
ACM 2007 Turing Award
Edmund Clarke, Allen Emerson, and Joseph Sifakis

Model Checking: Algorithmic Verification and Debugging
ACM Turing Award Citation
In 1981, Edmund M. Clarke and E. Allen Emerson, work-
ing in the USA, and Joseph Sifakis working independently
in France, authored seminal papers that founded what has
become the highly successful field of Model Checking. This
verification technology provides an algorithmic means of de-
termining whether an abstract model—representing, for ex-
ample, a hardware or software design—satisfies a formal
specification expressed as a temporal logic formula. More-
over, if the property does not hold, the method identifies
a counterexample execution that shows the source of the
problem.

The progression of Model Checking to the point where it
can be successfully used for complex systems has required
the development of sophisticated means of coping with what
is known as the state explosion problem. Great strides have
been made on this problem over the past 27 years by what
is now a very large international research community. As
a result many major hardware and software companies are
beginning to use Model Checking in practice. Examples of
its use include the verification of VLSI circuits, communica-
tion protocols, software device drivers, real-time embedded
systems, and security algorithms.

The work of Clarke, Emerson, and Sifakis continues to be
central to the success of this research area. Their work over
the years has led to the creation of new logics for specifica-
tion, new verification algorithms, and surprising theoretical
results. Model Checking tools, created by both academic
and industrial teams, have resulted in an entirely novel ap-
proach to verification and test case generation. This ap-
proach, for example, often enables engineers in the electron-
ics industry to design complex systems with considerable
assurance regarding the correctness of their initial designs.
Model Checking promises to have an even greater impact on
the hardware and software industries in the future.

Allen Emerson: A Bird’s Eye View

1. Formal Verification
Formal verification of program correctness hinges on the use
of mathematical logic. A program is a mathematical object
with well-defined, although possibly complex and intuitively
unfathomable, behavior. Mathematical logic can be used to

precisely describe what constitutes correct behavior. This
makes it possible to contemplate mathematically establish-
ing that the program behavior conforms to the correctness
specification. In most early work, this entailed constructing
a formal proof of correctness. In contradistinction, Model
Checking avoids proofs.

Hoare-style verification was the prevailing mode of formal
verification going back from the late-1960s until the 1980s.
This classic and elegant approach entailed manual proof con-
struction, using axioms and inference rules in a formal de-
ductive system, oriented toward sequential programs. Such
proof construction was tedious, difficult, and required hu-
man ingenuity. This field was a great academic success,
spawning work on compositional or modular proof systems,
soundness of program proof systems, and their completeness;
see section 4. Case studies confirmed that this approach
worked at least for small programs. A very short program
might require a lengthy multi-page paper. However, manual
verification did not scale up to large or industrial strength
programs. The proofs were just too hard to construct.

2. Temporal Logics
In view of the difficulties in trying to construct program
proofs it seemed like there ought to be a better way. The
way was inspired by the use of Temporal Logic (TL), a for-
malism for describing change over time. If a program can be
specified in TL, it can be realized as a finite state system.
This suggested the idea of model checking — to check if a
finite state graph is a model of a temporal logic specification.

The critical suggestion of using temporal logic for reasoning
about ongoing concurrent programs was made in Pnueli’s
landmark paper [37]. Such systems ideally exhibit nontermi-
nating behavior so that they do not conform to the Hoare-
style paradigm. They are also typically nondeterministic.
Examples include hardware circuits, microprocessors, oper-
ating systems, banking networks, communication protocols,
automotive electronics, and many modern medical devices.
He used a temporal logic with basic temporal operators F
(sometimes) and G (always). Augmented with X (next-
time) and U (until), this is today known as LTL (Linear
Time Logic).

Another widely used logic is CTL (Computation Tree Logic)
[8] (cf. [18]) Its basic temporal modalities are A (for all fu-
tures) or E (for some future) followed by one of F (some-
time), G (always), X (next-time), and U (until); compound
formulae are built up from nestings and propositional com-
binations of CTL subformulae. CTL is a branching time
logic as it can distinguish between AFP (along all futures,
P eventually holds and is thus inevitable) and EFP (along
some future, P eventually holds and is thus possible). The
branching time logic CTL* subsumes both CTL and LTL.

p

EFp: AFp:

pp

pp

p

p

p p

p

p
AGp:

Figure 1: Basic Temporal Operators

Temporal logic formulae are interpreted over a given finite
state graph, also called a (Kripke) structure, M comprised of
a set S of states, a total binary transition relation R ⊆ S×S,
and a labelling L of states with atomic facts (propositions)
true there. We may have also a distinguished (start) state
s0. As usual in mathematical logic, to be precise in defining
a logic we use the meta-notation M, s0 |= f as shorthand for
“in structure M at state s0 formula f is true”, for f a CTL
(or CTL*) formula. When s0 is understood, we may write
M |= f . For example, M, s0 |= AFp iff for all paths x =
s0, s1, s2, . . . in M we have ∃i ≥ 0 P ∈ L(si).

When doing specification in practice we may write just AFp
to assert that p is inevitable. An LTL formula h is inter-
preted over a path and then over a structure by implicit
universal path quantification: in practical specification we
write h but mean Ah.

The LTL formula G¬(C1∧C2) captures mutual exclusion for
the critical sections, corresponding to assertions C1 and C2,
of processes 1 and 2, respectively. In CTL, we would write
AG¬(C1∧C2) for mutual exclusion, and AG(T1 ⇒ AFC1)
for “whenever process 1 enters its trying region (T1) it in-
evitably enters its (C1) critical section.” The CTL formula
AGEF start asserts the system can aways be re-started;
this is not expressible in LTL. The CTL* formula EGFsend
asserts the existence of a fair behavior along which the send
condition occurs repeatedly. Such fairness conditions are
important in ensuring that goals are fulfilled in concurrent
systems.

