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Abstract. The controller synthesis paradigm provides a general framework for scheduling real-time
applications. Schedulers can be considered as controllers of the applications; they restrict their behavior so
that given scheduling requirements are met.

We study a modeling methodology based on the controller synthesis paradigm. The methodology allows to get
a correctly scheduled system from timed models of its processes in an incremental manner, by application of
composability results which simplify schedulability analysis. It consists in restricting successively the system to
be scheduled by application of constraints defined from scheduling requirements. The latter are a conjunction of
schedulability requirements that express timing properties of the processes and policy requirements about
resource management.

The presented methodology allows a unified view of scheduling theory and approaches based on timing
analysis of models of real-time applications.
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1. Introduction

Schedulers coordinate the execution of system activities, so that requirements about their
temporal behavior are met. Guaranteeing their correctness is essential for the
development of dependable real-time systems. Well established theory and scheduling
algorithms have been successfully applied to real-time systems development. Existing
scheduling theory requires the application to fit into the mathematical framework of the
schedulability criterion (e.g., all processes are supposed periodic, worst case execution
times are known). Studies to relax such hypotheses have been carried out, but no unified
approach has been proposed so far. To overcome these limitations, an alternative
approach consists in extracting a scheduler from an abstract timed model of a real-time
application by using analysis or synthesis tools (Ben-Abdalla et al., 1999; Bertin et al.,
2000; Henzinger et al., 2001; Jensen et al., 2000; Kwak et al., 1998; Niebert and Yovine,
2000).
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The controller synthesis paradigm (Ramadge and Wonham, 1987) provides a general
framework for scheduling. A scheduler can be considered as a controller of the real-time
application which restricts its behavior so that given scheduling requirements are met.
Behavior restriction essentially amounts to resolving non-determinism due to concurrent
access of processes to shared resources.

To apply the controller synthesis paradigm, it is necessary to use a timed model
representing the dynamic behavior of the real-time application. The scheduler for a given
set of scheduling requirements is also a timed system which observes the state of the
application and adequately restricts its behavior by triggering controllable actions that is,
actions giving access to shared resources (see Figure 1). The role of the scheduler consists
precisely in observing the application and maintaining the requirements satisfied in spite
of “‘disturbances’” of the environment and of internal actions of the application, usually
represented by uncontrollable actions, such as process arrival or process termination.

We have shown in (Altisen et al., 1999) how schedulers can be computed by
application of a synthesis method to systems represented by well-timed models that is, to
timed models where time can always progress. For such systems, scheduling
requirements can be characterized as a safety property expressing the fact that a
constraint (state predicate) K always holds. The main result is that there exists a scheduler
maintaining K if there exists a non-empty control invariant K' which implies K. The
control invariant K’ represents the set of the states from which K’ (and thus K) can be
preserved, in the sense that if the application is initially at a state satisfying K’ then it is
possible to remain in states of K’ by triggering controllable actions preserving K’, and it is
not possible to violate K’ by uncontrollable actions.

Control invariants implying a given scheduling constraint K can be computed by
controller synthesis methods (Altisen et al., 1999, 2000; Lin and Wonham, 1988; Maler et
al., 1995; Ramadge and Wonham, 1987). The existence of a non-empty control invariant
is a necessary and sufficient condition for the existence of a scheduler. The latter can be
constructed from the control invariant and the timed model of the application. A common
limitation of controller synthesis algorithms is their complexity that makes problematic
their application to large systems.
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Figure 1. Interactions between the environment, the application and its scheduler.
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We use the controller synthesis paradigm as a unifying framework for scheduling real-
time applications. According to this paradigm, a scheduler can be specified as a pair
consisting of the timed model of the application to be scheduled and of a constraint K
characterizing scheduling requirements. We study a modeling methodology which, from
such an initial specification allows finding a scheduler by circumventing as much as
possible complexity problems. The paper contributes along the following three
directions.

First, it provides a notation and a methodology for modeling the application as a timed
system composed of the processes to be scheduled, their resources and the associated
synchronization constraints. Timing constraints relate in particular process execution
speed with the dynamics of their external environment. For the sake of simplicity, we use
discrete time models. The methodology can be adapted to continuous time models
modulo some additional problems related to well-timedness of descriptions.

The proposed notation uses results presented in Altisen et al. (2000) and allows an
incremental description of the application, starting from its processes and then adding
timing constraints and synchronization constraints associated to the resources. It allows
modeling in a direct manner dynamic priorities and preemption as well as concepts such
as urgency, idling and timeliness. Furthermore, the models are well-timed, by
construction.

Second, the paper shows that scheduling requirements can be characterized as the
invariance of a constraint which is the conjunction of two classes of constraints:
schedulability requirements K ;.; and a (possibly empty) set of constraints
characterizing a particular scheduling policy K. Keq Characterizes the dynamic
properties of the application to be satisfied by the scheduler, relating execution times,
process arrival times, and deadlines. K, deals with the management of shared resources
and can be decomposed into the conjunction of two (possibly empty) classes of
constraints: conflict resolution constraints K., that determine the rules for granting a
resource to conflicting processes, and admission control constraints K, that determine
when the scheduler considers a non-conflicting request for a free resource.

Finally, the paper provides conditions under which an incremental modeling
methodology can be applied to get the scheduler. The search for control invariants
implying given scheduling requirements of the form K4 A Ko 1s decomposed into two
steps. A first step for computing a scheduler maintains the scheduling policy specified by
K o1- This step does not require the application of synthesis algorithms, as K is shown
to be a control invariant. The second step aims at establishing that the system scheduled
according to K, meets the schedulability requirements K.q. This step requires in
general, the application of synthesis or verification techniques that can be carried out by
existing timing analysis tools such as KRONOS (Daws et al., 1996), UPPAAL (Jensen et al.,
2000), HYTECH (Henzinger et al., 1997).

The paper is organized as follows. Section 2 presents models and basic results about
controller synthesis that are used throughout the paper. The main results concern control
invariants and their composability properties which play an instrumental role in the
modeling methodology. Section 3 focuses on modeling issues of the real-time
application to be scheduled including modeling of the processes, the associated
timing constraints, and the resource management and synchronization. Section 4
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presents a method for specifying scheduling policies and computing the associated
scheduler. The application of the method is illustrated with several examples. Section 5
proposes a method for specifying schedulability requirements and getting a correct
scheduler by using synthesis or verification tools. Section 6 illustrates the method on an
example.

2. Controller Synthesis
2.1. Timed System

To model scheduling algorithms, we use reactive timed systems with two kinds of actions
as in Altisen et al. (1999): controllable actions that can be triggered by the scheduler, and
uncontrollable actions that are internal actions of the processes to be scheduled or actions
of the environment. Controllable actions are typically resource allocations while
uncontrollable actions are process arrival and termination.

Both controllable and uncontrollable actions are subject to timing constraints
expressed in terms of natural variables called timers. The rates of timers may take the
values 0 or 1, as specified by a Boolean vector.

Definition 2.1 (X-constraint). Let X be a finite set of timers, {x;, ..., x,,}, natural
variables defined on the set of naturals N= {0, 1,2,...}. An X-constraint is a predicate C
generated by the grammar C ::=x<d|lx—y<d I CAC | -C, where x,y € X, d is an
integer.

