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Abstract. The paper presents a methodology and supporting tools for
developing component-based embedded systems running on resource-
limited hardware platforms. The methodology combines two complemen-
tary component frameworks in an integrated tool chain: BIP and Think.
BIP is a framework for model-based development including a language
for the description of heterogeneous systems, as well as associated simu-
lation and verification tools. Think is a software component framework
for the generation of small-footprint embedded systems. The tool chain
allows generation, from system models described in BIP, of a set of func-
tionally equivalent Think components. From these and libraries includ-
ing OS services for a given hardware platform, a minimal system can
be generated. We illustrate the results by modeling and implementing a
software MPEG encoder on an iPod.

1 Introduction

Embedded systems development is subject to strong requirements for optimality
in the use of resources, and correctness with respect to non-functional properties,
as well as requirements for time-to-market and low cost through reuse and easy
customization.

We need holistic methodologies and supporting tools for all development ac-
tivities from application software to implementation. The methodologies should
be component-based to ease code reuse, modularity, reconfiguration and allow
implementations having a minimal footprint by only including the necessary ser-
vices. Components allow abstractions for structuring code according to a logical
separation of concerns. For early design error detection, application of valida-
tion and analysis techniques is essential, especially to guarantee non-functional
properties. Finally, the methodologies should rely on automated implementation
techniques that, for a given hardware platform, make the best possible use of its
characteristics and include only strictly necessary OS services.

Model-based development techniques aim at bridging the gap between appli-
cation software and its implementation by allowing predictability and guidance
through analysis of global models of the system under development. They offer in



principle, domain-specific abstractions independent of programming languages
and implementation choices. Nevertheless, they rely on system component mod-
els, which drastically differ from software component models used for operat-
ing systems and middleware [1–3]. For system description, components should
encompass real-time behavior, rich interfaces and a notion of composition for
natural description of heterogeneous interaction and computation. In contrast,
software components allow structuring and reuse of functions and associated
data. They use point-to-point interaction (e.g. function calls) through binding
interface specifications.

We present a fully component-based methodology and supporting tools for
the development of real-time embedded systems. The methodology combines
two complementary component frameworks in an integrated tool chain: BIP [4,
5] and Think [6] (see Figure 1). BIP is a framework for model-based development
including a language for the description of heterogeneous real-time systems, as
well as associated simulation and verification tools. Think is a software com-
ponent framework for the generation of small-footprint embedded systems. Our
tool chain allows generation, from system models described in BIP, of a set of
functionally equivalent Think components. From these and libraries including
OS services, a minimal system is generated for a given hardware platform.

Fig. 1. The BIP to Think tool-chain

The paper deals with the integration of component-based approaches used at
the two ends of the development chain. Usually, model-based techniques focus
on system description and analysis while they provide limited or very specific
support for component-based implementation. For instance, tools supporting
heterogeneous description, such as Ptolemy [7] or Metropolis [8], do not address
implementation issues. Others, such as MetaH [9], Giotto [10] or ROOM [11],



rely on given models of computation and provide support for specific implemen-
tations.

Component-based techniques for operating systems and middleware lack
analysis capabilities [1]. This motivates work on modeling middleware and op-
erating systems, for instance to evaluate performance and validate configuration
mechanisms as in [12]. However, such works typically use a standard system
architecture with all system services located in the kernel, and providing no sup-
port for applications to control the behavior of low-level services. This requires
modeling the kernel in order to validate its runtime behavior, a very difficult
task considering the complexity of standard kernels.

In contrast, Think is based on the exokernel paradigm [13] leading to mini-
mal solutions involving only the strictly necessary services. Using this paradigm
permits to move all the critical services (such as scheduling for instance) into the
application space, where they can be validated with the applications. This leaves
only very basic functionalities into the nano-kernel, which can be tested sepa-
rately to guarantee their proper runtime behavior. Think is a mature exokernel
technology which has been successfully used to generate implementations for
very constrained platforms such as smart cards [14], AVR (ATmega 2561, 8bits
microprocessor, 8Kb RAM, 256Kb FLASH) as well as ARM platforms (32Mb
RAM, 64Mb FLASH).