The logics LTL, CTL, and CTL* have turned out to be
very influential, spawning industrial extensions and uses plus
many academic applications as well as theoretical results.
There are prominent industrial logics, tailored for hardware
verification using special “macros”, i.e. compact high-level
operators that expand into longer combinations of basic op-
erators. These include IBM Sugar based on CTL, Intel For-
Spec based on LTL, and Accellera-IEEE-1850 PSL incorpo-
rating features from CTL*.

Finally, there is also the (propositional) mu-calculus [28] (cf.
[18]), a particular but very general temporal logic. It per-
mits temporal correctness properties to be characterized as

fixed points or fixpoints of recursive definitions. For example
EFp = p∨EX(EF p). The mu-calculus plays a vital role in
model checking. It is very expressive: CTL, CTL*, as well
as LTL, can be encoded in the Mu-calculus. The fixed point
characterizations of temporal correctness properties underly
many conventional and symbolic model checking algorithms,
as well as tools used in practice.

3. Model Checking
In the early 1980s Ed Clarke and I proposed Model Check-
ing, a method for automatic (and algorithmic) verification
of finite state concurrent systems [8]; independently J.-P.
Quielle and Joseph Sifakis proposed essentially the same
method [39]. In Model Checking, temporal logic is used to
specify correct system behavior. An efficient, flexible search
procedure is used to find correct temporal patterns in the
finite state graph of the concurrent system. The orientation
of the method is to provide a practical verification method.
The technical formulation of the Model Checking problem is
simply: Given structure M , state s, and TL formula f , does
M, s |= f? An alternative formulation is: given M and f ,
calculate {s : M, s |= f}. In [8] we made several contribu-
tions. We introduced Model Checking (cf. [39]). We formu-
lated the logic CTL. We argued that concurrent programs
can be abstracted to finite state synchronization skeletons,
suppressing behavior irrelevant to concurrency. We gave a
CTL Model Checking algorithm that ran in time O(|f |·|S|2).

Our algorithm was based on fixpoint characterizations of
basic temporal modalities. For example, let f(Z) denote
p ∨ AXZ. We see that AFp = f(AFp) is a fixpoint of
f(Z), since AFp holds iff p holds or AXAFp holds. In gen-
eral, there may be multiple fixpoints. It can be shown that
AFp is the least fixpoint which we shall write µZ = f(Z),
with f(Z) as above. Intuitively, least fixpoints capture only
well-founded or finite behaviors. (as in AFp). The fixpoint
characterization µZ = f(Z) of property makes It is possible
to calculate iteratively the set of states where AFp is true.
We compute the maximum of the ascending chain of in-
creasingly larger under-approximations to the desired set of
states: false ⊆ f(false) ⊆ f2(false) ⊆ . . . ⊆ fk(false) =
fk+1(false), where k is at most the size of the (finite) state
space. More generally, the Tarski-Knaster Theorem [42]
permits the ascending iterative calculation

S
f i(false) of

any temporal property r characterized as a least fixpoint
µZ = f(Z), provided that f(Z) is monotone, which is en-
sured by Z only appearing un-negated. For greatest fix-
points, one starts the calculation at true. Essentially the
same algorithm was given in [39].

We also described a method for efficient Model Checking of
basic fairness properties. We showed that Model Checking
certain formulae not in CTL was NP-hard. Moreover, we
described an algorithmic method to synthesize synchroniza-
tion skeletons from CTL specifications.

The following are noteworthy extensions. CTL Model Check-
ing can be done in time O(|M | · |f |) [9], i.e., linear in the size
of the state graph and linear in the size of the formula. LTL
Model Checking can be done in time O(|M | · exp(|f |); since
M is usually very large while f is small, the exponential fac-
tor may be tolerable [31]. The automata-theoretic approach
to LTL Model Checking is described in [44]. A succinct fix-

point characterization of fairness from [21] is used to make
LTL Model Checking more efficient in practice. Branching
time CTL* Model Checking can be efficiently reduced to
linear time LTL Model Checking for the same overall bound
[22].

4. Expressivness
An important criterion for a logic is expressiveness, reflect-
ing what correctness properties can and cannot be captured
by the logic. Interesting properties include safety proper-
ties (“nothing bad happens”: e.g., G¬bad), liveness proper-
ties (“something good happens”: e.g., F goal), and fairness
properties (“something is recurrent”, e.g., GF try). It is ar-
guable that expressiveness in Model Checking is the most
fundamental characteristic, perhaps even more critical than
efficiency. It is imperative that one be able to actually ex-
press all the correctness properties that are needed. If this
basic requirement is not met, there is no point in using the
verification method in the first place. In actual usage, a
particular formalism, commonly a system of temporal logic,
provides the needed expressive power. It includes a few basic
temporal operators, which can be combined to yield virtu-
ally limitless assertions. Another benefit of temporal logic
is that it is related to natural language, which can facilitate
its use.

The ability to describe complex patterns of system behavior
is basic. LTL is naturally suited to the task. Along paths,
it is in a sense expressively complete, equivalent to the First
Order Language of Linear Order [17], e.g. GP = ∀t(t ≥ 0⇒
P (t)). A property such as G2 P meaning that P holds at
all even moments 0,2,4,... is not expressible in LTL. It can
be useful in hardware verification applications where it is
needed to count clock cycles. The (linear time) mu-calculus
as well as PSL can express this property. (cf. [45]).

CTL is well suited to capture correctness over computa-
tion trees. The branching time capability of distinguish-
ing between necessary and possible behaviors using explicit
path quantifiers A, E provides significant expressive power.
The existence of a bad path, EF bad, is not expressible by
any formula Ah where h is in LTL, nor even any univer-
sal CTL* formula where all path quantifiers are A (and
only atomic propositions appear negated). Thus, LTL is
not closed under semantic negation: writing the invariant
G¬bad means AG¬bad whose semantic negation is EF bad
which, as above, is not expressible by any Ah formula [19].
There has been an ongoing debate as to whether linear time
logic or branching time logic is better for program reason-
ing. Leading proponents of linear time include L. Lamport,
A. Pnueli, M. Vardi, and P. Wolper while proponents of
branching time include the authors, as well as P. Sistla. Lin-
ear time offers the advantage of simplicity, but at the cost
of significantly less expressiveness. Branching time’s poten-
tially greater expressiveness may incur greater conceptual
(and computational) complexity.

