
TAXYS : a Tool for the Development and

Verification of Real-Time Embedded Systems⋆

Etienne CLOSSE1, Michel POIZE1, Jacques PULOU1, Joseph SIFAKIS2,
Patrick VENIER1, Daniel Weil1, and Sergio YOVINE2

1 France Telecom R&D, 28 chemin du Vieux Chêne, 38243 Meylan cedex, France,

firstname.lastname@rd.francetelecom.fr,
2 UMR VERIMAG, 2 rue Vignate, 38610 Gières, France,

firstname.lastname@imag.fr

Abstract. The paper presents a prototype of the Taxys tool devel-

oped within a collaboration between France Telecom R&D and VER-

IMAG. The connection of the Saxo-rt Esterel compiler and of the

Kronos model-checker, together with on-the-fly techniques, brings up

the possibility of verifying quantitative timing constraints on real indus-

trial telecommunication systems, such as a GSM radio link and a phone

prototype developed by France Telecom. In addition, Taxys offers a non-

ambiguous and user friendly formalism for specifying quantitative timing

constraints as well as high-level diagnostic functionalities.

Paper category : B (tool presentation)

Keywords : Esterel, Synchronous Languages, Real-Time, Embedded Sys-
tems, Model-Checking, Timed Automata.

⋆ This work is supported by the RNRT project TAXYS and the ITEA-DESS project

TAXYS : a Tool for the Development and

Verification of Real-Time Embedded Systems⋆

Etienne CLOSSE1, Michel POIZE1, Jacques PULOU1, Joseph SIFAKIS2,
Patrick VENIER1, Daniel Weil1, and Sergio YOVINE2

1 France Telecom R&D, 28 chemin du Vieux Chêne, 38243 Meylan cedex, France,

firstname.lastname@rd.francetelecom.fr,
2 UMR VERIMAG, 2 rue Vignate, 38610 Gières, France,

firstname.lastname@imag.fr

The correct behavior of real-time applications depends not only on the cor-
rectness of the results of computations but also on the times at which these
results are produced. As a matter of fact, violations of real-time constraints in
embedded systems are the most difficult errors to detect, because they are ex-
tremely sensitive both to the patterns of external events stimulating the system
and to the timing behavior of the system itself. Clearly, the development of real-
time systems requires rigorous methods and tools to reduce development costs
and ”time-to-market” while guaranteeing the quality of the produced code (in
particular, respect of the temporal constraints).

The above requirements motivated the development of the Taxys tool, ded-
icated to the design and validation of real-time telecommunications software.
One of the major goal of the Taxys tool is to produce a formal model that
captures the temporal behavior of the whole application which is composed of
the embedded computer and its external environment. For this purpose we use
the formal model of timed automata [2]. The choice of this model allows the
use of results, algorithms and tools available. Here, we use the KRONOS model
checker [4] for model analysis.

From the source code of the application, an Esterel program annotated
with temporal constraints, the Taxys tool produces on one hand a sequential
executable code and on the other hand a timed model of the application. This
model is again composed with a timed model of the external environment in
order to obtain a global model which is statically analyzed to validate timing
constraints. This validation should notably shorten design time by limiting te-
dious test and simulation sessions.

1 Taxys

The objective of the Taxys project is to propose a framework for developing real-

time embedded code and verifying its correct behavior with respect to quantitative

timing constraints.
We use Esterel [3] as development language of the application. This lan-

guage provides powerful constructs for management of parallelism and excep-
tions. It has rigorously defined semantics. Esterel programs run in a single

⋆ This work is supported by the RNRT project TAXYS and the ITEA-DESS project

thread on a single processor with a non-preemptive interrupt routine and can
refer to external data and routines written in C for complex (numerical) com-
putations. Thus, the application is decomposed into a control part, written in
Esterel and a functional part written in C, and it is compiled with the Es-

terel compiler Saxo-rt [5].
The use of synchronous languages for the development of real-time reactive

applications relies on a ”synchrony assumption” meaning that the application
reacts infinitely fast with respect to its environment. This assumption, very
convenient in practice, must be validated for a given implementation on a target
machine. In practice, validating the synchrony assumption amounts to show
that the environment does not take too much lead over the application. This
requires the use of a ”realistic” synchrony assumption strongly depending on
the application, on the speed of the machine and on its interactions with the
environment. To interface the real-time system with its environment, we use an
external event-handler H, generated by Saxo-rt from an ad-hoc specification
[1], and which precisely takes into account the way external events are captured
by the interrupt mechanisms and sent to the application.

