
Compositional Verification for Component-based
Systems and Application

Saddek Bensalem Marius Bozga Thanh-Hung Nguyen Joseph Sifakis

Verimag Laboratory, Université Joseph Fourier Grenoble, CNRS.

Abstract. We present a compositional method for the verification of
component-based systems described in a subset of the BIP language en-
compassing multi-party interaction without data transfer. The method is
based on the use of two kinds of invariants. Component invariants which
are over-approximations of components’ reachability sets. Interaction in-
variants which are constraints on the states of components involved in
interactions. Interaction invariants are obtained by computing traps of
finite-state abstractions of the verified system. The method is applied
for deadlock verification in the D-Finder tool. D-Finder is an interactive
tool that takes as input BIP programs and applies proof strategies to
eliminate potential deadlocks by computing increasingly stronger invari-
ants. The experimental results on non-trivial examples allow either to
prove deadlock-freedom or to identify very few deadlock configurations
that can be analyzed by using state space exploration.

1 Introduction

Compositional verification techniques are used to cope with state explosion in
concurrent systems. The idea is to aply divide-and-conquer approaches to infer
global properties of complex systems from properties of their components. Sepa-
rate verification of components limits state explosion. Nonetheless, components
mutually interact in a system and their behavior and properties are inter-related.
This is a major difficulty in designing compositional techniques. As explained in
[1], compositional rules are in general of the form

B1 < Φ1 >, B2 < Φ2 >, C(Φ1, Φ2, Φ)
B1‖B2 < Φ >

(1)

That is, if two components with behaviors B1, B2 meet individually proper-
ties Φ1, Φ2 respectively, and C(Φ1, Φ2, Φ) is some condition taking into account
the semantics of parallel composition operation and relating the individual prop-
erties with the global property, then the system B1‖B2 resulting from the com-
position of B1 and B2 will satisfy a global property Φ.

One approach to compositional verification is by assume-guarantee where
properties are decomposed into two parts. One is an assumption about the global
behavior of the environment of the component; the other is a property guaran-
teed by the component when the assumption about its environment holds. This

approach has been extensively studied (see for example [2–9]). Many issues make
the application of assume-guarantee rules diffcult. These are discussed in detail in
a recent paper [10] which provides an evaluation of automated assume-guarantee
techniques. The main difficulties are finding decompositions into sub-systems and
choosing adequate assumptions for a particular decomposition.

We present a different approach for compositional verification of invariants
based on the following rule:

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧

i Φi) ∧ Ψ ⇒ Φ
‖γ{Bi}i < Φ >

(2)

The rule allows to prove invariance of Φ for systems obtained by using a n-ary
composition operation parameterized by a set of interactions γ. It uses global
invariants which are the conjunction of individual invariants of components Φi

and an interaction invariant Ψ . The latter expresses constraints on the global
state space induced by interactions between components. It can be computed
automatically from abstractions of the system to be verified. These are the com-
position of finite state abstractions Bα

i of the components Bi with respect to their
invariants Φi. They can be represented as a Petri net whose transitions corre-
spond to interactions between components. Interaction invariants correspond to
traps [11] of the Petri net and are computed symbolically as solutions of a set
of boolean equations.

ψ

φ2

φ1

Fig. 1.

Figure 1 illustrates the method for a sys-
tem with two components, invariants Φ1 and
Φ2 and interaction invariant Ψ . Our method
differs from assume-guarantee methods in that
it avoids combinatorial explosion of the de-
composition and is directly applicable to sys-
tems with multiparty (not only binary) in-
teractions. Furthermore, it needs only guar-
antees for components. It replaces the search
for adequate assumptions for each component
by the use of interaction invariants. These can
be computed automatically from given com-
ponent invariants (guarantees). Interaction in-
variants correspond to a “cooperation test” in
the terminology of [12] as they allow to elim-
inate product states which are not feasible by
the semantics of parallel composition.

The paper provides a method for auto-
mated verification of component-based systems described in a subset of the BIP
(Behavior-Interaction-Priority) language [13]. In BIP, a system is the composi-
tion of a set of atomic components which are automata extended with data and
functions written in C. We restrict to programs where interactions are pure syn-
chronizations. Nonetheless, the method can be easily extended for interactions
involving data transfer. The main results are the following:

– We provide heuristics for computing component invariants and interaction
invariants. Component invariants are over-approximations of the set of the
reachable states generated by simple forward analysis. Interaction invariants
are derived automatically from component invariants and their interactions.
When proving invariance of a property fails, it is possible to find stronger
invariants by computing stronger component invariants from which stronger
interaction invariants are obtained.

– We present an implemention and application of the method in the D-Finder
tool for deadlock verification. D-Finder takes as input BIP programs and
progressively eliminates potential deadlocks by generating invariants. For
this, it cooperates with two tools: Omega [14] for quantifier elimination and
Yices [15] for checking satisfiability of predicates. It is also connected to the
state space exploration tool of the BIP platform, for finer analysis when the
heuristic fails to prove deadlock-freedom. We provide non trivial examples
showing the capabilities of D-Finder as well as the efficiency of the method.