A related criterion is succinctness, reflecting how compactly
a property can be expressed. The CTL* formula E(FP1 ∧
FP2) is not a CTL formula, but is semantically equivalent to
the longer CTL formula EF(P1 ∧EFP2) ∨ EF(P2 ∧EFP1).
For n conjuncts, the translation is exponential in n. In prac-
tice, the most important is the criterion of convenience,

reflecting how easily and naturally properties can be ex-
pressed. Expressiveness and succinctness may be partially
amenable to mathematical definition and investigation. Suc-
cinctness and convenience often correlate but not always.
Convenience, however, is inherently informal. Yet it is ex-
tremely important in actual use. That is why, e.g., many
person-years were devoted to formulating industrial strength
logics such as PSL.

5. Efficiency
Another important criterion is efficiency, related to ques-
tions of the complexity of the Model Checking problem for a
logic and the performance of Model Checking algorithms for
the logic. An algorithm that has potentially high complexity
in theory but is repeatedly observed to exhibit significantly
lower complexity in actual use is likely to be preferred to one
better theoretical complexity but inferior observed perfor-
mance. Moreover, there are tradeoffs. For instance, a more
expressive logic is likely to be less efficient. A more succinct
logic is likely to be more convenient yet even less efficient.
Some experience is required to reach a good tradeoff. For
many Model Checking applications M is sufficiently small
that it can be explicitly represented in computer memory.
Such basic enumerative Model Checking may be adequate
for systems with 106 states.

However, many more systems M have an astronomically or
even infinitely large state space. There are some fundamen-
tal strategies to cope with large state spaces. Foremost,
is the use of abstraction where the original, large, complex
system M is simplified, by suppressing inessential detail (cf.
[8]), to get a (representation of a) smaller and simpler sys-
tem M . Compact representations of the state graph yield
another important strategy.

The advent of symbolic Model Checking combining CTL,
fixpoint computation, and data structures for compact rep-
resentation of large state sets, made it possible to check
many systems with an astronomical number of states (cf.
[6])

If there are many replicated or similar subcomponents, it is
often possible to factor out the inherent symmetry in the
original M resulting in an expononentially reduced abstract
M [41] (cf. [7]). Most work on symmetry has required the
use of explicit representation of M . Natural attempts to
combine symmetry and symbolic representation were shown
inherently infeasible [12]. However, a very advantageous
combination based on dynamically reorganizing the sym-
bolic representation overcomes these limitations [23]. Fi-
nally, one may have an infinite state system comprised of,
e.g., a (candidate) dining philosophers solution Mn for all
sizes n > 1. In many situations, this parameterized correct-
ness problem is reducible to Model Checking a fixed finite
size system Mc (cf. [20]).

6. Evolution of Model Checking
The early reception of Model Checking was restrained. Model
Checking originated in the theoretical atmosphere of the
early 1980s. There was a field of study known as Logics
of Programs, which dealt with the theory and sometime use
of logic for reasoning about programs. Various modal and
temporal logics played a prominent role. The key techni-

cal issue under investigation for such a logic was satisfiabil-
ity: Given any formula of f , determine whether there exists
some structure M such at M |= f . Analyzing the decidabil-
ity and complexity of satisfiability for these logics was the
major focus. However, Model Checking refers to the truth
under one given interpretation M of a given formula f . This
notion was implicit in the Tarskian definition of truth but,
classically, was not viewed as an interesting problem. The
idea that Model Checking should provide for verification of
finite state systems was not appreciated. The early reac-
tion to Model Checking then was mostly one of confusion
and disinterest. It seemed a disconcerting novelty. It was
not satisfiability. It was not validity. What was it? It was
even dubbed “disorienting”. Many felt it couldn’t possibly
work well in practice. In more recent times, some more fa-
vorable comments have been made. Model Checking is “an
acceptable crutch”. — Edsger W. Dijkstra; It is “a first step
towards engineerization of the field”. — A. Pnueli [38].

What factors contributed to Model Checking’s successful de-
ployment? First, the initial framework was feasible and com-
prehensible. It built on a helpful combination of TL and
algorithms. It provided a “push-button”, i.e., automated,
method for verification. It permitted bug detection as well as
verification of correctness. Since most programs are wrong,
this is enormously important in practice. Incidently, the
limited support for bug detection in proof-theoretic verifi-
cation approaches contributes to their slower adoption rate.
Moreover, while a methodology of constructing a program
hand-in-hand with its proofs certainly has its merits, it is not
readily automatable. This hampers its deployment. With
Model Checking, the separation of system development from
verification and debugging (see sect. 3) has undoubtedly fa-
cilitated Model Checking’s industrial acceptance. The de-
velopment team can go ahead and produce various aspects
of system under design. The team of verifiers or verification
engineers can conduct verification independently. Hopefully,
many subtle bugs will be detected and fixed. As a practical
matter, the system can go into production at whatever level
of “acceptable correctness” prevails at deadline time. Lastly,
Moore’s Law has engendered larger computer main memory,
which enabled the development of ever more powerful model
checking tools.

7. Discussion and Summary
What are the key accomplishments of Model Checking? In
my judgement, the key contribution is that verification using
model checking is now done routinely on a widespread ba-
sis for many large systems including industrial-strength sys-
tems. Large organizations from hardware vendors to govern-
ment agencies depend on model checking to facilitate achiev-
ing their goals. In contrast to 27 years ago, we no longer just
talk about verification; we do it. The somewhat surprising
conceptual finding is that verification can be done extremely
well by automated search rather than manual proofs.

Model Checking realizes in small part the Dream of Leibniz
[1646-1716] (cf. [16]). This was a proposal for a universal
reasoning system. It was comprised of a lingua characteris-
tica universalis, a language in which all knowledge could be
formally expressed. Temporal logic plays a limited formu-
lation of this role. There was also a calculus ratiocinator, a
method of calculating the truth value of such a formalized

assertion. Model Checking algorithms provide the means of
calculating truth. We hope that, over time, Model Checking
will realize an increasingly large portion of Leibniz’ Dream.