Our work integrates heterogeneous system modeling and analysis with a gen-
eral component-based implementation techniques. In this respect, it has similar
objectives with the work around nesC/TOSSIM/TinyOS environment for the
development of wireless sensor networks [15–17]. This framework has a more
narrow application scope and the integration between programming, simulation
and implementation tools is much stronger. However, in contrast with TinyOS,
Think preserves the components as runtime entities, permitting dynamic recon-
figuration or component replacement. Our work has also some similarities with
VEST [18]. However, VEST relies upon a thread-based model, whereas neither
BIP nor Think adopt any specific behavioral model.

The paper is organized as follows. Section 2 presents the BIP component
framework used to model the behavior and structure of systems. Section 3 de-
scribes the Think framework which provides the library and tool chain used
to generate system implementations. The generation tool used to translate a
BIP description to a Think system is presented in Section 4. A quantitative
evaluation of the results on a software MPEG encoder is presented in Section 5.

2 The BIP component model

BIP[5, 19] (Behavior, Interaction, Priority) is a framework for modeling hetero-
geneous real-time components. BIP supports a methodology for building com-
ponents from :

– atomic components, a class of components with behavior specified as a set
of transitions and having empty interaction and priority layers. Triggers of
transitions include ports which are action names used for synchronization.



– connectors used to specify possible interaction patterns between ports of
atomic components.

– priority relations used to select amongst possible interactions according to
conditions depending on the state of the integrated atomic components.

The application of this methodology leads to layered components (see fig 2).
The lower layer describes the behavior of a component as a set of atomic compo-
nents; the intermediate layer includes connectors describing interactions between
transitions of the layer underneath; the upper layer consists of a set of priority
rules used to describe scheduling policies for interactions.

This methodology allows a clear separation between behavior and structure
of a system (interactions and priorities).

The implementation of the BIP component framework includes a language for
hierarchical component modeling, and a code generator for an execution platform
on Linux. The execution platform allows simulation as well as exhaustive state
space enumeration. The generated models can be validated by using techniques
available in Verimag’s IF toolset [20, 21].

Fig. 2. Layered component model

We provide a description of the main features of the BIP language.

2.1 Atomic Components

An atomic component consists of:

– A set of ports P = {p1 . . . pn}. Ports are action names used for synchroniza-
tion with other components.

– A set of control states S = {s1 . . . sk}. Control states denote locations at
which the components await for synchronization.

– A set of variables V used to store (local) data.
– A set of transitions modeling atomic computation steps. A transition is a

tuple of the form (s1, p, gp, fp, s2), representing a step from control state s1
to s2. It can be executed if the guard (boolean condition on V ) gp is true
and some interaction including port p is offered. Its execution is an atomic
sequence of two microsteps:
1. an interaction including p which involves synchronization between com-

ponents with possible exchange of data, followed by



2. an internal computation specified by the function fp on V . That is, if v
is a valuation of V after the interaction, then fp(v) is the new valuation
when the transition is completed.

full
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y:=f(x)
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t
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Fig. 3. An atomic component.

Figure 3 shows an atomic reactive component with two ports in, out, variables
x, y, and control states empty, full. At control state empty, the transition
labeled in is possible if 0 < x. Interactions through in may modify the variable
x . They are immediately followed by the computation of a new value for y. From
control state full, the transition labeled out can occur. The omission of guard
and function for this transition means that the associated guard is true and the
internal computation microstep is empty. The syntax for atomic components in
BIP is the following:

atom::=
component component id

port [complete | incomplete] port id+

[data type id data id+]
behavior
{state state id

{on port id [provided guard]
[do statement] to state id}+}+

end
end

That is, an atomic component consists of a declaration followed by the definition
of its behavior. Declaration consists of ports and data. Ports are identifiers and
have attributes complete and incomplete whose meaning will be explained in 2.2.
For data basic C types can be used. In the behavior, guard and statement are
C expressions and statements respectively. We assume that these are adequately
restricted to respect the atomicity assumption for transitions e.g. no side effects,
guaranteed termination.

Behavior is defined by a set of transitions. The keyword state is followed by a
control state and the list of outgoing transitions from this state. Each transition
is labelled by a port identifier followed by its guard, function and a target state.