The paper is organized as follows. Section 2 introduces the basic definitions
about BIP and invariants. The method for computing component invariants
and the corresponding interaction invariants is presented in Section 3. Section 4
presents the application of the method for checking deadlock-freedom including a
description of D-Finder and experimental results. Section 5 presents concluding
remarks and future work.

2 Models, Invariants and their Properties

In this section, we present the basic model for the BIP language as well as the
notion of invariant.

2.1 Basic model for BIP

We present a simplified model for component-based systems used in the Behaviour-
Interaction-Priority (BIP) component framework developed at Verimag [13].

This framework has been implemented in a language and a toolset. The BIP
language offers primitives and constructs for modelling and composing compo-
nents. An atomic component consists of a set of ports used for the synchro-
nization with other components, a set of transitions and a set of local variables.
Transitions describe the behavior of the component. The BIP toolset includes an
editor and a compiler for generating from BIP programs, C++ code executable
on a dedicated platform.

We provide a formalization of atomic components in BIP and their compo-
sition by using interactions.

Definition 1 (Atomic Component). An atomic component is a transition
system extended with data B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T), where:

– (L,P, T) is a transition system, that is

• L = {l1, l2, . . . , lk} is a set of control locations,
• P is a set of ports,
• T ⊆ L× P × L is a set of transitions,

– X = {x1, . . . , xn} is a set of variables and for each τ ∈ T respectively, gτ is
a guard, a predicate on X, and fτ (X, X ′) is an update relation, a predicate
on X (current) and X ′ (next) state variables.

Definition 2 (Semantics of extended transition system). The semantics
of B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T), is a transition system (Q,P, T0) such
that

– Q = L×X where X denotes the set of valuations of variables X.
– T0 is the set including transitions ((l,x), p, (l′,x′)) such that gτ (x)∧fτ (x,x′)

for some τ = (l, p, l′) ∈ T . As usual, if ((l,x), p, (l′,x′)) ∈ T0 we write
(l,x)

p→ (l′,x′).

Given a transition τ = (l, p, l′) ∈ T , l and l′ are respectively, the source and
the target location denoted respectively by •τ and τ•.

For a location l, we use the predicate at l which is true iff the system is at lo-
cation l. A state predicate Φ is a boolean expression involving location predicates
and predicates on X. Any state predicate can be put in the form

∨
l∈L at l∧ϕl.

Notice that predicates on locations are disjoint and their disjunction is true.
We define below a parallel composition for components parameterized by a

set of interactions. We consider only pure synchronizations, that is interactions
do not involve data transfer between components.

Definition 3 (Interactions). Given a set of components B1, B2, . . . , Bn, where
Bi = (Li, Pi, Ti, Xi, {gτ}τ∈Ti , {fτ}τ∈Ti), an interaction a is a set of ports, subset
of

⋃n
i=1 Pi, such that ∀i = 1, . . . , n |a ∩ Pi| ≤ 1.

Definition 4 (Parallel Composition). Given n components Bi = (Li, Pi, Ti, Xi,
{gτ}τ∈Ti , {fτ}τ∈Ti) and a set of interactions γ, we define B = γ(B1, . . . , Bn) as
the component (L, γ, T , X, {gτ}τ∈T , {fτ}τ∈T), where:

– (L, γ, T) is the transition system such that
• L = L1 × L2 × . . .× Ln is the set of control locations,
• T ⊆ L × γ × L contains transitions τ = ((l1, . . . , ln), a, (l′1, . . . , l

′
n)) ob-

tained by synchronization of sets of transitions {τi = (li, pi, l
′
i) ∈ Ti}i∈I

such that {pi}i∈I = a ∈ γ and l′j = lj if j 6∈ I, for arbitrary I ⊆ {1, ..., n}
– X =

⋃n
i=1 Xi and for a transition τ resulting from the synchronization of a

set of transitions {τi}i∈I , the associated guard and function are respectively
gτ =

∧
i∈I gτi and fτ =

∧
i∈I fτi ∧

∧
i 6∈I(X

′
i = Xi).

Definition 5 (System). A system S is a pair 〈B, Init〉 where B is a component
and Init is a state predicate characterizing the initial states of B.

tick

l6

heat

tick

l5

θ = 100

θ < 1000

θ := θ + 1

cool

θ > 100
θ := θ − 2

θ = 1000

t1 := t1 + 1

tick1

tick1

cool1
t1 := 0
rest1

l1

l2

tick2

tick2

l3

l4

cool2 rest2
t2 := 0

t2 := t2 + 1

tick tick2tick1

rest1 cool1 cool heat rest2 cool2

t1 ≥ 3600 t2 ≥ 3600

Rod1 Controller Rod2

Fig. 2. Temperature Control System

Example 1 (Temperature Control System). [16] This system controls the coolant
temperature in a reactor tank by moving two independent control rods. The goal is
to maintain the coolant between the temperatures θm and θM . When the temperature
reaches its maximum value θM , the tank must be refrigerated with one of the rods. The
temperature rises at a rate vr and decreases at rate vd. A rod can be moved again only
if T time units have elapsed since the end of its previous movement. If the temperature
of the coolant cannot decrease because there is no available rod, a complete shutdown
is required.