Edmund Clarke — My 27-Year Quest To
Conquer The State Explosion Problem

1. Model Checkers and Debugging
Model Checkers typically have three main components: (1) a
specification language, based on propositional temporal logic
[37], (2) a way of encoding a state machine representing the
system to be verified, and (3) a verification procedure, that
uses an intelligent exhaustive search of the state space to
determine if the specification is true or not. If the specifica-
tion is not satisfied, then most Model Checkers will produce
a counterexample execution trace that shows why the spec-
ification does not hold. It is impossible to overestimate the
importance of this feature. The counterexamples are invalu-
able in debugging complex systems. Some people use Model
Checking just for this feature. The EMC Model Checker
[9] did not give counterexamples for universal CTL prop-
erties that were false or witnesses for existential properties
that were true. Michael C. Browne added this feature to
the MCB Model Checker in 1984. It has been an important
feature of Model Checkers ever since.

Figure 2: A Model Checker with Counterexamples

2. State Explosion Problem
State explosion is the major problem in Model Checking.
The number of global states of a concurrent system with
many processes can be enormous. It is easy to see why this
is true. The asynchronous composition of n processes, each
having m states, may have mn states. A similar problem
occurs with data. The state-transition system for an n-bit
counter will have 2n states. All Model Checkers suffer from
this problem. Complexity-theoretic arguments can be used
to show that the problem is unavoidable in the worst case.
Fortunately, steady progress has been made over the past 27
years for special types of systems that occur frequently in
practice. In fact, the state explosion problem has been the
driving force behind much of the research in Model Checking
and the development of new Model Checkers. We discuss
below the major breakthroughs that have been made and
some of the important cases where additional research is
needed.

3. Major Breakthroughs
3.1 Symbolic Model Checking with OBDDs
In the original implementation of the Model Checking al-
gorithm, transition relations were represented explicitly by
adjacency lists [9]. For concurrent systems with small num-
bers of processes, the number of states was usually fairly
small, and the approach was often quite practical. In sys-
tems with many concurrent parts the number of states in
the global state-transition system was too large to handle.
In the fall of 1987, McMillan, then a graduate student at
Carnegie Mellon, realized that by using a symbolic repre-
sentation for the state-transition systems, much larger sys-
tems could be verified. The new symbolic representation was
based on Bryant’s ordered binary decision diagrams (OB-
DDs). OBDDs provide a canonical form for Boolean for-
mulas that is often substantially more compact than con-
junctive or disjunctive normal form, and very efficient algo-
rithms have been developed for manipulating them. Because
the symbolic representation captures some of the regularity
in the state space determined by circuits and protocols, it
is possible to verify systems with an extremely large num-
ber of states—many orders of magnitude larger than could
be handled by the explicit-state algorithms. With the new
representation for state-transition systems, we could verify
some examples that had more than 1020 states [6, 33]. Since
then, various refinements of the OBDD-based techniques
have pushed the state count up to more than 10120.

3.2 Partial Order Reduction
Verifying software poses significant problems for Model Check-
ing. Software tends to be less structured than hardware. In
addition, concurrent software is usually asynchronous, i.e.,
most of the activities taken by different processes are per-
formed independently, without a global synchronizing clock.
For these reasons, the state explosion problem is particu-
larly serious for software. Consequently, Model Checking
has been used less frequently for software verification than
for hardware verification. One of the most successful tech-
niques for dealing with asynchronous systems is the partial
order reduction. These techniques exploit the independence
of concurrently executed events. Intuitively, two events are
independent of each other when executing them in either
order results in the same global state. In this case, it is pos-
sible to avoid exploring certain paths in the state-transition
system. Model Checking algorithms that incorporate the
partial order reduction are described in several different pa-
pers. The stubborn sets of Valmari [43], the persistent sets of
Godefroid [25] and the ample sets of Peled [36] differ on the
actual details, but contain many similar ideas. The SPIN
Model Checker developed by Holzmann uses the ample-set
reduction to great advantage.

3.3 Bounded Model Checking with SAT
Although Symbolic Model Checking with OBDDs was the
first big breakthrough on the state explosion problem and is
still widely used, OBDDs have a number of problems that
limit the size of the models that can be checked with this
technique. The ordering of variables on each path from the
root of the OBDD to a leaf has to be the same. Finding an
ordering that results in a small OBDD is quite difficult. In
fact, for some Boolean formulas no space-efficient ordering
is possible. A simple example is the formula for the middle

output bit of a combinational multiplier for two n-bit num-
bers. It is possible to prove that the OBDD for this formula
has size that is exponential in n for all variable orderings.

Propositional satisfiability (SAT) is the problem of deter-
mining whether a propositional formula in conjunctive nor-
mal form (“product of sums form” for Boolean formulas) has
a truth assignment that makes the formula true. The prob-
lem is NP-complete (in fact, it is usually the first example
of this class that students see). Nevertheless, the increase
in power of modern SAT solvers over the past 15 years on
problems that occur in practice has been phenomenal. It
has become the key enabling technology in applications of
Model Checking to both computer hardware and software.
Bounded Model Checking (BMC) of computer hardware us-
ing a fast SAT solver is now probably the most widely used
Model Checking technique. The counterexamples that it
finds are just the satisfying instances of the propositional
formula obtained by unwinding to some fixed depth the
state-transition system for the circuit and the negation of
its specification in linear temporal logic.