Definition 2.2 (Timed system). A timed system consists of the following:

1. An untimed labeled transition system (S, A, T) where S is a finite set of control states,
A is a finite vocabulary of actions partitioned into two sets of controllable and
uncontrollable actions noted A¢ and A%, and T<S x A x S is an untimed transition
relation.

2. A finite set of timers X = {x|, ..., x,,}, as in Definition 2.1.

3. A function b mapping S into {0, 1}". The image of s € S by b denoted b, is a Boolean
rate vector.

4. A labeling function # mapping untimed transitions of 7 into timed transitions:
h(s,a,s') = (s,a,g,t,r,s'), where g is an X-constraint called guard; r =X is a set of
timers to be reset; T€{0,¢} is an urgency type, respectively delayable and eager.

Semantics. A timed system defines a transition graph (v, &) constructed as follows.
7" =8 x N", that is, vertices (s,x) are states of the timed system.
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Theset &< 7" x (AU (N\ {0})) x 7~ of the edges of the graph is partitioned into three
classes of edges: &° controllable, &" uncontrollable, and &' timed, corresponding
respectively to the case where the label is a controllable action, an uncontrollable action,
and a strictly positive integer.

Given s€S, let J be the set of indices such that {(s,a;,s;)}, . ; is the set of all untimed
transitions departing from s. Also, let A(s,a;s;) = (s,a;,8;,7;,7;,5;). For all jel,
((s,x),a, (s;,X[r;])) €6 U & iff g;(x) holds and x[r;] is the timer valuation obtained
from x when all the timers in r; are set to zero and the others are left unchanged.

To define &', we use the predicate ¢, called time progress function. The notation
¢((s,x),?) means that time can progress from state (s,x) by .

o((s,x), )<=
1, =0=Vle{0,...,t—1} —g(x+'bg) v

/\je‘, g(x+ (/ + 1)by)
T=e=>V'e{0,...,t—1} —g;(x +1'by)

where x + tb, is the valuation obtained from x by increasing by ¢ the timer values for
which b elements are equal to one. We define & such that ((s,x),1, (s,x + tb,)) e & if
and only if ¢((s,x),?). The above definition means that at control state s, time cannot
progress beyond the falling edge of a delayable guard, or whenever an eager guard is
enabled.

Timed systems are automata extended with time variables as timed or hybrid automata
(Alur et al., 1995; Alur and Dill, 1994) where time variables are real-valued. We prefer
using discrete time variables for the sake of simplicity. The presented approach is also
applicable to dense time models modulo some technical problems related to time density.
Another difference between our model and dense timed and hybrid automata is well-
timedness, that is, time can always progress at a state where no transition is enabled. This
property is crucial for the expression of schedulability requirements as a safety property
(see Section 5).

We will usually denote by TS a timed system. TS (resp. TS) represents the timed
system consisting of the controllable (resp. uncontrollable) transitions of TS only.

Lemma 2.1 If ¢, ¢, and @" are respectively, the time progress functions of TS, TS¢,
and TS", then @ = @° A @".

Example 2.1 (A basic process). Figure 2 represents as a timed system a periodic
process P of period T, execution time E, and deadline of D(0<E <D <T).

The timed system has three control states, s, w, and u where P is respectively, sleeping,
waiting and executing. The actions a, b, and e stand for arrive, begin, and end. The timer
x is used to measure execution time while the timer ¢ measures the time elapsed since
process arrival. In all states, both timers progress. The only controllable action is b.

By convention, transition labels are of the form &Y, g%, r, where y can be u
(uncontrollable) or ¢ (controllable), 7 is an urgency type, and r is a set of timers to be
reset. The upperscript ¢ may be omitted, as well as the set r if it is empty.
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be,(t < D — E)F,

x =10

e, (x=E Nt < D)

Figure 2. A periodic process.

Notice that transition b is eager, which means that the process executes as soon as
possible. If b is chosen delayable, waiting at w is possible for time D — E.

Definition 2.3 (Composition of timed systems). Let TS; = (S;,A;, T;,X;, b;, ;) for ie £,
where .#= {1,...,n} is a finite index set, be a set of timed systems and let X be a set of
subsets of U; . sA; such that any aeX is not empty and contains at most one action of
each process. X is a set of synchronization actions. We say that TS = (S,A,T,X,b, h) is
the composition of the timed systems TS;, i€ .# with respect to X if

S=8 % xS; A=A U UA,UZ; X=X, U---UX,;
For all s = (s;...s,)€Sand xeX,
by[x] =0 if Jie s -b; [x] = 0; by[x] = 1 otherwise;
Forall s = (s;...5,)€S,s = (s]...5),) €S,
(interleaving transitions) Vie #VaeA; t = (s,a,5) e T
ti = (spa,s) €T AVje I \{i}si =5 ;A
VaeX-(aca=Jke S Ja,canNA, Vs €S+ (sp,a;,5)) ¢ Ty);
if hi(ti) = (si,a,g,r,r,sg),then h<t) = (S,a,g,r,r, S,);
(synchronization transitions) YaeX -t = (s,a,5)eT <
Vie s (t; = (s, a;,s0)€T; ANa;eav s;=s, nanA; = 0) A
Va'eX- (aia’ = Jke s Ja ea NA Vs €Sy (sp,ap, s )€ T,);
if for any synchronizing transition #;, h;(t;) = (s;, a;, &, Ti» 75 S4),
then A(r) = (s, aa/\a,ea givmaxa;ea{fi}v Ua,ﬂeariasl)’
where max{e,1} = e.

Non-synchronizing actions, a€ A \ X, keep their controllability type, whereas synchro-
nization actions ae€ X are controllable if and only if all elements of a are controllable.
We write TS =||5 {TS;}, . , to denote the timed system of processes defined above,
and a; | - - - | a; for the synchronization action {a;, ..., a;} € Z.
Intuitively, interleaving is possible only if synchronization is not possible.
Synchronization transitions ¢ = (s,a, s’) must satisfy two conditions. First, all processes
participating in action a can perform a transition labeled by some element of a, and all
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other processes remain idle. Second, a must be maximal among the actions in X that are
possible from s (maximal progress).

2.2. Control Invariants

In this paragraph, we introduce and study concepts used to define the synthesis problem.
Restriction of a timed system by a constraint K is used to model the effect of a scheduler
on the real-time application. To maintain the constraint K, the scheduler triggers a
controllable action only if its execution leads to states satisfying K.

Definition 2.4 (Constraint). Given a timed system with a set of timers X, a set of control
states S, and a set of transitions 7, a constraint is a state predicate represented as an
expression of the form

K=\/snk'n N\ laK)

ses (s,as')eT

K* and K** are X-constraints, s is (also) the Boolean denoting presence at control state s,
and [a](K**) is the predicate defined by, for some state (s,X),

[a] (KS‘”’) (5,x) = (3((5,x),a, (5',X)) €6 = K**(x))

That is, the guards of all transitions of the form (s,a,s') imply K% .

A constraint K is called a transition constraint if for all control states se S, K® = true.
It is called a state constraint if for all transitions (s,a,s’)eT, K% = true.

We note K(s) for some s€S, the X-constraint defined by the projection of K on
s: Vx € N K(s5)(x) <= K(s,X).