The BIP description of the reactive component of figure 3 is:



component Reactive
port in, out
data int x, y
behavior

state empty
on in provided 0 < x do y:=f(x) to full

state full
on out to empty

end
end

The following example shows an atomic component modeling the control of
a simple preemptable task:

component Task
port complete awake,begin,finish
port incomplete preempt, resume
behavior

state IDLE
on awake to WAIT

state WAIT
on begin to EXECUTE

state EXECUTE
on finish to IDLE
on preempt to SUSPEND

state SUSPEND
on resume to EXECUTE

end
end

The component has four control states called IDLE, WAIT, EXECUTE and SUSPEND,
five ports called awake, begin, finish, preempt and resume. The ports have at-
tributes complete and incomplete which characterize the way they synchronize
with other ports to form interactions (see next section).

2.2 Connectors and Interactions

Components are built from a set of atomic components with disjoint sets of
names for ports, control states, variables and transitions.

Notation: We simplify the notation for sets of ports in the following manner.
We write p1|p2|p3|p4 for the set {p1, p2, p3, p4} by considering that singletons are
composed by using the associative and commutative operation |.

A connector γ is a set of ports of atomic components which can be involved
in an interaction. We assume that connectors contain at most one port from each
atomic component. An interaction of γ is any non empty subset of this set. For
example, if p1, p2, p3 are ports of distinct atomic components, then the connector



γ = p1|p2|p3 has seven interactions: p1, p2, p3, p1|p2, p1|p3, p2|p3, p1|p2|p3. Each
non trivial interaction i.e., interaction with more than one port, represents a
synchronization between transitions labeled with its ports.

Following results in [22], we introduce a typing mechanism to specify the
feasible interactions of a connector γ, in particular to express the following two
basic modes of synchronization:

– Strong synchronization or rendezvous, when the only feasible interaction of
γ is the maximal one, i.e., it contains all the ports of γ.

– Weak synchronization or broadcast, when feasible interactions are all those
containing a particular port which initiates the broadcast. That is, if γ =
p1|p2|p3 and the broadcast is initiated by p1, then the feasible interactions
are p1, p1|p2, p1|p3, p1|p2|p3.

A system run is a sequence of feasible interactions.
The typing mechanism distinguishes between complete and incomplete in-

teractions with the following restriction: All the interactions containing some
complete interaction are complete; dually, all the interactions contained in in-
complete interactions are incomplete. An interaction of a connector is feasible if
it is complete or if it is maximal.

Preservation of completeness by inclusion of interactions allows a simple char-
acterization of interaction types. It is sufficient, for a connector γ to give the set
of its minimal complete interactions. For example, if γ = p1|p2|p3|p4 and the
minimal complete interactions are p1 and p2|p3, then the set of the feasible in-
teractions are p1, p2|p3, p1|p4, p2|p3|p4, p1|p2|p3, p1|p2|p3|p4.

If the set of the complete interactions of a connector is empty, that is all
its interactions are incomplete, then synchronization is by rendezvous: the only
feasible interaction involves all the ports of the connector (this is the maximal
incomplete interaction of the connector), see figure 4(a). Broadcast through a
port p1 triggering transitions labeled by ports p2, . . . , pn can be specified by
taking p1 as the only minimal complete interaction.

The syntax for connectors is the following:

interaction ::= port id+

connector::=
connector conn id = port id+

[complete = interaction+]
[behavior

{on interaction [provided guard] [do statement]}+

end]

That is, a connector description includes its set of ports followed by the optional
list of its minimal complete interactions and its behavior. If the list of the minimal
complete interactions is omitted, then this is considered to be empty. Connectors
may have behavior specified as for transitions, by a set of guarded commands
associated with feasible interactions. If α = p1|p2|...|pn is a feasible interaction
then its behavior is described by a statement of the form: on α provided Gα



do Fα, where Gα and Fα are respectively a guard and a statement representing
a function on the variables of the components involved in the interaction. As for
atomic components, guards and statements are C expressions and statements
respectively.