We provide a discretized model of the Temperature Control System in BIP, decom-
posed into three atomic components: a Controller and two components Rod1, Rod2
modeling the rods. We take θm = 100◦, θM = 1000◦, T = 3600 seconds. Furthermore,
we assume that vr = 1◦/s and vd = 2◦/s. The Controller has two control locations
{l5, l6}, a variable θ, three ports {tick, cool, heat} and four transitions: 2 loop tran-
sitions labeled by tick which increase or decrease the temperature as time progresses
and 2 transitions triggering moves of the rods. The components Rod1 and Rod2 are
identical, up to the renaming of states and ports. Each one has two control locations
and four transitions: two loop transitions labeled by tick and two transitions synchro-
nized with transitions of the Controller. The components are composed by using the
following set of interactions, indicated by connectors in the figure: {tick, tick1, tick2},
{cool, cool1}, {cool, cool2}, {heat, rest1}, {heat, rest2}.

In our model, complete shutdown corresponds to a deadlock. Throughout the paper
we verify deadlock-freedom of this example by taking Init = at l5 ∧ (θ = 100)∧ at l1 ∧
(t1 = 3600) ∧ at l3 ∧ (t2 = 3600). ut

2.2 Invariants and Their Properties

For a component B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T), we recall here the def-
inition of the post predicate transformer allowing to compute successors of
global states represented symbolically by state predicates. Given a state predi-
cate Φ =

∨
l∈L at l ∧ ϕl, we define post(Φ) =

∨
l∈L(

∨
τ=(l,p,l′) at l′ ∧ postτ (ϕl))

where postτ (ϕ)(X) = ∃X ′.gτ (X ′)∧fτ (X ′, X)∧ϕ(X ′). Equivalently, we have that
post(Φ) =

∨
l∈L at l ∧ (

∨
τ=(l′,p,l) postτ (ϕl′)). This allows computing post(Φ) by

forward propagation of the assertions associated with control locations in Φ.

We define in a similar way, the preτ predicate transformer for a transition τ ,
preτ (ϕ)(X) = ∃X ′.gτ (X) ∧ fτ (X, X ′) ∧ ϕ(X ′).

Definition 6 (Invariants). Given a system 〈B, Init〉 a state predicate Φ is

– an inductive invariant iff (Init ∨ post(Φ)) ⇒ Φ.
– an invariant iff there exists an inductive invariant Φ0 such that Φ0 ⇒ Φ.

Notice that invariants are over-approximations of the set of the reachable
states from Init. We extensively use the following well-known results about
invariants.

Proposition 1. Let Φ1, Φ2 be two invariants of a component B. Then Φ1 ∧Φ2,
Φ1 ∨ Φ2 are invariants of B.

3 The method

We consider a system γ(B1, . . . , Bn) obtained by composing a set of atomic
components B1, ..., Bn by using a set of interactions γ.

To prove a global invariant Φ for γ(B1, . . . , Bn), we use the following rule:

{Bi < Φi >}n
i , Ψ ∈ II(γ(B1, . . . , Bn), {Φi}n

i), (
∧n

i Φi) ∧ Ψ ⇒ Φ
γ(B1, . . . , Bn) < Φ >

(3)

where Bi < Φi > means that Φi is an invariant of component Bi and Ψ is
an interaction invariant of γ(B1, . . . , Bn) computed automatically from Φi and
γ(B1, . . . , Bn).

A key issue in the application of this rule is finding component invariants
Φi. If the components Bi are finite state, then we can take Φ = Reach(Bi), the
set of reachable state of Bi, or any upper approximation of Reach(Bi). If the
components are infinite state, Reach(Bi) can be approximated as shown in [17,
18].

We provide below methods for computing component invariants used for
checking deadlock-freedom (section 4). We also provide a general method for
computing interaction invariants for γ(B1, . . . , Bn) from a given set of component
invariants Φi.

3.1 Computing Component Invariants

We present below a method for the lightweight computation of sequences of
inductive invariants for atomic components. This method is used in the D-Finder
toolset.

Proposition 2. Given a system S = 〈B, Init〉, the following iteration defines a
sequence of increasingly stronger inductive invariants:

Φ0 = true Φi+1 = Init ∨ post(Φi)

We use different strategies for producing such invariants. We usually iterate
until we find deadlock-free invariants. Their use guarantees that global deadlocks
are exclusively due to synchronization.

A key issue is efficient computation of such invariants as the precise compu-
tation of post requires quantifier elimination. An alternative to quantifier elimi-
nation is to compute over-approximations of post based on syntactic analysis of
the predicates. In this case, the obtained invariants may not be inductive.