The behavior of such systems can be modelled by the composition of 3 sys-
tems represented as automata : the application automaton A, the external event
handler H, which abstracts the behavior of the interrupt routine and buffers
external events before they are taken into account by the next synchronous re-
action, and the environment model E which specifies the scenarios in which the
application must run [1].

The environment of a real-time embedded system can exhibit different be-
haviors that must be captured by some non-deterministic model. As Esterel

programs are deterministic, we add a non-deterministic instruction npause to the
Esterel language. The environment can thus be written in the same language
as the application. The timing constraints are specified directly by pragmas in
the Esterel code of A and E .

Taxys design flow is shown in Fig. 1. Saxo-rt generates three C-modules
which compute A, H and E transition functions : the model of the application
contains the embedded code itself. Kronos [4] explores the system states space
by composing on-the-fly A, H and E . Thus, no intermediate state explosion
occurs before composition and only reachable states are computed. If any timing
constraint is violated, a trace leading to this error is generated. This trace is then
re-executed step by step on the Saxo-rt graphical debugger to provide to the
user more precise diagnostics.

2 Timing analysis

We make the following assumption on the temporal behavior of the application:
execution time is spent in the functional part to compute C-functions which
have been previously instrumented by profiling. The Esterel code is annotated
with this information. This hypothesis is true for many reactive applications if
the embedded code has been compiled efficiently [5]. We then specify two kinds

Application

Environment

O
pe

n-
K

ro
no

s

Saxo-RT graphical
debugger

trace
replay

OKconstraint
violated

Handler

Sa
xo

-R
T

 E
st

er
el

C
om

pi
le

r

Implicit timed automata

E

H

A

1

2

①, ② : on-the-fly composition of (E,H) and of (H,A)
 : embedded application code

Taxys
verification

module������������
������������
������������

������
������

C
 c

om
pi

le
r

Fig. 1. Taxys Design Flow

of real-time constraints : throughput and deadline constraints. A throughput
constraint is a global constraint and expresses the fact that the system reacts fast
enough for a given environment model. The violation of a throughput constraint
corresponds to an overflow of H. A deadline constraint is “local”and expresses
for example, a maximum delay between a given input and a given output of the
system.

This approach is illustrated by the toy example“pulse” on Fig. 2, which is
composed of two parallel tasks. The first, triggered by input A, calls filter F .
The second, triggered by B, computes some correction G on an actuator using
result of function F . F (resp. G) consumes between Fmin (resp. Gmin) and
Fmax (resp. Gmax) CPU time. The buffer size of the external event handler H
is 1.

The throughput constraint is specified by the environment model written in
timed Esterel (Fig. 5). It is composed of two independent periodic tasks, the
first one strictly periodic with a period TA and the second one with a period TB

jittered by an interval [0, ε], for some constant ε.
There are two deadlines constraints on function F and G (Fig. 3) : (D1) F

must terminate d1 time units after arrival of event A and (D2) G must compute
value of actuator with data not older than d2 time units i.e., G terminates at
most d2 time units after the arrival of the last event A which was consumed by
function F . The annotated application code is given on Fig. 4 : D1 is specified by
the pragma 0 < clock(lastA) < d1, and D2 by the two pragmas Y = clock(lastA)
(which starts a new clock each time F is executed), and 0 < Y < d2.

3 Experimental results

We used Taxys for verifying the Esterel code for the communication mode of
a GSM terminal developed by Alcatel (815 Esterel lines and 48000 C lines).

Filter F

shared
memory

Correction G

Captor

Actuator

Clock A, period TA

Clock B, period TB H
an

dl
er

Environment Embedded System

Fig. 2. The “pulse” example

Environment

A!

SA

A! B!