Figure 3: Counterexample of length at most k

The basic idea for BMC is quite simple. The extension to
full LTL obscures the simplicity so we will just describe how
to check properties of the form GP where the property P
is an atomic proposition (e.g., “signal a = signal b”). BMC
determines whether there is a counterexample of length less
than a fixed bound. In other words, it checks if there is a
state labeled with ¬P that is reachable by a path consisting
of at most k transitions. See Figure 3. Assume that the
state-transition system M has n states. Each state can be
encoded by a vector ~v of dlog(n)e Boolean variables. The set
of initial states can be specified by a propositional formula
I(~v) which holds for exactly those assignments to ~v that
correspond to initial states. Likewise, the transition relation
can be given by a propositional formula R(~v,~v ′). A path of
length k starting in an initial state can be encoded by means
of the following formula:

I(~v0) ∧R(~v0, ~v1) ∧ . . . ∧R(~vk−1, ~vk). (1)

The property P fails in one of the k steps if and only if

¬P (~v0) ∨ ¬P (~v1) ∨ . . . ∨ ¬P (~vk). (2)

Thus, the safety property GP has a counterexample of
length at most k if and only if the conjunction Ω(k) of For-
mulas 1 and 2 is satisfiable:

Ω(k) = I(~v0) ∧
k−1̂

i=0

R(~vi, ~vi+1) ∧
k_
i=0

¬P (~vi). (3)

If the formula Ω(k) is satisfiable, we know that GP has a
counterexample of length at most k. A counterexample exe-
cution trace can be extracted from the satisfying assignment
to Ω(k). If the formula Ω(k) is not satisfiable, then it could

be the case that either the temporal formula GP holds on
all paths starting from an initial state (and our specification
is true) or there is a counterexample that is longer than k.
When Ω(k) is unsatisfiable, we can do one of two things:
Either increase the value of k and look for longer counterex-
amples or stop if time or memory constraints are exceeded.

In practice, BMC can often find counterexamples in circuits
with thousands of latches and inputs. Armin Biere recently
reported an example in which the circuit had 9510 latches
and 9499 inputs. This resulted in a propositional formula
with 4 × 106 variables and 1.2 × 107 clauses. The shortest
bug of length 37 was found in 69 seconds! Many others have
reported similar results.

Can BMC ever be used to prove correctness if no counterex-
amples are found? It can be argued that for safety proper-
ties, specified as a set of bad states, if there is a counterex-
ample, then there is one that is less than the diameter (i.e.,
the longest shortest path between any two states) of the
state-transition system. So, the diameter could be used to
place an upper bound on how much the transition relation
would need to be unwound. Unfortunately, it appears to be
computationally difficult to compute the diameter when the
state-transition system is given implicitly as a circuit or in
terms of propositional formulas for the set of initial states,
the transition relation, and the set of bad states. Other ways
for making BMC complete are based on cube enlargement
[34], circuit co-factoring [24], induction [40], and Craig in-
terpolants [35]. But, the problem remains a topic of active
research. Meanwhile, an efficient way of finding subtle coun-
terexamples is still quite useful in debugging circuit designs.

3.4 The Abstraction Refinement Loop
This technique uses counterexamples to refine an initial ab-
straction. We begin by defining what it means for one state-
transition system to be an abstraction of another. We write
Mα = 〈Sα, sα0 , Rα, Lα〉 to denote the abstraction of state-
transition system M = 〈S, s0, R, L〉 with respect to an ab-
straction mapping α. (Here we include the start states s0
and sα0 as parts of the state-transition systems.) We assume
that the states of both M and Mα are labeled with atomic
propositions from the set AP . We call M the concrete sys-
tem and Mα the abstract system.

Definition 1. A function α : S → Sα is an abstraction
mapping from the concrete system M to the abstract system
Mα with respect to the propositions in Aα if and only if

• α(s0) = sα0

• If there is a transition from state s to state t in M ,
then there is a transition from α(s) to α(t) in Mα.

• For all states s, L(s) ∩Aα = Lα(α(s)) ∩Aα

The three conditions ensure that Mα simulates M . Note
that only identically labeled states of the concrete model
(modulo propositions absent from Aα) will be mapped into
the same state of the abstract model (see Figure 4). The
key theorem relating concrete and abstract systems is the
Property Preservation Theorem:

Figure 4: A concrete system and its abstraction

Theorem 1 (Clarke, Grumberg, and Long[11]). If
a universal CTL∗ property holds on the abstract model, then
it holds on the concrete model.

Here, a universal CTL∗ property is one that contains no
existential path quantifiers when written in negation-normal
form. For example, AFP is a universal property but EFP
is not.

STOP

¬STOP

¬STOP

STOP

¬STOP

M Mα

Figure 5: Spurious Counterexample

The converse of the theorem is not true as Figure 5 illus-
trates. A universal property that holds in the concrete sys-
tem may fail to hold in the abstract system. For example,
the property AGF STOP (infinitely often STOP) holds in
M , but not in Mα. Thus, a counterexample to the property
in the abstract system may fail to be a counterexample in
the concrete system. Such counterexamples are said to be
spurious counterexamples. This leads to a verification tech-
nique called Counterexample Guided Abstraction Refinement
(CEGAR) [10]. Universal properties are checked on a series
of increasingly precise abstractions of the original system. If
the property holds, then by the Property Preservation The-
orem, it must hold on the concrete system and we can stop.
If it does not hold and we get a counterexample, then we
must check the counterexample on the concrete system in
order to make sure that it is not spurious. If the counterex-
ample checks on the concrete system, then we have found
an error and can also stop. If the counterexample is spuri-
ous, then we use information in the counterexample to refine
the abstraction mapping and repeat the loop. The CEGAR
Loop in Figure 6 generalizes an earlier abstraction technique

Program
Or

Circuit

Initial
Abstraction

Simulator

No error
or bug found

Property
holds

Simulation
sucessful

Bug found

Abstraction refinement Refinement

Model
Checker

Verification

Spurious counterexample

Counterexample

Abstract
Model

Figure 6: The CEGAR Loop

for sequential circuits called the localization reduction, which
was developed by R. Kurshan [29]. CEGAR is used in many
software Model Checkers including the SLAM Project at
Microsoft [1].

4. State Explosion Challenges for the Future
The state explosion problem is likely to remain the major
challenge in Model Checking. There are many directions for
future research on this problem, some of which are listed
below.

• Software Model Checking, in particular, combining Model
Checking and Static Analysis

• Effective Model Checking Algorithms for Real-time and
Hybrid Systems

• Compositional Model Checking of Complex Systems

• Symmetry Reduction & Parameterized Model Checking

• Probabilistic and Statistical Model Checking

• Combining Model Checking and Theorem Proving

• Interpreting long counterexamples

• Scaling up even more!!