We provide a brief description of a syntactic technique used for approximating
postτ for a fixed transition τ . A more detailed presentation, as well as other
techniques for generating component invariants are given in [19].

Consider a transition τ = (l, p, l′) of B = (L,P, T , X, {gτ}τ∈T , {fτ}τ∈T).
Assume that its guard is of the form gτ (Y) and the associated update function
fτ is of the form Z ′

1 = eτ (U) ∧ Z ′
2 = Z2 where Y, Z1, Z2, U ⊆ X and {Z1, Z2} is

a partition of X.
For an arbitrary predicate ϕ find a decomposition ϕ = ϕ1(Y1)∧ ϕ2(Y2) such

that Y2 ∩ Z1 = ∅ i.e. which has a conjunct not affected by the update function
fτ . We apply the following rule to compute over-approximations postaτ (ϕ) of
postτ (ϕ)

postaτ (ϕ) = ϕ2(Y2)∧
{

gτ (Y) if Z1 ∩ Y = ∅
true otherwise

}
∧

{
Z1 = eτ (U) if Z1 ∩ U = ∅

true otherwise

}
Proposition 3. If τ and ϕ are respectively a transition and a state predicate as
above, then postτ (ϕ) ⇒ postaτ (ϕ).

Example 2. For the Temperature Control System of figure 2, the predicates Φ1 =
(at l1 ∧ t1 ≥ 0) ∨ (at l2 ∧ t1 ≥ 3600), Φ2 = (at l3 ∧ t2 ≥ 0) ∨ (at l4 ∧ t2 ≥ 3600) and
Φ3 = (at l5 ∧ 100 ≤ θ ≤ 1000) ∨ (at l6 ∧ 100 ≤ θ ≤ 1000) are respectively invariants of
the atomic components Rod1, Rod2 and Controller. ut

3.2 Computing Interaction Invariants

For the sake of clarity, we first show how to compute interaction invariants for a
system γ(B1, . . . , Bn) without variables, that is, where the atomic components
Bi are finite transition systems. Then, we show how to deal with infinite state
systems.

For finite state systems

Definition 7 (Forward Interaction Sets). Given a system γ(B1, . . . , Bn)
where Bi = (Li, Pi, Ti) are transition systems, we define for a set of locations
L ⊆

⋃n
i=1 Li its forward interaction set L• =

⋃
l∈L l• where

l• =
{
{τi}i∈I | ∀i.τi ∈ Ti ∧ ∃i.•τi = l ∧ {port(τi)}i∈I ∈ γ

}
That is, l• consists of sets of component transitions involved in some interac-
tion of γ in which a transition τi issued from l can participate (see figure 3).
We define in a similar manner, for a set of location its backward interaction set

l

.
τ1 τk

l′1

l1 lk

l′k

τi

{τ1 . . . τi . . . τk} ∈ l.

{p1 . . . pi . . . pk} ∈ γ

p1

l′

pi pk

Fig. 3. Forward interaction sets.

•L =
⋃

l∈L
•l where •l =

{
{τi}i∈I | ∀i.τi ∈ Ti ∧ ∃i.τ•i = l ∧ {port(τi)}i∈I ∈ γ

}
The elements of •l and l• can be also viewed as transitions of a Petri net,

which correspond to interactions of γ. As for Petri nets, we can define the notion
of trap.

Definition 8 (Traps). Given a parallel composition γ(B1, . . . , Bn) where Bi =
(Li, Pi, Ti), a trap is a set L of locations L ⊆

⋃n
i=1 Li such that L• ⊆ •L.

The following proposition expresses a characteristic property of traps: if the
initial state of γ(B1, . . . , Bn) has some control location belonging to a trap then
all its successor states have some control location belonging to the trap.

Proposition 4. Given a system S = 〈γ(B1, . . . , Bn), Init〉, if the set of loca-
tions L ⊆

⋃n
i=1 Li is a trap containing an initial state of some component then∨

l∈L at l is an invariant of S.

The following result given in [20] characterizes traps as solution of a system
of implications.

Proposition 5. Let γ(B1, ..., Bn) and a boolean valuation v :
⋃n

i=1 Li → B. If
v satisfies the following set of the implications, then the set

{l ∈
n⋃

i=1

Li | v(l) = true}

is a trap, where v(l) ⇒
∧

{τi}i∈I ∈ l•

 ∨
l′ ∈ {τ•i }i∈I

v(l′)

 for l ∈
⋃n

i=1 Li

This characterization allows to compute by enumeration the minimal traps of
γ(B1, ..., Bn). For this we use Yices [15] to successively obtain minimal solutions
of the above system. As shown in [21, 22] computing the set of minimal traps is
a NP-complete problem and in practice the trap extraction process may not be
exhaustive.

Example 3. The set of of minimal traps for the example given in figure 4 are:
L1 = {φ21, φ41, φ51, φ52}, L2 = {φ11, φ12, φ21, φ31, φ32, φ41}, L3 = {φ32, φ41, φ42, φ51},
L4 = {φ11, φ12, φ31, φ32, φ61, φ62} and L5 = {φ12, φ21, φ22, φ51}.