Definition 2.5 (Restriction). Let TS be a timed system and K be a constraint. The
restriction of TS by K denoted TS/K, is the timed system TS where the guard g of any
controllable transition (s, a, g,t,r,s’), is replaced by g’ where

g'(x) = g(x) AK*™ (x) AK* (xr])

Notice that in the restriction TS/K, the states right after, and right before the execution
of a controllable transition satisfy K. Moreover, it follows from the definition that
(TS/K,)/K, = TS/(K,; AK,). The symbol ‘“="" between timed systems always means
syntactical equality modulo guard equivalence.

The two following notions of invariant are useful for the definition of the synthesis
problem. For a given timed system, a proper invariant is a constraint preserved by all its
transitions while a control invariant is a constraint that cannot be violated by
uncontrollable transitions and time progress if controllable transitions are triggered
only when they lead to states satisfying K. For systems without controllable actions the
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notions of proper and control invariant coincide and correspond to the usual notion of
invariant.

Definition 2.6 (Proper invariant). Let TS be a timed system and K be a constraint. K is
a proper invariant of TS, denoted by TS [ inv(K), if K is preserved by the edges of &,
the set of edges of the transition graph of TS, i.e.,

V(s,x)* (K'(x) A3((s,%),7,(s,X)) € &) =
K (X) A (yeA = K™ (x))

Definition 2.7 (Control invariant). Let TS be a timed system and K be a constraint. K is
a control invariant of TS if TS/K = inv(K).

Lemma 2.2 IfK is a proper invariant of a timed system TS, then K is a control invariant
of TS.

Notice that control invariants are not proper invariants, in general.

Proposition 2.1 For any timed system TS and constraint K such that TS" |= inv(K), K is
a control invariant of TS (i.e., TS/K [ inv(K)).

Proof: (sketch): Assume that K*(x) holds for some state (s,x). To prove TS/K E
inv(K) it must be shown that K is preserved in TS/K by (1) controllable, (2)
uncontrollable, and (3) timed edges of TS/K. By construction of TS/K, (1) is true. From
TS" E inv(K), (2) and (3) follow. |

The synthesis problem. According to results in Maler et al. (1995), finding a controller
which maintains a constraint K for a timed system TS amounts to finding a non-empty
control invariant K’ of TS which implies K, i.e., K'=K and TS/K’ = inv(K’).

The control invariant K’ represents the set of the states of TS from which it is possible
to maintain K’ (and thus K) by restricting the controllable actions of TS. The system TS/
K’ represents the controlled system. As shown in Maler et al. (1995), the controller is a
function associating with states of TS the set of allowed controllable actions. This
function can be specified by the set of the guards of the controllable transitions of TS/K’.
For a given state of TS, the controller evaluates the guards to decide which controllable
actions are enabled.

The results of this paragraph are illustrated in the following example.

Example 2.2 Consider the timed system TS;, =||y {TS;,TS,} where the TS; are
instances of the process of Figure 2, for which the parameters (E, T, D) are equal to (5,
15, 15) and (2, 5, 5), respectively.

The constraint

Kdlf:[(sl /\ll S 15)\/(”] /\.xl g 5/\t1 g IS)V(WI /\ll S 10)]
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expresses the fact that each one of the processes is deadlock-free: from a control state,
time can progress to enable the guard of some exiting transition. It is easy to check that
Kgi 1s a proper invariant of TS,.
The constraint
K

mutex — _'(ul A le)

expresses mutual exclusion. Clearly it is not a proper invariant of TS;,. In fact, it can be
violated from state (w,u,) which satisfies it. However, K, i @ control invariant since
only controllable transitions can violate it (i.e., TS}, E inv(K yex))- Thus, K ex 1S @
proper invariant of TS, /K uex-

For the system TS, /K x> the constraint Ky is not a proper invariant any more: at
control state (w;w,) for all timer values equal to zero it may happen that process 1 is
served before process 2; this implies that process 2 misses its deadline. Furthermore, K ¢
is not even a control invariant of TS;,/K,ex since it can be checked that
(TS12/Knutex) /Kair = TS12/Kmuex>» Which means that if Ky is a control invariant of
TS5 /K nutex> then it is a proper invariant of TS, /K uex- The latter is not possible by the
given counter-example. A non empty control invariant K such that K = Ky can be
computed by application of the synthesis algorithm of KRONOS (Altisen et al., 1999;
Daws et al., 1996):

(sAsy Aty <1541 <5)
VWA, Aty <3AH <10 v <5A1 <t,+3))
V(siAw, Aty < 15A1 < 3)
V(g Asy Aty <SAx <5A1 <x;+10A15 <x;+3)
K= vwawy, A (t; <8At, <1 Vi, <3A1<t+3))
V(siAuy Aty S 15Ax <2A8 < xy+3)
V(g Aawy Axy <5SAH<x + 10885 +2<x)
v(

Wi AUy N (X2§2/\11§X2+8/\t2§)(f2+1 A\

Xy K288 <t +341 <X+ 3))

The corresponding controller is specified by the controllable guards of
TS5/ (Kputex A K), as shown in Table 1. The guards of actions b, and b, are obtained
by applying definition 2.5 of restriction.

Table 1. Specification of the controller maintaining dead-
lock-freedom in TS, /K putex-

Action Guard
b, s;At <10At, <3
b, spAtp S I5At, <3v

wiA(t <8AL, <1vit <t,+3A1, <3)
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2.3. Composable Invariants

A well-known fact about proper invariants is that the conjunction of two proper invariants
is a proper invariant, that is TS | inv(K;) for i=1, 2 implies TS [ inv(K, A K,). This
property provides a basis for compositional reasoning. However, control invariance is
not preserved by conjunction. This fact is illustrated in the previous example (2.2) where
both Ky and K, ,.x are control invariants of TS;,. Ky; is not a control invariant of
TS|5/Kmuex> and thus, Ky A K, ex 1S not a control invariant of TS,,. We define
composable invariants, a class of control invariants preserved by conjunction.

Definition 2.8 (Composable invariant). Let TS be a timed system and K, be a
constraint. K, is a composable invariant of TS if for all constraints K,, K, is a control
invariant of TS/K, (i.e., if TS/(K; AK,) [ inv(K;)).

Proposition 2.2 Let TS be a timed system and K be a constraint on TS. K is a
composable invariant of TS iff TS" | inv(K).

Proof: Let K, be a composable invariant of TS. By applying Definition 2.8 with
K, = false, we obtain TS /false = TS"  inv(K,).

Conversely, assume that TS" |= inv(K;) and let K, be some constraint. We show that
TS/(K, AK,) Einv(K;). Let (s,x) be a state of TS such that K3 (x). (1) If there exists a
controllable edge ((s,X), a.,(s',x’)) in the transition graph of TS(K,2), then by
Definition 2.5 of restriction, K3 (x') and K" (x) hold. (2) An uncontrollable edge
((5,x), a,, (5',x')) of TS/(K;2) is also an uncontrollable edge of TS", thus K (x') and
K™ (x) hold. (3) Let ¢k, ,,) be the time progress function of TS/(K; A K,). According
to the Proposition 2.1, we have

Pk, nKy) = Pk, nky) N Pk, nky) = Pl nky) NP

Thus, if ((s,x),?, (s,Xx + tby)) is a timed edge of TS/(K, AK,), then it is also a timed
edge of TS". Hence, K{(x + tb,) from TS" = inv(K). |

Corollary 2.1 For a timed system TS and constraints K; and K,, TS" = inv(K,) and
(TS/K,)/K, E inv(K,) implies that TS/(K; AK;) = inv(K; AK,). That is, if K; is
composable and if K, is a control invariant of TS/K; then (K, A K,) is control invariant
of TS.