Joseph Sifakis — The Quest for Correctness:
Challenges and Perspectives

Where are we today?
Verification techniques have definitely found important ap-
plications. After the first two decades of intensive research
and development, recent years have been characterized by a
shift in focus and intensity.

Algorithmic verification involves three different tasks: (1)
requirements specification, (2) building executable system
models, and (3) developing scalable algorithms both for check-
ing requirements and for providing diagnostics when require-
ments are not met. The status for each of these tasks is
discussed below.

Requirements specification. Requirements characterize
the expected behavior of a system. They can be expressed
following two paradigms. State-based requirements specify
a system’s observable behavior by using transition systems.

Property-based requirements use a declarative style. These
requirements are expressed as sets of formulas in a formal-
ism such as a temporal logic. A combination of the two
paradigms is necessary for enhanced expressiveness, such
as in the PSL language. The state-based paradigm is ade-
quate for characterizing causal dependencies between events,
e.g., sequences of actions. In contrast, the property-based
paradigm is more appropriate for global properties, e.g., live-
ness and mutual exclusion. For concurrent systems, an im-
portant trend is towards semantic variations of state-based
formalisms such as Live Sequence Charts [15].

Using temporal logics has certainly been a breakthrough in
understanding and formalizing requirements for concurrent
systems. Nonetheless, subtle differences in the formulation
of common concepts such as liveness and fairness, which
depend on the underlying time model (e.g., branching or
linear time), show that writing rigorous logic specifications
is not trivial.

Furthermore, the declarative and dense style in the expres-
sion of property-based requirements is not always easy to
master and understand. Requirements must be sound. That
is, they are satisfiable by some model. In addition they must
be complete. That is, no important information is omitted
about the specified system. In contrast to soundness which
is a well-understood property and can be checked automat-
ically by using decision procedures, there is no consensus as
to what precisely constitutes completeness in requirements
specifications, nor how to go about achieving it. Absolute
completeness, which means that specifications describe the
system exactly, has only a theoretical interest and is proba-
bly unattainable for non-trivial systems [30].

Existing requirements specification formalisms are mainly
appropriate for expressing functional requirements. We lack
rigorous formalisms for extra-functional requirements for se-
curity properties (e.g., privacy), reconfigurability properties
(e.g., non-interference of configurable features), and quality
of service (e.g., degree of jitter).

Building executable models. Successful application of ver-
ification methods requires techniques for building executable
models that faithfully represent a system or an abstraction
of it. Faithfulness means that the system to be verified
and its model are related through a checkable semantics-
preserving relation. This will ensure soundness of the model.
In other words, any property that we can verify for the model
will hold for the real system. Furthermore, to avoid errors
in building models and cope with their complexity, models
should be generated automatically from system descriptions.

For hardware verification, it is relatively straightforward
to generate exact logical finite state models, expressed as
systems of boolean equations, e.g., from RTL descriptions.
This probably explains the strong and immediate success of
Model Checking in the area. For software, the problem is
more difficult. In contrast to logical hardware models, we
need to formally define the semantics of the programming
language. This may not be an easy task for languages such
as C or Java, as it requires some clarification of concepts and
additional assumptions about their semantics. Once the se-

mantics is fixed, tractable models can be extracted from real
software through abstraction. This allows us to cope with
complexity of data and dynamic features. Currently, we do
not know how to build faithful models for systems consist-
ing of hardware and software, at the same level of detail as
for pure hardware or software. Ideally, for a system con-
sisting of application software running on a platform, the
corresponding model could be obtained as the composition
of models for the software and the platform. The main dif-
ficulty is in understanding and formalizing the interaction
between these two types of models, in particular by taking
into account timing aspects and resources such as memory
and energy. In addition, this should be done at some ade-
quate level of abstraction, allowing tractable models.

Today, we can specify and verify only high-level timed mod-
els with tools such as Uppaal [3] for schedulability analysis.
These models take into account hardware timing aspects
and some abstraction of the application software. The val-
idation of even relatively simple systems such as a node in
a wireless sensor network is carried out by testing physi-
cal prototypes or by ad-hoc simulation. We need theory,
methods, and tools for modeling complex heterogeneous sys-
tems [2]. Weaknesses in the state-of-the-art are also seen in
standards and languages for system modeling. Efforts for
extending UML to cover scheduling and resource manage-
ment issues have failed to provide a rigorous basis for this.
At the same time, extensions of hardware description lan-
guages to encompass more asynchronous execution models
such as SystemC and TLM can be used only for simulation,
due to a lack of formal semantic foundations.

Scalable verification methods. Today we have fairly ef-
ficient verification algorithms. However, all suffer from well-
known inherent complexity limitations when applied to large
systems. To cope with this complexity, I see two main av-
enues.

The first avenue is to develop new abstraction techniques,
in particular for specific semantic domains depending on
the data handled by the system and on the properties to
be verified. The convergence between Model Checking and
Abstract Interpretation [14] could lead to significant break-
throughs. These two main algorithmic approaches, which
have developed rather independently for almost three decades,
have a common foundation: solving fixpoint equations in
specific semantic domains.

Initially, Model Checking focused on the verification of finite
state systems such as hardware or complex control-intensive
reactive systems such as communication protocols. Later,
research on Model Checking addressed verification of infi-
nite state systems by using abstractions [11, 32]. The evo-
lution of abstract interpretation is driven by the concern
for finding adequate abstract domains for efficient verifica-
tion of program properties by computing approximations of
reachability sets. Model Checking has had a broader ap-
plication scope, including hardware, software and systems.
Furthermore, depending on the type of properties to be
checked, Model Checking algorithms may involve computa-
tion of multiple fixed points. I believe that the combination
of the two algorithmic approaches can still lead to signifi-

cant progress in the state-of-the-art, e.g., by using libraries
of abstract domains in Model Checking algorithms.