For infinite state systems We have shown how to compute interaction invari-
ants from traps relating control locations of finite state components. To compute
interaction invariants for infinite state systems, we first compute composionally
a finite state abstraction of the composite system. Interaction invariants are
concretizations of the traps of the abstract system.

Consider a system S = 〈γ(B1, . . . , Bn), Init〉 and a set of component in-
variants Φ1 . . . Φn associated with the atomic components. We show below, for
each component Bi and its associated invariant Φi, how to define a finite state
abstraction αi and to compute an abstract transition system Bαi

i .

Definition 9 (Abstraction Function). Let Φ be an invariant of a system
〈B, Init〉 written in disjunctive form Φ =

∨
l∈L at l ∧ (

∨
m∈Ml

ϕlm) such that
atomic predicates of the form at l ∧ ϕlm are disjoint. An abstraction function
α is an injective function associating with each atomic predicate at l ∧ ϕlm a
symbol φ = α(at l ∧ ϕlm) called abstract state. We denote by Φα the set of the
abstract states.

Definition 10 (Abstract System). Given a system S = 〈B, Init〉, an invari-
ant Φ and an associated abstraction function α, we define the abstract system
Sα = 〈Bα, Initα〉 where

– Bα = (Φα, P,) is a transition system with such that for any pair of
abstract states φ = α(at l ∧ ϕ) and φ′ = α(at l′ ∧ ϕ′) we have φ

p
 φ′ iff

∃τ = (l, p, l′) ∈ T and ϕ ∧ preτ (ϕ′) 6= false,
– Initα =

∨
φ∈Φα

0
at φ where Φα

0 = {φ ∈ Φα | α−1(φ) ∧ Init 6= false} is the
set of the initial abstract states.

We apply the method presented in [23] and implemented in the InVeSt
tool [24] in order to compute an abstract transition system Bα for a component
B. The method proceeds by elimination, starting from the universal relation
on abstract states. We eliminate pairs of abstract states in a conservative way.
To check whether φ

p
 φ′, where φ = α(at l ∧ ϕ) and φ′ = α(at l′ ∧ ϕ′), can

be eliminated, we check that for all concrete transitions τ = (l, p, l′) we have
ϕ ∧ preτ (ϕ′) = false.

Example 4. The table below provides the abstract states constructed from the com-
ponents invariants Φ1, Φ2, Φ3 of respectively Rod1, Rod2, Controller given in example
2.

φ11 = at l1 ∧ t1 = 0 φ51 = at l5 ∧ θ = 100 φ31 = at l3 ∧ t2 = 0
φ12 = at l1 ∧ t1 ≥ 1 φ52 = at l5 ∧ 101 ≤ θ ≤ 1000 φ32 = at l3 ∧ t2 ≥ 1
φ21 = at l2 ∧ t1 ≥ 3600 φ61 = at l6 ∧ θ = 1000 φ41 = at l4 ∧ t2 ≥ 3600
φ22 = at l2 ∧ t1 < 3600 φ62 = at l6 ∧ 100 ≤ θ ≤ 998 φ42 = at l4 ∧ t2 < 3600

Figure 4 presents the computed abstraction of the Temperature Control System with
respect to the considered invariants. ut

By combining well-known results about abstractions, we compute interaction in-
variants of 〈γ(B1, ..., Bn), Init〉 from interaction invariants of 〈γ(Bα

1 , . . . , Bα
n), Initα〉.

The following proposition says that γ(Bα1
1 , . . . , Bαn

n) is an abstraction of
B = γ(B1, ..., Bn)

rest2 cool2heatcoolcool1rest1

tick1

cool1
rest1

rest1

tick1 tick tick2

tick

tick

cool

tick2

cool2
rest2

rest2

tick2tick

ticktick1 tick2

heat

φ12

φ21φ22

φ51 φ52

φ62 φ61

φ31 φ32

φ41

φ11

φ42

Roda
1 Controllera Roda

2

tick2tick1tick1

Fig. 4. Abstraction of the Temperature Control System.

Proposition 6. If Bαi
i is an abstraction of Bi with respect to an invariant Φi

and its abstraction function αi for i = 1, ..., n , then Bα = γ(Bα1
1 , . . . , Bαn

n) is
an abstraction of B = γ(B1, ..., Bn) with respect to

∧n
i=1 Φi and an abstraction

function α obtained as the composition of the αi.

The following proposition says that invariants of the abstract system are also
invariants of the concrete system.

Proposition 7. If Bα is an abstraction of B with respect to Φ and its ab-
straction function α, then Bα simulates B. Moreover, if Φα is an invariant
of 〈Bα, Initα〉 then α−1(Φα) is an invariant of 〈B, Init〉.

Thus, it is possible to compute from traps which are interaction invari-
ants of the abstract system, interaction invariants for the concrete system B =
γ(B1, ..., Bn).