This corollary provides a basis for incremental restriction of a timed systems. To
impose a control invariant K; AK, on TS, if K| is a composable invariant of TS, the
restriction by a control invariant K, does not destroy the invariance of K.

Proposition 2.4 Let TS be a timed system and K be a transition constraint. If for all
uncontrollable transitions (s,a,g,t,r,s') € T,acA", g = K%' then K is a composable
control invariant of TS.
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Proof: Composability obviously comes from TS = inv(K) since for all control state s,
K* =true and for any uncontrollable transition (s,a,s') € T,a € A", [a](K**") always
holds by hypothesis. u

Notice that our composability notion differs from others existing in the literature (for
example, Lin and Wonham, 1988) dealing with decentralized controller synthesis.

2.4. Priorities

Priorities are widely used in modeling formalisms to restrict system behavior, especially
for conflict resolution (Baeten et al., 1986; Cleaveland et al., 1996; Kwak et al., 1998).
We introduce timed systems with priority constraints (Bornot et al., 2000; Bornot and
Sifakis, 1997). Applying priorities amounts to restricting by a transition constraint which
is a composable control invariant.

Definition 2.9 (Priorities). A priority order is a strict partial order < S A xA. We
write a, < a, for (a;,a,) € <.

A priority rule is a set of pairs pr = {(C’, </)}, . ;, where J is a finite index set, </ is a
priority order, and (¥ is a state constraint that specifies when the priority order applies,

such that for any J' =J with /\jE ,,Cj #false, U, ¢ » </ is a priority order.

Definition 2.10 (Timed system with priorities). A timed system TS with a priority rule

pr as above, is the timed system TS/ K., where K, is the following transition constraint

K, = \/ SA /\ /\ [a;] <ﬁC(s) % /\ ﬁgi>

ses (C, <)epr g, € A iel

aj<ai

I denotes the set of indices such that {(s,a;,s;)}; ., is the set of the transitions departing
from s, and A(s, a;,s;) is the tuple (s,q;,g;,7;,7;,5;) for each iel.
Notice that restriction by K, transforms a controllable guard g; of transition (s,aj,s;)

» js Sj
of TS into

g_;» =g /\ <—|C(s) v /\ ﬂgi>.

(€, <)epr ,<’

When the condition C of a pair (C, <) € pr is true, the corresponding priority order < is
applied. The application of this order results in allowing an action g; only if there is no
enabled transition a; leaving s that has priority over a;.

Lemma 2.3 Let TS be a timed system and pr a priority rule. The constraint K, obtained
when applying pr to TS as in definition 2.10, is a composable control invariant of TS.
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b5, ((tr <Dy=E)A

(D2 = (t2 4 B2) 2 Dy — (11 + 1))

b, ({:.g < Dy — Eo) A
(D1 = (t1 + E1) > D2 — (t2 +L‘7-.J]])'
xg =10

xry =10

Figure 3. Applying pry; on TS|, at state (w;w,).

Proof: K, is a transition constraint that only involves controllable actions by
definition of priority order. Thus, by Proposition 2.4, it is a composable control invariant

of TS. |

Example 2.3 Priorities can be used to resolve the conflict between actions b; and b, in
the timed system TS, of Example 2.2 from the control state (w;w,). The priority rule

prye = {(D; — (t; + E;) <D; — (t; + E;), b;<b) }: jye {1.2).2.1)}

specifies a least laxity first policy (Mock, 1983) for conflict resolution. The expressions
D; — (t; + E;) for i = 1,2 represent the laxity of P;. The restricted guards of b, and b, are
shown in Figure 3.

3. Real-Time Application Modeling

We propose a methodology for modeling the real-time application to be scheduled as a set
of communicating processes sharing common resources. The model is composed of two
layers. The lower layer contains the application processes, and the upper layer handles
resource management and synchronization.

The methodology provides essential guidelines for building abstractions of real-time
applications relevant to scheduling.

3.1. Process Modeling

We assume that the application is composed of a set of processes P; for i €.#, where . is
a finite index set. The processes share a set of resources R partitioned into a set of
preemptable resources R,, and a set of non-preemptable resources R,. Preemptable
resources are resources from which a process can be preempted by another process,
whereas a process using a non-preemptable resource keeps it until completion. Each
process P; is represented by a timed system TS; = (S;,A;,T;, X;, b;, h;) with the following
attributes.

States. 'We define the following predicates on control states for a given process P;, and a
given resource 7 € R:
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1. U, ,(s) meaning that process P; uses r at state s€S;.

+(s) meaning that process P; waits for resource r at state s€S;, and defined by
,.(S) = _‘Ui,r'(s) A El(S,(l, S/) € Ti : Ui,r(s/)'

1

W,

1

2. W,

We use the abbreviations U; =\/, .z U,,, and W; =\/, _, W, . The states s that are

neither waiting for, nor using any resource, i.e., =(W; v U;)(s), are called sleeping
states.

Actions. We distinguish the following types of actions for a process P;:
1. Arrival actions leading from sleeping to waiting states.

2. Begin actions for some resource  leading from a state s such that W; ,(s) to a state s’
such that U; ,(s"). BGN; , denotes this set of actions. Begin actions are usually eager
to denote the fact that a process takes the resource as soon as it is allowed to do so.

3. End actions for some resource r, leading from a state s such that U, ,(s) to a state s’
such that =U; ,(s'). END; , denotes this set of actions.

Notice that the sets of arrival and begin actions are disjoint, as well as the sets of arrival
and end actions.

The decision when to allocate a resource to a process is up to the scheduler, whereas
the decision when to free a resource belongs to the process. Therefore, begin actions are
considered as controllable, whereas end and arrival actions are uncontrollable. This
means that the sets of begin and end actions are disjoint.

Timing constraints. We associate with each process P; the following timers:

1. A timer #; measuring the time elapsed since the arrival of P;. Therefore, #; is reset by
arrival actions and has its rate everywhere equal to one.

2. For each resource reR used by P;, a timer x; , is introduced to measure execution
time. This timer is reset at all begin actions acquiring r, and has its rate equal to 1 at
states s such that U; (s).

The timers are used to express the following classes of timing constraints.

Inter-arrival constraints. These constraints conjunct guards of arrival actions. Usually,
they are conditions of the form 7! <, < T", where T! > 0 and T are lower and upper
bounds of inter-arrival times. For process P; strictly periodic, take 7! = T, and for P;
sporadic take T} = 0.

Execution time constraints. For a given resource r € R these constraints conjunct guards
of actions issued from states such that U, ,(s), in particular actions of END; ,. They are
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Table 2. Action classification.

Action type Most liberal guard Resets Ctrl.
Arrival of process P; TI <t <T! t; u
Begin of P; on r <D, —E}, X, c
End of P; on r El, <x,<E'.At; <D, 0 u

usually constraints of the form E! , < X; » < EY, where E!, > 0and E!, are respectively
the lower and the upper bounds of the execution time of P; on r.