SA& SB

G(x) F(x)

Handler

Application

x1:=0

tSA
tSB

x2:=0 y1:=0

(1) x1 < d1 (2) x1 < d2

F(x)

Fig. 3. Deadline constraints

loop

await A ;%{# Y=clock(last A) %}
call F();%{# Fmin<CPU<Fmax %}
%{# 0<clock(last A)<d1 %}
end loop

||

loop

await B ;

call G();%{# Gmin<CPU<Gmax %}
%{# 0<Y <d2 %}
end loop

Fig. 4. Application code

loop

npause;%{# TA<ca< TA; ca:=0}
emit A;

end loop

||

loop

npause;%{# TB<cb<TB+ǫ;cb:=0}
emit B;

end loop

Fig. 5. Environment code

We found 4 scenarios leading to deadline violations caused by a wrong scheduling
between two C-functions [1].

We present here results obtained on a digital phone prototype carrying si-
multaneously voice and data produced by a graphic tablet, implemented on a
32 MIPS Digital Signal Processor. Audio data are processed at 8kHz and their
processing consumes 3900 CPU cycles over the 4000 CPU cycles available every
125µs. Graphic tablet data are compressed by a vectorization algorithm which
consumes sporadically between 15000 and 20000 CPU cycles. 6 experiments were
carried out with the same Esterel code for the application but with different
environment models and handler buffer sizes. ISDN1 and ISDN2 with an en-
vironment model composed of two strictly periodic and independent tasks (the
first carrying audio data at 8kHz and the second the graphic tablet data at
100Hz). ISDN3 and ISDN4 with the second task being aperiodic and emitting
bursts at rates varying in a non-deterministic manner between 25 and 100Hz.
ISDN5 and ISDN6 with a third additional periodic task modelling switching
between several audio modes. In all cases, the application A consists of 3000 C
lines and 258 Esterel lines, and the environment E of 120 Esterel lines.

Results presented in table 3 show that a buffer size of at least 6 is neces-
sary for absorbing the sporadic task. We observe that the number of symbolic
states explored by Kronos increases exponentially with the “degree” of non-
determinism of the environment. Therefore, to cope with state explosion due to

environment non-determinism, it is necessary to find appropriate environment
model approximations preserving the verified properties.

Table 1. Taxys experimental results

Name Buff. size Symb. states Verif. time Diagnostic

ISDN1 5 2 200 1.27 s buffer overflow

ISDN2 6 10 849 5 s OK

ISDN3 5 15 894 6.29 s buffer overflow

ISDN4 6 633 472 10 mn 47 s OK

ISDN5 5 22 695 13.6 s buffer overflow

ISDN6 6 > 107 ? aborted

4 Conclusion

We have presented an original approach for specifying, designing and validat-
ing real-time embedded systems. This approach is implemented in an entirely
automated tool applicable to industrial size examples. Specifications are writ-
ten in a user friendly and compositional formalism which does not require from
the user any knowledge about timed automata or temporal logic. Its limitations
are mainly those of model-checking techniques. Any advance in these techniques
can be taken into account, transparently for the user. Furthermore, because the
embedded code is effectively executed during validation, the validation is trust-
worthy and is therefore particularly suited to safety critical applications.

References

1. V. Bertin, M. Poize, J. Pulou, J. Sifakis, Towards Validated Real-Time Software,

12th Euromicro Conference on Real-Time Systems, Stockholm, Sweden, June 2000

2. R. Alur, D. Dill, A theory of timed automata, Theoretical Computer Science,

126:183–235, 1994. Elsevier.

3. G. Berry, G. Gonthier, The Esterel Synchronous Programming Language : Design,

Semantics, Implementation, Science of Computer Programming, vol. 19-2, pp. 87-

152, 1992.

4. C. Daws, A. Olivero, S. Tripakis and S.Yovine. The tool Kronos. In Hybrid Systems

III, Verification and Control, Lecture Notes in Computer Science 1066, Springer-

Verlag, 1996.

5. D. Weil, V. Bertin, E. Closse, M. Poize, P. Venier, J. Pulou, Efficient Compilation

of Esterel for Real-Time Embedded Systems, Proceeding of CASES’2000, pp. 2-8,

San Jose, November 2000.