3.3 Wrap up

We give a sketch of a semi-algorithm allowing to prove invariance of Φ by iterative
application of the rule (3). The semi-algorithm takes a system 〈γ(B1, . . . , Bn), Init〉
and a predicate Φ. It iteratively computes invariants of the form X = Ψ ∧
(
∧n

i=1 Φi) where Ψ is an interaction invariant and Φi an invariant of component
Bi. If X is not strong enough for proving that Φ is an invariant (X ∧¬Φ = false)
then either a new iteration with stronger Φi is started or we stop. In this case,
we cannot conclude about invariance of Φ. We can show by application of the
following proposition that the iteration process gives progressively stronger in-
variants, in particular that for stronger component invariants we get stronger
interaction invariants.

Proposition 8. Let 〈B, Init〉 be a system and Φ, Φ′ two non empty invariants
such that Φ ⇒ Φ′. If α and α′ are the abstraction functions corresponding to Φ
and Φ′ respectively, then Bα simulates Bα′

For two successive component invariants Φi and Φ′
i for Bi, we have Φi ⇒

Φ′
i. From proposition 8 we deduce that Bαi

i simulates B
α′i
i where αi and α′i

Input: S = 〈γ(B1, . . . , Bn), Init〉, Φ
Initially: Φi = true for each i = 1, . . . , n
Output: True or inconclusive.

1. For each Bi, compute a component invariant Φ′i; Φi := Φi ∧ Φ′i
2. For each Bi and Φi compute the corresponding abstraction Bαi

i .
3. For γ(Bα1

1 , ..., Bαn
n), compute traps L1, L2, . . . , Lm

containing some abstract initial state.
4. For each trap Lk, compute the interaction invariant Ψk =

W
φ∈Lk

α−1(φ);

Ψ :=
Vm

k=1 Ψk.
5. If ¬Φ ∧ Ψ ∧ (

Vn
i=1 Φi) = false then Φ is an invariant else goto 1 or stop.

Fig. 5. Iterative application of the rule in figure 3

are the abstraction functions corresponding to Φi and Φ′
i. As the simulation

relation is preserved by parallel composition, we have γ(Bα1
1 , ..., Bαn

n) simulates
γ(Bα′1

1 , ..., B
α′n
n). We can show that for each trap L′ of γ(Bα′1

1 , ..., B
α′n
n) there

exists a trap L of γ(Bα1
1 , ..., Bαn

n) such that L ⊆ L′. From this we infer that
for each interaction invariant of γ(B′

1, ..., B
′
n) there exists a stronger interaction

invariant of γ(B1, ..., Bn).

4 Application for Checking Deadlock-Freedom

We present an application of the method for checking deadlock-freedom.

Definition 11 (Deadlock States). We define the predicate DIS characteriz-
ing the set of the states of γ(B1, . . . , Bn) from which all interactions are disabled:

DIS =
∧

a ∈ γ

¬en(a) where en(a) =
∨

port(T ′) = a

∧
τ∈T ′

en(τ)

port(T ′) for a set of transitions T ′ ⊆ T is the set of ports labeling these
transitions. That is, en(a) characterizes all the states from which interaction a
can be executed.

Example 5. For the Temperature Control System (see figure 2), we have:
DIS = (¬(at l5 ∧ θ < 1000))

V
(¬(at l6 ∧ θ = 100) ∨ ¬at l2)V

(¬(at l6 ∧ θ > 100))
V

(¬(at l5 ∧ θ = 1000) ∨ ¬(at l3 ∧ t2 ≥ 3600))V
(¬(at l5 ∧ θ = 1000) ∨ ¬(at l1 ∧ t1 ≥ 3600))

V
(¬(at l6 ∧ θ = 100) ∨ ¬at l4)

ut

The system 〈γ(B1, . . . , Bn), Init〉 is deadlock-free if the predicate ¬DIS is an
invariant of the system. To check that ¬DIS is an invariant, we need a stronger
invariant Φ such that Φ ⇒ ¬DIS or equivalently Φ ∧DIS = false.

Figure 6 presents the verification heuristic for a system 〈γ(B1, . . . , Bn), Init〉
applied by the D-Finder toolset.

Example 6. Φ = Φ1 ∧ Φ2 ∧ Φ3 is the conjunction of the deadlock-free invariants given
in example 2. The predicate Φ ∧DIS, where DIS is given in example 5, is satisfiable
and it is the disjunction of the following terms:

Input: S = 〈γ(B1, . . . , Bn), Init〉
Output: S is deadlock-free or has a set of potential deadlocks.