Deadline constraints. These constraints express the fact that since the process arrival a
resource has been used within a given deadline. They are usually expressed in terms of
deadlines D; , where r is a resource used by process P;. The resulting deadline constraints
strengthen begin transitions on r by condition ¢; < D;, —E}, and all the transitions
issued from state s such that U, ,(s) by t; < D; ,. Table 2 summarizes a classification of
process actions with corresponding timing constraints.

A timed system of processes is specified by a set of processes P;, sets of resources R,
and R, and the associated predicates U, ,.

3.2. The Synchronization Layer

To model a real-time application, we adopt the architecture shown in Figure 4, which
suggests a decomposition and an incremental description principle.

The real-time application model is built from the timed systems representing the
processes, by successive application of a synchronization layer and of a scheduler. The
synchronization layer ensures mutual exclusion on shared resources, and provides a
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Figure 4. Architecture of the global model.
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Figure 5. The preemption management system PMTN, ,.

preemption mechanism. It is in charge of guaranteeing only functional properties of the
application.

The scheduler interacts with the underlying system by resolving non-determinism so as
to satisfy non-functional properties, schedulability requirements in particular.

To model preemption mechanisms, we use for each process P; and each preemptable
resource 7 € R, a timed system PMTN; . (see Figure 5). The latter has three control states
n.use; ,, active; . and susp; . meaning respectively, that the process P; is not using r, is
effectively using r, is suspended due to preemption from r. The synchronization of
PMTN,; , and P; is defined so as to agree with this meaning, i.e., P; is at a state s such that
—U; ,(s) if and only if PMTN;, is at state n_use; ,.

Following notation from semaphores, the actions p; , and v; . represent granting r to P;
and freeing of r by P;, respectively. The actions pt; . and rs; , represent P; getting
preempted from r and resuming r, respectively. '

When a process P; is suspended due to preemption from some resource r, all the
execution timers of P; are stopped:

Vr € R-byg, [Xi,] =0

We suppose that any begin (resp. end) action acquiring (resp. freeing) a preemptable
resource r acquires (resp. frees) only r.

The synchronization between processes and PMTN; , is specified by the set of
synchronization actions X:

Z={b;|pi, bilpi,|pt;, elv,
|i, jeSni#jAreR, nb;eBGN; , Ae;eEND, }

Intuitively, each begin action b; of some process P; acquiring a preemptable resource r
synchronizes with an allocating action p; , and, if there is already a process using r, with
the preempting action pt; .. End actions e; synchronize with freeing actions v; , of
PMTN; ,.

Mutual exclusion on the resources in R is expressed by the constraint

Koutex = /\ /\ (Ui, AU L) A /\ —(active; ;, Aactive; r,,)
ijes r,€R, r, €R,
i#j
K uex says that for any pairs of distinct processes P; and P;, it is not possible to use at

some state the same non-preemptable resource r, or preemptable resource Iy
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The timed system of processes to be scheduled TS is obtained by composing the
processes and restricting the global system according to the steps described above.
Formally,

TS = (||l {TS; | ie £} U{PMTN, , | ie.# nreR,})/K

mutex

Let AL;, denote the actions of TS allocating reR to P;: if r is not preemptable,
AL, , = BGN, ; if r is preemptable, AL; . = {b; | p; ,,b; | p; , | pt; ,,7s; , | b;€BGN; ,
ANJES}.

The following section discusses how TS can be further restricted until a scheduled
system is obtained.

4. Specification of Scheduling Policies
4.1. Methodology

Many existing scheduling policies distinguish on the one hand rules for resolving
conflicts on processes by assigning process priorities, and on the other hand admission
control rules for deciding whether some process is eligible for resource allocation
(Keshav, 1997). For example, the priority ceiling protocol (Sha et al., 1990) schedules the
process with the highest current priority among the processes that are waiting for the
processor, whereas a process P; is eligible for the allocation of a free resource if the
current priority of P; is higher than the priority ceilings of all resources currently
allocated to processes other than P;.

We formalize this decomposition of a scheduling policy as a conjunction of two
transition constraints: Kj,; = K,qm A Kyeg, Where K4y, 1s an admission control constraint
specifying eligibility for resource allocation, whereas K, is a constraint specifying how
conflicts between two or more processes waiting for the same resource are resolved.

In principle, for each resource, different admission control and conflict resolution
constraints are applicable. We take K3, = A, .p Ky, and K = A, p K. For
example, resources that are crucial for the correct functioning of a system could be
allocated according to a conservative policy guaranteeing deadlock-freedom, whereas
resources shared by less critical processes could be managed using a more optimistic
policy in order to use them more efficiently. In practice, care should be taken to apply
compatible policies so as to avoid inconsistency (Bornot et al., 2000).

4.1.1. Admission Control

The constraint K4, = A, .p K}y, restricting resource allocations is specified by
transition constraints of the form

=\ osa N\ &)

sesS (s,a,s')eT
Ji.ae AL;
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Figure 6. Two processes sharing two resources.

The X-constraint K**° restricts all the actions « that label transitions (s, @, s’) allocating
r to some process P;.

Example 4.1 Consider the system of two processes P, and P, as in Figure 6, where two
processes share two non-preemptable resources. We assume that mutual exclusion has
been ensured by restricting with Ko, = —(u)' Aty ") A=} Au) A =(u)" A
uy""?). A deadlock arises when P| has obtained r; and is in u}' waiting for r,, and P, has
obtained r, and is in uy waiting for ;. This situation can be avoided by the following
admission control: if P holds r, then P, is prevented from acquiring r,; if P, holds r,,
then P, is prevented from acquiring r;. The constraints

K] (Ui v uy ") = [b)'](false)

adm

K2, = (U} vu""?) = [by](false)

adm

represent the admission control policy for a process to obtain 7, and r,, respectively.

Example 4.2 A non-idling scheduling policy for some resource r is a policy where a
free resource r is granted as soon as it is requested, i.e., it is not possible to delay the
allocation of a requested free resource. Non-idling scheduling for r can be specified by a
constraint of the form

n_idle = /\ /\ [a](asap, = 0)

ies aeAL;,

where asap, is an additional timer reset at any request action where some process P,
enters a state s such that W, ,(s), and at any action of END; , where P; frees r. The timer
asap, measures the minimum time elapsed since r has been freed or the last request of r
by a process P;. The requirement that asap, = 0 when r is allocated means that the
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resource has just been freed, or some process has just started waiting. The restriction of
allocation action guards by asap, = 0 imposes non-idling for resource 7.

4.1.2. Conflict Resolution

We assume that for each resource r, conflicts are resolved according to a partial order on
the set of processes {P; | i€.#}. The partial order is specified as a set of state constraints
{€}}i jes» such that €A €y = €. When %); holds, process P; has priority over
process P; for using resource r. Notice that %;; may depend on timer values as well as on
control states. Two cases of conflict may appear.
First, if two processes P; and P; are waiting for r, actions of AL; , are given priority
over actions of AL, . by the priority rule
prr = {((g, ALi,r < ALj,r)}

i ijes

where for B, C= A, B<C <= V(b,c) € BxC-b < c. Notice that transitivity of < is
guaranteed by the property € A € = €.

