity of a property is established for a model, the property
will hold for all the models obtained by transformation. The complexity of the
transformations is linear with the size of the transformed models. So correct-
ness is ensured at minimal cost and by construction thus overcoming obstacles
of design flows involving different and not semantically related languages and
models.

The use of a single modeling framework allows to maintain the overall co-
herency of the design flow by comparing different architectural solutions and
their properties. This is a significant advantage of our approach. Semantically
related models are used for verification, simulation and performance evaluation.
Designers use many different languages e.g. programming languages, UML, Sys-
temC, SES/Workbench. Code generation and deployment is often independent
from validation and evaluation.

Clearly, using a single modeling framework does not suffice. An advantage of
BIP over other existing frameworks is its expressiveness. It uses a few powerful
primitives to express coordination between components. Architecture is a first
class concept and can be characterized as the combination of interactions and
priorities. It can model in a natural and direct manner both timed and untimed
behavior, synchronous and asynchronous. Using less expressive frameworks e.g.
based on a single composition operator, would lead to intractable models. For
instance, BIP directly encompasses multiparty interaction between components.
This type of coordination would require the development of complex coordina-
tion mechanisms for frameworks supporting only point-to point interaction. This
would lead to models with complicated coordination structure and would make
the whole design flow intractable. In particular for such models establishing a
clean refinement relation between the different models would be compromised.

Empirical design flows are limited to simple execution models and execution
platforms involving a few processing elements. We believe that rigorous and
automated design flows are crucial for system development especially when the
target architecture is distributed and/or heterogeneous.
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