1. Find Φ an invariant of S
2. Compute DIS for γ(B1, . . . , Bn).
3. If Φ ∧DIS = false then return “S is deadlock-free” else go to 4 or 6
4. Find Φ′ an invariant of S
5. Φ := Φ ∧ Φ′ go to 3
6. return the set of the solutions that satisfy Φ ∧DIS

Fig. 6. Heuristic for Deadlock Verification

1. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l6 ∧ θ = 100)
2. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)
3. (at l1 ∧ 0 ≤ t1 < 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)
4. (at l2 ∧ t1 ≥ 3600) ∧ (at l3 ∧ 0 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)
5. (at l2 ∧ t1 ≥ 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)

Each one of the above terms represents a family of possible deadlocks. To decrease the
number of potential deadlocks, we find a new invariant Φ′ stronger than Φ, such that
Φ′ = Φ ∧ Φint, where Φint is an invariant on the states of Rod1, Rod2 and Controller
induced by the interactions:

((at l2 ∧ t1 ≥ 3600) ∨ (at l4 ∧ t2 ≥ 3600) ∨ (at l5 ∧ 100 ≤ θ ≤ 1000))V
((at l1 ∧ t1 ≥ 0) ∨ (at l2 ∧ t1 ≥ 3600) ∨ (at l3 ∧ t2 ≥ 0)∨ (at l4 ∧ t2 ≥ 3600))V
((at l3 ∧ t2 ≥ 1) ∨ (at l4) ∨ (at l5 ∧ θ = 100))V
((at l1 ∧ t1 ≥ 0) ∨ (at l3 ∧ t2 ≥ 0) ∨ (at l6 ∧ θ = 1000) ∨ (at l6 ∨ 100 ≤ θ ≤ 998))V
((at l1 ∧ t1 ≥ 1) ∨ (at l2) ∨ (at l5 ∧ θ = 100))

The predicate Φ′ ∧DIS is reduced to:

6. (at l1 ∧ 1 ≤ t1 < 3600) ∧ (at l3 ∧ 1 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)
7. (at l1 ∧ 1 ≤ t1 < 3600) ∧ (at l4 ∧ t2 ≥ 3600) ∧ (at l5 ∧ θ = 1000)
8. (at l2 ∧ t1 ≥ 3600) ∧ (at l3 ∧ 1 ≤ t2 < 3600) ∧ (at l5 ∧ θ = 1000)

Finally, it can be checked by using finite state reachability analysis on an abstraction
of the system without variables, that only the first term represents feasible deadlocks,
the two other being spurious. This term characterizes deadlock configurations leading
to complete shutdown. ut

The D-Finder Toolset The D-Finder toolset allows deadlock verification by
application of the method (figure 7). It takes as input a BIP model and com-
putes component invariants CI by using Proposition 2. This step may require
quantifier elimination by using Omega. Then, it checks for deadlock-freedom of
component invariants by using Yices. From the generated component invariants,
it computes an abstraction of the BIP model and the corresponding interaction
invariants II. Then, it checks satisfiability of the conjunction II ∧CI ∧DIS. If
the conjunction is unsatisfiable, then there is no deadlock else either it generates
stronger component and interaction invariants or it tries to confirm the detected
deadlocks by using reachability analysis techniques.

Local
Deadlock-Free
verification

Deadlock
confirmation

DIS
generation

BIP
simulation

BIP model

DIS

Yices

Omega

Deadlock-free Deadlocks

generation
CI

II ∧ CI ∧ DIS

CI

II Satisfiability

false
6= false-strengthen 6= false-give up

II generation
Abstraction and

Fig. 7. D-Finder

Experimental results We provide experimental results for three examples.
The first example is the Temperature Control System extensively presented in
the paper. The second example is Utopar, an industrial case study of the Euro-
pean Integrated project SPEEDS (http://www.speeds.eu.com/) about an auto-
mated transportation system. A succinct description of Utopar can be found at
http://www.combest.eu/home/?link=Application2. The system is the composition
of three types of components: autonomous vehicles, called U-cars, a centralized
Automatic Control System and Calling Units. The latter two types have (al-
most exclusively) discrete behavior. U-cars are equipped with a local controller,
responsible for handling the U-cars sensors and performing various routing and
driving computations depending on users’ requests. We analyzed a simplified
version of Utopar by abstracting from data exchanged between components as
well as from continuous dynamics of the cars. In this version, each U-Car is
modeled by a component having 7 control locations and 6 integer variables. The
Automatic Control System has 3 control locations and 2 integer variables. The
Calling Units have 2 control locations and no variables. Finally, as third exam-
ple, we consider Readers-Writer systems in order to evaluate how the method
scales up for components without data.