Second, in case of conflict between a process P; using the resource, and a process P;
attempting to preempt it, preemption must be prevented unless P; is of higher priority.
Preemption by lower or equal priority processes is prevented by restricting with the
constraint

Klr‘esfpt = \/ SA /\ /\ [a]((gj’l(s))
seSsS i#)  aeAL;,
activej, »(s) ’
Intuitively, if some P; is active on r, actions of P; preempting P; from r are enabled
only if €.
The constraint K}, specifying arbitration between processes according to the given
order is obtained as a conjunction K« AKj_ ., where K. is the constraint

corresponding to the priority rule pr’.

4.1.3. Getting the Scheduled System

The scheduled system TS’ obtained by application of a scheduling policy on TS is of the
form

TS =TS/ A\ (Kiiw A Kicr)
reR

It is the restriction of TS by the admission control and conflict resolution constraints for
all the resources of the system.
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4.2. Specifying Well-Known Policies

We define some scheduling policies on the timed system TS composed of the set of
processes {P; |ie #},# ={1,...,n}, as in the previous paragraph. For states where
the policy does not specify a total order, we complete the policy order by the static order:
P; has priority over P; if j <.

The fifo policy. A scheduler follows a first in first out policy (fifo) on the resource r if it
is granted to the process that has been waiting for the longest time. The fifo policy is
specified by

The first term of %’; means that whenever two processes P; and P; are both waiting for

r, P; is served prior to P; if process P; has been waiting for longer time than process P;,

Le., ;< t;. The second term ensures a strict allocation order in case of conflict (i.e., when
J

The edf policy. A scheduler follows an edf policy on the resource r if it is granted to the
waiting process that is closest to its relative deadline (Liu and Layland, 1973). The edf
policy is specified by

C;j=D;,—t;,<D;, —t;)v(D;, —t;=D;, —t; A j<1i)

i.e., whenever there are two processes P; and P; waiting for r, the actions granting r to P;
have immediate priority over the actions granting r to P; if P; is closer to its relative
deadline than P; (namely, D; , — ;<D; , — ;).

The rms policy. The algorithm of preemptive rate-monotonic scheduling (rms, Liu and
Layland, 1973) assigns to each strictly periodic process a fixed priority such that
processes with shorter period have higher priority, i.e., if T; > T}, P; has priority over P;.
The rms policy is specified exactly as the edf policy by replacing D; , — #;<D; , —t; by
the condition 7;<T;.

The priority ceiling protocol. According to the priority ceiling protocol (Sha et al.,
1990), we consider a system composed of processes sharing a processor CPU, and a set of
non preemptable resources R,. The processor is the only preemptable resource, i.e.,
R, = {CPU}. The priority ceiling protocol specifies that:

1. The current priority of a process is the maximum of its own fixed priority, and the
priorities of the processes it blocks;

2. A process can only obtain a resource r of ceiling c, if its current priority is higher
than the ceiling of any resource allocated to some other process;
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3. The process with the highest current priority is given the processor.

We give here only a sketch of how the priority ceiling protocol can be modeled in this
framework, and omit some more technical details for sake of simplicity.

We suppose that the process indices correspond to the process priorities such that a
process of lower index has a higher priority. For reR,, let ¢, =min{i|
i€ AdseS;-U; (s)} be the priority ceiling of 7, i.e., the index of the highest-priority
process that may use r. The predicate

blocking;;(s)
=i#jAIke S T, rneR, ¢, <k jAU, (s)AW, (s)
characterizes the states s€S where a given process P; is not allowed to obtain a non-
preemptable resource because some process P; holds a non-preemptable resource r; of

ceiling Cr, < j, and there is some process P, of intermediate priority waiting for a
resource r,. It can be shown that (2) is modeled by the admission control policy

= AN < A [a](false>>

ijes aeAL;,
blockmg,/(t) ’

for any r € R,. Conflicts concerning the allocation of the processor are resolved according
to (3) by the conflict resolution policy

(gEPU =i > j A —blocking;; v blocking;,

for the processor. A process P; is given priority over another process P; if P; is of higher
priority than P; and not blocked by P;, and in states s where blocklngj,( s) holds

Example 4.3 Consider three identical periodic processes P, P,, P, as depicted in
Figure 7. Timing constraints have been omitted. The processes use the processor CPU
and one shared non-preemptable resource r in the following states: U; cpy = u; Vv u;, and
U, , = uj for ie{1,2,3}. The predicates defined above become '

blocking,, = u} AW, blocking,, = u5 A W)
blocking,; = u] A (W5 vwj) Dblocking;, = uj Aw)

blocking,; = u5 A (W) vwj) Dblockings, = uj A (W] v wh)
Klim = (5 v uy) Aw] = [b}](false) A
uy Awh Vs A (W) v wh) = [b5](false) A

uy A (Wh v ws) v A (W vws) = [b](false)

E3Y = uly AW, GV = (s AW))
T = uh Aw GSTY = —(ufy AwW))
?CPU =u5 A (W) vwh) ‘FCPU = —(us A (W) v ny))
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Figure 7. The process P; using the processor and a resource r.

Since there is only one non-preemptable resource r, K, ~only expresses mutual
exclusion on r, according to (2). The priority rule defined by the %gPU gives priority to
the process with lower index, unless it blocks on r. Notice %53 ": P; has priority over P,
in particular if P is using r, and P, is waiting for r, so as to prevent priority inversion

(Sha et al., 1990).

5. Schedulability Requirements and Analysis

This section presents the last step of the modeling methodology. We define schedulability
requirements as a constraint K, .4 expressing the fact that each application process meets
its timing constraints. Given the model of a real-time application scheduled by some
policy, it is necessary to check its schedulability by searching for a control invariant
which implies K.4. This requires, in principle, the use of a timing analysis tool. We
provide results allowing simplification of the schedulability analysis task.

5.1. Schedulability Requirements

Schedulability requirements K., express the fact that the timing constraints of the
application processes (defined in 3.1) are met. This practically means that for each
process, inter-arrival, execution time and deadline constraints are never violated. As these
constraints strengthen action guards, the non-violation of timing constraints (in particular,
of their upper bounds) implies absence of deadlock, i.e., the possibility to execute an
action from any state satisfying K .q. This leads to the formulation of schedulability
requirements as a conjunction Kgpeq = /\;« ; Klpeq Of the schedulability requirements
of the individual processes.

Definition 5.1 (). Let C be an X-constraint, and s€S a control state. We use the
notation for all xe N,
(O0)(x) =3t >0-C(x+ tby)

Notice that (O,C)(x) means ‘‘eventually C(x)’’; if time can progress indefinitely at
control state s.



76 ALTISEN ET AL.

Given a process P, i€.# ={1,...,n}, the associated schedulability requirement K, .,
is defined by the formula

Kéched = \/ Si A < \/ Osga)
JeS (

S=(S1,s 8, s;a,57) € T,

where g, is the guard of the transition (s;, a, s}).
The invariance of K' ., expresses the fact that it is always possible to execute some
action. From some state (s,x) satisfying K' ., there exists some time 7 such that (s,x +
th,) satisfies the guard of an action exiting from s; since by the semantics of timed
systems (Definition 2.2), time progress cannot stop as long as no guard is true. It follows
that inevitably some action of P; exiting from s will be enabled. Thus, if K., is an
invariant then the process P; is deadlock-free (i.e., it is always possible to execute some
action).