The second avenue addresses significant long-term progress
in defeating complexity. It involves moving from monolithic
verification to compositional techniques. We need divide-
and-conquer approaches for inferring global properties of a
system from the properties of its components. The current
state-of-the-art does not meet our initial expectations. The
main approach is by “assume-guarantee”, where properties
are decomposed into two parts. One is an assumption about
the global behavior of the system within which the compo-
nent resides; the other is a property guaranteed by the com-
ponent when the assumption about its environment holds.
As discussed in a recent paper [13], many issues make it dif-
ficult to apply assume-guarantee rules, in particular because
synthesis of assumptions (when feasible) may cost as much
as monolithic verification.

In my opinion, any general compositional verification theory
will be highly intractable and will be of theoretical interest
only. We need to study compositionality results for particu-
lar classes of properties and/or particular classes of systems
as explained below.

From a posteriori verification to constructivity
A big difference between Computer Engineering and more
mature disciplines based on Physics, e.g., Electrical Engi-
neering, is the importance of verification for achieving cor-
rectness. These disciplines have developed theory guaran-
teeing by construction the correctness and predictability of
artifacts. For instance, the application of Kirchoff’s laws
allows building circuits that meet given properties.

My vision is to investigate links between compositional veri-
fication for specific properties and results allowing construc-
tivity. Currently, there exists in Computer Science an im-
portant body of constructivity results about architectures
and distributed algorithms.

1) We need theory and methods for building faithful mod-
els of complex systems as the composition of heterogeneous
components, e.g., mixed software/hardware systems. This
is a central problem for ensuring correct interoperation, and
meaningful refinement and integration of heterogeneous view-
points. Heterogeneity has three fundamental sources which
appear when composing components with different (a) ex-
ecution models, e.g., synchronous and asynchronous execu-
tion, (b) interaction mechanisms such as locks, monitors,
function calls, and message passing, and (c) granularity of
execution, e.g., hardware and software [27].

We need to move from composition frameworks based on
the use of a single low-level parallel composition operator,
e.g., automata-based composition, to a unified composition
paradigm encompassing architectural features such as pro-
tocols, schedulers, and buses.

2) In contrast to existing approaches, we should investigate
compositionality techniques for high-level composition oper-
ators and specific classes of properties. I propose to investi-
gate two independent directions:

• One direction is studying techniques for specific classes
of properties. For instance, finding compositional ver-
ification rules guaranteeing deadlock-freedom or mu-
tual exclusion instead of investigating rules for safety
properties in general. Potential deadlocks can be found
by analysis of dependencies induced by interactions be-
tween components [26]. For proving mutual exclusion,
a different type of analysis is needed.

• The other direction is studying techniques for partic-
ular architectures. Architectures characterize the way
interaction among a system’s components is organized.
For instance, we might profitably study compositional
verification rules for ring or star architectures, for real-
time systems with preemptable tasks and fixed pri-
orities, for time-triggered architectures, etc. Compo-
sitional verification rules should be applied to high-
level coordination mechanisms used at the architec-
ture level, without translating them into a low-level
automata-based composition.

The results thus obtained should allow us to identify “verifi-
ability” conditions (i.e., conditions under which verification
of a particular property and/or class of systems becomes
scalable). This is similar to finding conditions for making
systems testable, adaptable, etc. In this manner, compo-
sitionality rules can be turned into correct-by-construction
techniques.

Recent results implemented in the D-Finder tool [4, 5] pro-
vide some illustration of these ideas. D-Finder uses heuris-
tics for proving compositionally global deadlock-freedom of
a component-based system, from the deadlock-freedom of its
components. The method is compositional and proceeds in
two steps.

• First, it checks that individual components are deadlock-
free. That is, they may block only at states where
they are waiting for synchronization with other com-
ponents.

• Second, it checks if the components’ interaction graph
is acyclic. This is a sufficient condition for establish-
ing global deadlock-freedom at low cost. It depends
only on the system architecture. Otherwise, D-Finder
symbolically computes increasingly strong global in-
variants of the system, based on results from the first
step. Deadlock-freedom is established if there exists
some invariant that is satisfied by the system’s initial
state.

Benchmarks published in [5] show that such a specializa-
tion for deadlock-freedom, combined with compositionality
techniques, leads to significantly better performance than is
possible with general-purpose monolithic verification tools.

A posteriori verification is not the only way to guaran-
tee correctness. System designers develop complex systems,
by carefully applying architectural principles that are op-
erationally relevant and technically successful. Verification
should advantageously take into account architectures and
their features. There is a large space to be explored, between

full constructivity and a posteriori verification. This vision
can contribute to bridging the gap between Formal Methods
and the body of constructivity results in Computer Science.

1. References
[1] T. Ball and S. K. Rajamani. The SLAM toolkit. In

Computer Aided Verification (CAV’01), LNCS 2102,
pages 260–264, 2001.

[2] A. Basu, M. Bozga, and J. Sifakis. Modeling
heterogeneous real-time components in BIP. In SEFM,
pages 3–12, 2006.

[3] G. Behrmann, A. Cougnard, A. David, E. Fleury,
K. G. Larsen, and D. Lime. Uppaal-tiga: Time for
playing games! In CAV, pages 121–125, 2007.

[4] S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen.
Compositional verification for component-based
systems and application. In ATVA, pages 64–79, 2008.

[5] S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen.
D-finder: A tool for compositional deadlock detection
and verification. In CAV, 2009.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic Model Checking: 1020

states and beyond. 98(2):142–170, June 1992.
Originally presented at the 1990 Symposium on Logic
in Computer Science (LICS’90).

[7] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT press, 1999.

[8] E. M. Clarke and E. A. Emerson. Design and
synthesis of synchronization skeletons using branching
time temporal logic. In Logic of Programs: Workshop,
Yorktown Heights, NY, May 1981, volume 131, 1981.

[9] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Trans. Prog. Lang. Syst., 8(2):244–263, 1986.
Originally presented at the 1983 Symposium on
Principles of Programming Languages (POPL’83).

[10] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction
refinement for symbolic Model Checking. J. ACM,
50(5):752–794, 2003. Originally presented at the 2000
Conference on Computer-Aided Verification (CAV’00).