The table below provides an overview of the experimental results obtained for
the three examples. For the columns: n is the number of BIP components in the
example, q is the total number of control locations, xb (resp. xi) is the total num-
ber of boolean (resp. integer) variables, D provides when possible, the estimated
number of deadlock configurations in DIS, Dc (resp. Dci) is the number of dead-
lock configurations remaining in DIS∧CI (resp. DIS∧CI∧II) and t is the total
time for computing invariants and checking for satisfiability of DIS ∧ CI ∧ II.
Detailed results are available at http://www-verimag.imag.fr/˜ thnguyen/tool.

example n q xb xi D Dc Dci t

Temperature Control System (2 rods) 3 6 0 3 8 5 3 3s
Temperature Control System (4 rods) 5 10 0 5 32 17 15 1m05s
Utopar System (4 U-Cars, 9 Calling Units) 14 45 4 26 - - 0 1m42s
Utopar System (8 U-Cars, 16 Calling Units) 25 91 8 50 - - 0 22m02s
Readers-Writer (50 readers) 52 106 0 1 ∼1015 ∼1015 0 1m15s
Readers-Writer (100 readers) 102 206 0 1 ∼1030 ∼1030 0 15m28s
Readers-Writer (130 readers) 132 266 0 1 ∼1039 ∼1039 0 29m13s

5 Conclusion

The paper presents a compositional method for invariant verification of component-
based systems. In contrast to assume-guarantee methods based on assumptions,
we use interaction invariants to characterize contexts of individual components.
These can be computed automatically from component invariants which play
the role of guarantees for individual components.

There are two key issues in the application of the method. The first is the
choice of component invariants depending on the property to be proved. The
second is the computation of the corresponding interaction invariants. Here there
is a risk of explosion, if exhaustiveness of solutions is necessary in the analysis
process.

The implementation and application of the method for proving deadlock-
freedom of component-based systems is promising. We use a class of compo-
nent invariants which capture well-enough guarantees for component deadlock-
freedom. Their computation does not involve fixpoints and avoids state space
exploration. D-Finder applies an iterative process for computing progressively
stronger invariants. Best precision is achieved when component reachability sets
are used as component invariants. This is feasible for finite state components.
There are no restrictions on the type of data as long as we stay within theories
for which there exist efficient decision procedures.

The obtained experimental results for non trivial case studies are really con-
vincing. The method can be adapted to interactions with data transfer. Data
transfer with finite domains, can be encoded by creating individual interactions
for each configuration of transferred data. Otherwise, the notion of component
invariant and subsequently the notion of interaction invariant can be extended
to take into account transferred data. Finally, an interesting work direction is
extending D-Finder to prove properties other than deadlock-fredom.

References

1. Kupferman, O., Vardi, M.Y.: Modular model checking. LNCS 1536 (1998) 381–401
2. Alur, R., Henzinger, T.: Reactive modules. In: Proceedings of the 11th Annual

Symposium on LICS, IEEE Computer Society Press (1996) 207–208
3. Abadi, M., Lamport, L.: Conjoining specification. ACM Transactions on Program-

ming Languages and Systems 17(3) (1995) 507–534

4. Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proceedings
of the 4th Annual Symposium on LICS, IEEE Computer Society Press (1989) 353–
362

5. Chandy, K., J.Misra: Parallel program design: a foundation. Addison-Wesley
Publishing Company (1988)

6. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3) (1994) 843–871

7. McMillan, K.L.: A compositional rule for hardware design refinement. In: CAV
’97, Springer-Verlag (1997) 24–35

8. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. (1985) 123–144

9. Stark, E.W.: A proof technique for rely/guarantee properties. In: FSTTCS: pro-
ceedings of the 5th conference. Volume 206., Springer-Verlag (1985) 369–391

10. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An eval-
uation of automated assume-guarantee reasoning. ACM Transactions on Software
Engineering and Methodology 17(2) (2008)

11. Peterson, J.: Petri Net theory and the modelling of systems. Englewood-Cliffs:
Prentice Hall (1981)

12. Apt, K.R., Francez, N., de Roever, W.P.: A proof system for communicating
sequential processes. ACM Trans. Program. Lang. Syst. 2(3) (1980) 359–385

13. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
bip. In: SEFM. (2006) 3–12

14. Team, O.: The omega library. Version 1.1.0 (November 1996)
15. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In:

CAV’06. Volume 4144 of LNCS. (2006) 81–94
16. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,

X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
TCS 138(1) (1995) 3–34

17. Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental verification by
abstraction. In: TACAS. (2001) 98–112

18. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of coun-
terexamples to induction. In: FMCAD. (2007) 173–180

19. Bensalem, S., Lakhnech, Y.: Automatic generation of invariants. FMSD 15(1)
(July 1999) 75–92

20. Sifakis, J.: Structural properties of petri nets. In: MFCS’78. Volume 64 of LNCS.
(1978) 474–483

21. Yamauchi, M., Watanabe, T.: Time complexity analysis of the minimal
siphon extraction problem of petri nets. IEICE Transactions on Communica-
tions/Electronics/Information and Systems (1999)

22. Tanimoto, S., Yamauchi, M., Watanabe, T.: Finding minimal siphons in general
petri nets. IEICE Trans. on Fundamentals in Electronics, Communications and
Computer Science E79-A(11) (1996) 1817–1824

23. Bensalem, S., Lakhnech, Y., Owre, S.: Computing abstractions of infinite state
systems automatically and compositionally. In: CAV’98. Volume 1427 of LNCS.
319–331

24. Bensalem, S., Lakhnech, Y., Owre, S.: Invest: A tool for the verification of invari-
ants. In: CAV’98. Volume 1427 of LNCS. 505–510