If all the guards of a process are either eager or delayable with an upper bound, the
formula K., expresses a liveness property, i.e., always eventually some action is
executed. In that case, from the definition of ¢ (see Definition 2.2), g, implies that
eventually a state is reached from which time progress stops and then an action must be
taken by its deadline.

Notice that in process modeling of Section 3.1, the guards of the transitions exiting
waiting or executing states are either eager or delayable with an upper bound. If a process
is not blocked at waiting or using states, then the deadlines are respected (see Table 2).
K ,.q precisely guarantees that begin and end actions will eventually take place.
Example 5.1 Let us consider the single periodic process described by Figure 2. The
associated schedulability requirement is

Kiped =WALtSD —EveAnx <EAt<Dvsant<T

It is easy to check that K4 is a proper invariant. As the transition guards have upper
bounds, K4 guarantees not only deadlock freedom but also liveness. If the process is
initialized in Kg,.q then always eventually some action happens, and thus the timing
constraints are respected.

5.2. Getting a Correctly Scheduled System

In this paragraph, we show how the presented results can be used to simplify
schedulability analysis and eventually get a correctly scheduled system.

A thesis of the paper is that scheduling requirements are the conjunction Kpeq A Kol
where K4 are schedulability requirements about process dynamics, and K, are policy
requirements about resource management. As already explained, solving the scheduling
problem for a system TS amounts to finding a non-empty control invariant K such that
K= Ksched /\Kpnl-

The following proposition allows a drastic simplification of this problem.
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Proposition 5.1 Given a timed system TS and some scheduling requirements
Kched A Kpot» if K is a control invariant of TS/K,, such that Kg = Keq, then K =
K01 A K is a control invariant of TS such that K = K,;; A Kpeq- Conversely, if K is a
non-empty control invariant of TS, such that K = K;; A K eq then there exists a non-

empty control invariant Kg of TS/K, such that Kg = Kpeqg-

Proof: If Kg= K nq and Kg is a control invariant of TS/K,, then
(TS/K,01)/Ks f= inv(Kg). As K, is a composable control invariant we have that
TS/(Kpo1 A Ks) | inv(K o A Ky). Conversely, if K such that K = K A Kyheq is @ non-
empty control invariant of TS, take Kg=K. We have TS/(K,,AKs) =

P
TS/(Kpo A K) = TS/K = inv(K) which is true by hypothesis. |

This proposition provides a justification of the proposed modeling methodology.
Instead of searching for control invariants of TS satisfying Kcneq A Kppo1, We first restrict
TS by K, and perform schedulability analysis on the restricted system.

Current approaches to scheduling can be summarized as follows, in the light of the
presented approach.

A first approach consists in using analytical methods to find criteria ensuring
schedulability of TS/K,, for particular scheduling policies such as edf, rms, IIf.
Available results are applicable when the processes and their timing constraints meet
specific conditions about periods, execution times, deadlines, resource allocation, etc. In
this approach, schedulability analysis deals essentially with checking that the system meets
the schedulability criteria prescribed by the theory. It does not require the use of a model
representing the dynamic behavior of the system to be scheduled. Current engineering
practice essentially adopts this approach, for example, Hirbour et al. (1993) and Vestal
(1994).

A second approach (Ben-Abdallah et al., 1998; Ericsson et al., 1999) consists in
building explicitly a model TS of the system to be scheduled, i.e., the application
processes with the synchronization layer, and finding a non-empty control invariant
K = K .4 Without considering particular scheduling policies. This is the most general
approach, but the algorithmic method for computing control invariants is of prohibitive
complexity. For this reason, sometimes, the existence of a proper invariant implying
Kneq 18 explored (Ben-Abdallah et al.,, 1999): this is a sufficient condition for
schedulability requiring techniques of lower complexity which do not distinguish
between controllable and uncontrollable actions.

The presented methodology provides a framework for combining the two approaches.
The use of scheduling policies in the second approach can make the schedulability
analysis problem more tractable. The application of a scheduling policy K, to a system
TS reduces the non-determinism of TS and consequently the complexity of its state
space. So, in principle, it is easier to compute control invariants of TS/ K, which imply
Kcheq than control invariants of the non-restricted system TS. However, K, should be
chosen so that K, A Kpeq contains at least one non-empty control invariant and this
cannot be guaranteed by existing results.

We provide a method for scheduling a timed system TS with given schedulability
requirements, by successive applications of scheduling policies. Its application requires
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Figure 8. Policies chosen according to diagnostics.

the use of a timing analysis tool allowing to verify if a constraint is a control invariant and
providing diagnostics in case of negative answer. Diagnostics are given in the form of
traces starting with a controllable transition from a state which satisfies the constraint and
leading to a state where the constraint is false. They can provide guidance for choosing
Ko1- The idea is that K, is used to restrict the behaviors violating K4 as illustrated in
Figure 8. K, is the conjunction of K;ol and Kgol used to eliminate trace 1 and trace 2,
respectively.
The method can be specified as follows.

K= Keped

while —(TS/K [ inv(K))do
choose K,,,;;  K:= K AK,,

od

The following example (Section 6) illustrates this method. We use PROMETHEUS
(GoBler, 2001), a scheduler design tool developed at VERIMAG, to build the model of the
system to be scheduled. In the iterative process, the timing analysis tool KRONOS is used
to check that the restricted system satisfies K ,.q. In case of non satisfaction, KRONOS
provides diagnostics in the form of traces explaining why K4 is violated.

6. Example: An Active Structural Control System

We consider an embedded active structural control system, used to prevent damages on
buildings caused by earthquakes or strong wind (Braberman, 2000; Elseaidy et al., 1977;
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Kang et al., 1996). It is composed of three processes. A cyclic process called modeler
makes a computation which takes between 2.3 and 2.5 ms and updates a shared buffer,
which takes 1 ms. A process of period between 3.2 and 14.5 ms called pulser, reads the
data stored in the buffer and writes them to actuators. Reading takes 0.2 ms, writing
5.8 ms. Both modeler and pulser share the same processor.

A further timing constraint to be respected requires that the data read by the pulser be
fresh, i.e., have been stored by the modeler at most 13 ms ago. Freshness is imposed by a
process called data.

The three processes are modeled as in Figure 9, where a time unit corresponds to
0.1 ms.

ili 1 3 __ prmodeler data pulser __ .
The schedulability requirement is K ,.q = Kipeq o A Ksqag A Koepeq With
Kmodler — sleeping, v waiting_c v (computing A x,, < 25)

v waiting_u v (updating A x,, < 10)
Schea = true
Kfclﬁ:zr = (sleeping, nt, < 145) v (waiting r nt, < 85)
Vv (reading nx, <2 At, <87 At, —x, < 85)

v (writing Ax, < 58At, < 1451, —x, < 87)

. s 1 . .
It is easy to see that Kmodcler gdaia “and KT * are proper invariants of the processes

modeler, data, and pulser, respectively.

modeler data pulser
sleeping,, refmsﬁh
. u true
arrive_m y:=0
true® sleeping,
tm = i "
arrive_p
() waiting_c fresh (32 <t, <145)°
tp =0
compute o
h-m-‘c| rufru.%h walting.r C)
Lo 1= oL .
" ;’,2‘0 expire rczul. .
() computing (y > 130) (tp < 85)
Tp =
computed" . T
(23 < am < 25)9 expired reading
write"
) waiting_u (Tp=2 A tp < 87)¢
Tp =
updntcd“s updm’;c Hine written"
o o - writin, _
(£m = 10) gl & (@, = 58 A
T tp < 145)°
updating

Figure 9. The active structural control system.
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The three processes share two resources—the processor CPU, and the buffer—that are
used in the following states:

Umodeler,CPU = computing v updating,

Umodeler,buﬁgr = Mpdatlng7

U puiser,cry = reading v writing,

Upulxer, buffer — l’eadlng

We model the freshness constraint saying that pulser must not enter the state reading
when data has expired, by introducing a third resource called data exp with
U data, data_exp = €Xpired and U, e, dara_exp = Teading. Mutual exclusion on the use of
data_exp ensures that pulser blocks on data_exp if the state of data is expired.