[11] E. M. Clarke, O. Grumberg, and D. E. Long. Model
Checking and abstraction. ACM Trans. Program.
Lang. Syst., 16(5):1512–1542, 1994.

[12] E. M. Clarke, S. Jha, R. Enders, and T. Filkorn.
Exploiting symmetry in temporal logic Model
Checking. Formal Methods in System Design,
9(1/2):77–104, 1996.

[13] J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke.
Breaking up is hard to do: An evaluation of
automated assume-guarantee reasoning. ACM Trans.
Softw. Eng. Methodol., 17(2), 2008.

[14] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL,
pages 238–252, 1977.

[15] W. Damm and D. Harel. LSCs: Breathing life into
message sequence charts. Formal Methods in System
Design, 19(1):45–80, 2001.

[16] M. Davis. The Universal Computer: The Road from

Leibniz to Turing. W. W. Norton & Co., 2000.

[17] E. A. Emerson. Temporal and modal logic. In
Handbook of Theoretical Computer Science, Volume B:
Formal Models and Sematics (B), pages 995–1072.
1990.

[18] E. A. Emerson and E. M. Clarke. Characterizing
correctness properties of parallel programs using
fixpoints. In Lecture Notes in Computer Science 85,
pages 169–181. Automata, Languages and
Programming, July 1980.

[19] E. A. Emerson and J. Y. Halpern. “Sometimes” and
“Not Never” revisited: On branching time versus
linear time. J. ACM, 33:151–178, 1986.

[20] E. A. Emerson and V. Kahlon. Reducing Model
Checking of the many to the few. In D. A. McAllester,
editor, CADE, volume 1831 of Lecture Notes in
Computer Science, pages 236–254. Springer, 2000.

[21] E. A. Emerson and C.-L. Lei. Efficient Model Checking
in fragments of the propositional mu-calculus
(extended abstract). In Proceedings, Symposium on
Logic in Computer Science, 16-18 June 1986,
Cambridge, Massachusetts, USA, pages 267–278, 1986.

[22] E. A. Emerson and C.-L. Lei. Modalities for model
checking: Branching time logic strikes back. Sci.
Comput. Program., 8(3):275–306, 1987.

[23] E. A. Emerson and T. Wahl. Dynamic symmetry
reduction. In N. Halbwachs and L. D. Zuck, editors,
TACAS, volume 3440 of Lecture Notes in Computer
Science, pages 382–396. Springer, 2005.

[24] M. K. Ganai, A. Gupta, and P. Ashar. Efficient
SAT-based unbounded symbolic Model Checking
using circuit cofactoring. In International conference
on Computer-aided design (ICCAD’04), pages
510–517, 2004.

[25] P. Godefroid. Using partial orders to improve
automatic verification methods. In Computer-Aided
Verification (CAV’90), LNCS 531, 1990.

[26] G. Gößler and J. Sifakis. Composition for
component-based modeling. Sci. Comput. Program.,
55(1-3):161–183, 2005.

[27] T. A. Henzinger and J. Sifakis. The discipline of
embedded systems design. IEEE Computer,
40(10):32–40, 2007.

[28] D. Kozen. Results on the propositional mu-calculus.
Theoretical Comput. Sci., 27:333–354, Dec. 1983.

[29] R. P. Kurshan. Computer-Aided Verification of
Coordinating Processes. Princeton University Press,
1994.

[30] N. G. Leveson. Completeness in formal specification
language design for process-control systems. In FMSP,
pages 75–87, 2000.

[31] O. Lichtenstein and A. Pnueli. Checking that finite
state concurrent programs satisfy their linear
specification. pages 97–107, Jan. 1985.

[32] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and
S. Bensalem. Property preserving abstractions for the
verification of concurrent systems. Formal Methods in
System Design, 6(1):11–44, 1995.

[33] K. L. McMillan. Symbolic Model Checking: An
Approach to the State Explosion Problem. Kluwer
Academic Publishers, 1993.

[34] K. L. McMillan. Applying SAT methods in unbounded
symbolic Model Checking. In Computer-Aided
Verification (CAV’02), LNCS 2404, pages 250–264,
2002.

[35] K. L. McMillan. Interpolation and SAT-based Model
Checking. In Computer-Aided Verification (CAV’03),
LNCS 2725, pages 1–13, 2003.

[36] D. Peled. Combining partial order reductions with
on-the-fly Model-Checking. In Computer Aided
Verification (CAV’94), LNCS 818, pages 377–390,
1994.

[37] A. Pnueli. A temporal logic of concurrent programs.
Theoretical Comput. Sci., 13:45–60, 1981.

[38] A. Pnueli. Verification engineering: A future
profession (A. M. Turing Award Lecture). In PODC,
page 7, 1997.

[39] J. P. Quielle and J. Sifakis. Specification and
verification of concurrent systems in CESAR. In
Proceedings of the 5th International Symposium on
Programming, pages 337–350, 1982.

[40] M. Sheeran, S. Singh, and G. St̊almarck. Checking
safety properties using induction and a SAT-solver. In
Formal Methods in Computer-Aided Design
(FMCAD’02), LNCS 1954, pages 108–125, 2000.

[41] A. P. Sistla, V. Gyuris, and E. A. Emerson. SMC: a
symmetry-based model checker for verification of
safety and liveness properties. ACM Trans. Softw.
Eng. Methodol., 9(2):133–166, 2000.

[42] A. Tarski. A lattice-theoretical fixpoint theorem and
its applications. 1955.

[43] A. Valmari. A stubborn attack on the state explosion
problem. In Computer-Aided Verification (CAV’90),
LNCS 531, 1990.

[44] M. Y. Vardi and P. Wolper. An automata-theoretic
approach to automatic program verification
(preliminary report). In Proceedings, Symposium on
Logic in Computer Science, 16-18 June 1986,
Cambridge, Massachusetts, USA, pages 332–344, 1986.

[45] P. Wolper. Temporal logic can be more expressive.
56:72–99, 1983.