In the composition of the three processes, the action updated synchronizes with refresh,
which means that at the instant where the modeler finishes writing data to the buffer, data
changes to (or remains in) the fresh state. Formally, ¥ = {updated | refresh}.

Mutual exclusion for the three resources is ensured by

Koutex = ﬁ((computing v updating) A (reading v writing))

A —(expired A reading)

Table 3 shows how the guards of the controllable actions of TS =
|ls {modeler, data, pulser} are progressively restricted by the constraints.

The process data changes from fresh to expired as soon as its lifetime reaches 13 ms,
provided that the process pulser has left the critical section reading.

In order to give the action expire priority over an entry of pulser into reading, we apply
the conflict resolution policy pré®-¢* = {( fresh A waiting_r, {read < expire})} to get
TS

TS' = (||ly {modeler,data, pulser})/(Kyyex A Kppauacs)
where K, e is the constraint corresponding to the priority rule pré@a-ep The constraint

_ gmodeler data pulser : : /
Kihea = Kiped® NKGS i AK oq 18 DOt a proper invariant of TS’. For example, the

Table 3. Successive restrictions of the guards of controllable actions.

TS / (Kmulcx A Kprdm,cxp ) / Kprcvu

compute true —(reading v writing) —(reading v writing
vV fresh A waiting_r
At, < 85Ay<130)
update true —(reading v writing) —(reading v writing
vV fresh A waiting_r
At, < 85Ay<130)

expire y > 130 y > 130 A —reading y > 130 A —reading
read 1, <85 5, <85 —(computing v updating r, <85
v expired vy > 130) A —(computing v updating

v expired vy > 130)
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process modeler can be scheduled five times before giving the process pulser a turn.
Hereafter, pulser will get deadlocked in waiting_r.

Let us now restrict TS’ by giving priority to pulser for access to the processor if data is

fresh:
prPY = {(fresh, {compute < read, update < read})}

Kcheq 1S @ proper invariant of TS’/ K,,.cru, as can be verified using KRONOS. In fact, as
soon as pulser blocks on expired data, its deadline is far enough for modeler to update the
buffer before pulser misses its deadline. The last column of Table 3 specifies the
scheduler maintaining the schedulability requirement.

Let us now slightly modify this example. We strengthen the timing constraints and
require a maximal inter-arrival time of 200 ms for modeler. This is modeled by replacing
the guard true® of the action arrive_m" by (t,, < 200)" in Figure 9, and strengthening
accordingly the guards of the controllable actions of this new process modeler,. The
schedulability requirement is now

K:éﬁi(ejler‘z = (sleeping,, nt,, < 200) v (waiting_c A t,, < 165)

v (computing A x,, < 25 At,, < 190 AT, — x,, < 165)
v (waiting_u A t,, < 190)
v (updating nt,, < 200 A x,, < 10 AL, — x,, < 190)

which can be shown to be a proper invariant of modeler,. Table 4 shows the guards of
the controllable actions of TS, =||x{modeler,,data,pulser} and their successive
restrictions.

The attempt to schedule the timed system TS5 = TS, /(Kpyex A Kpyauie) as above by
giving pulser priority over modeler, if data is fresh, fails. Timing analysis shows that
K2peq = KInddle™ A K44, A KP459 is no more a proper invariant of TS)/K,,cru, since the
priority of pulser over modeler, as long as data is fresh makes modeler, miss its

Table 4. Successive restrictions of the guards of controllable actions.

TS, /(Kmulex A Kp/“/“’“f““”) /Kprg"u
compute t, < 165 t, <165 t, < 165
A —(reading v writing) A = (reading v writing)
A (expired v t,, —t, > 55)
update t, < 190 t,, < 190 t, <190
A =(reading v writing) A =(reading v writing)
A (expired v t,, — t, > 55)
expire y > 130 y > 130 A —reading y > 130 A —reading
read 1, <85 t, < 85 A —(computing to < 85 A —(computing
V updating v expired v updating v expired

vy > 130) vy > 130) At, —1t, <55
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deadline. Liveness of the whole system is re-established by scheduling both processes
under edf if data is fresh. This policy is specified by the priority rule

prs™V = {(fresh At,, — 1, <200 — 145,
{compute < read, update < read})
(fresh A t,, —t, > 200 — 145,
{read < compute,read < update})}

Timing analysis of the restricted system TS) /Kprgpu where Kprgpu is the constraint
corresponding to pr$PU, shows that K2, ., is not a proper invariant. However, the system
is correctly scheduled from the initial state where both modeler, and pulser are sleeping,
data is expired, and all timers are zero. In other words, there is a non-empty constraint
implying K2,., that holds for this initial state, and that is a proper invariant of
TS, /Kprgf’u. We have obtained a correctly scheduled system by successively refining

scheduling policies.

7. Conclusion

The paper presents a methodology for scheduler modeling based on the controller
synthesis paradigm. The methodology relies on the idea that the model of the scheduled
system can be obtained by successive and appropriate restrictions of the guards of
controllable actions of a model representing the real-time application. The resulting
abstract scheduler specification is a function associating with system states sets of
enabled controllable actions. In the proposed methodology, we privilege abstraction and
minimality of concepts and we do not address concepts related to implementation
description. Nevertheless, the proposed decomposition reflects a separation of issues that
is more or less respected in practice, no matter how each layer is implemented.

This methodology is a framework for unifying existing scheduling theory and work on
scheduler extraction from models of real-time applications. The decomposition of
scheduling requirements into schedulability requirements, K .4, and policy require-
ments, K, allows better understanding the two approaches. Scheduling theory studies
sufficient conditions guaranteeing K .4 for particular scheduling algorithms character-
ized by some K. Usually, modeling based approaches consist in extracting from a timed
model schedulers which satisfy K .4 without taking into account particular scheduling
policies. We recommend the application of policy constraints as a means to reduce the
complexity of the modeling based approach.

The methodology is based on the use of results on control invariants and their
composability. Control invariance and composability of policy requirements reduce the
scheduling problem to the search for control invariants implying K.4. This is the hard
problem for which tool support and/or user ingenuity are necessary. Consistency of
restriction constraints and of policy requirements in particular, is crucial for the
application of the approach; inconsistent constraints may introduce deadlocks that make
the application non-schedulable. Some solutions to this problem have already been
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studied in Bornot et al. (1997) where deadlock-freedom preservation results are given for
both priority and mutual exclusion constraints.
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