The execution of α is possible if Gα is true. It atomically changes the global
valuation v of the synchronized components to Fα(v).
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p3
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Fig. 4. Interaction types.

We use a graphical notation for connectors in the form of trees.
We denote an incomplete singleton interaction by a bullet on the correspond-

ing port and a complete singleton interaction by a triangle. A generalisation of
this notation is possible to describe hierarchical connectors [23]. For example,
consider the connector C1 described below:

connector C1 = p1|p2|p3

behavior
on p1|p2|p3 provided ¬(x1 = x2 = x3)
do x1, x2, x3 := MAX(x1, x2, x3)

end

It represents a strong synchronization between p1, p2 and p3 which is graphically
represented in figure 4(a), where the singleton incomplete interactions p1, p2, p3

are marked by bullets. The behavior for the interaction p1|p2|p3 involves a data
transfer between the interacting components: the variables xi are assigned the
maximum of their values if they are not equal.

The following connector describes a broadcast initiated by p1. The corre-
sponding graphical representation is shown in fig 4(b).

connector C2 = p1|p2|p3

complete = p1

behavior
on p1 do skip
on p1|p2 do x2 := x1

on p1|p3 do x3 := x1

on p1|p2|p3 do x2, x3 := x1

end



This connector describes transfer of value from x1 to x2 and x3.
Notice that contrary to other formalisms, BIP does not allow explicit dis-

tinction between inputs and outputs. For simple data flow relations, variables
can be interpreted as inputs or outputs. For instance, x1 is an output and x2, x3

are inputs in C2.

2.3 Priorities

Given a system of interacting components, priorities are used to filter interac-
tions amongst the feasible ones depending on given conditions. The syntax for
priorities is the following:

priority::=
priority priority id [if cond] interaction < interaction

That is, priorities are a set of rules, each consisting of an ordered pair of interac-
tions associated with a condition (cond). The condition is a boolean expression
in C on the variables of the components involved in the interactions. When the
condition holds and both interactions are enabled, only the higher one is possible.
Conditions can be omitted for static priorities.

Notation: We simplify the notation for repetitive rules. It is possible to
have a set of interactions instead of a single interaction in the previous pair.
All the interactions in the left hand side set have a lower priority than all the
interactions in the right hand side set.

The System example given in section 2.4 illustrates the use of priorities.

2.4 Compound Components

A compound component allows defining new components from existing sub-
components (atoms or compounds) by creating their instances, specifying the
connectors between them and the priorities. The syntax of a compound compo-
nent is defined by:

compound::=
component component id

{contains type id {instance id[parameters]}+}+

[connector+]
[priority+]

end

The instances can have parameters providing initial values to their variables
through a named association.

An example of a compound component named System is shown in figure 5.
It is the serial connection of three reactive components, defined as:
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Fig. 5. A compound component.

component System
contains Reactive r1, r2, r3
connector C1 = r1.in
complete = r1.in
connector C2 = r1.out|r2.in
behavior

on r1.out|r2.in do r2.x := r1.y
end
connector C3 = r2.out|r3.in
behavior

on r2.out|r3.in do r3.x := r2.y
end
connector C4 = r3.out
complete = r3.out
priority P1 r1.in < r2.out|r3.in
priority P2 r1.in < r3.out
priority P3 r1.out|r2.in < r3.out

end

We use priorities to enforce a causal order of execution as follows: once there is
an in through C1, the data are processed and propagated sequentially, finally
producing an out through C4 before a new in occurs through C1. This is achieved
by a priority order which is the inverse of the causal order.

The following example shows a compound component obtained by compo-
sition of three instances task1, task2 and task3 of the atomic component Task,
given in the previous example in section 2.1.

component FPPS
contains Task task1, task2, task3
connector beg1 = task1.begin, task2.preempt,task3.preempt
connector beg2 = task2.begin, task1.preempt,task3.preempt
connector beg3 = task3.begin, task1.preempt,task2.preempt
connector fin1 res2 = task1.finish, task2.resume
connector fin1 res3 = task1.finish, task3.resume
connector fin2 res1 = task2.finish, task1.resume
connector fin2 res3 = task2.finish, task3.resume



connector fin3 res1 = task3.finish, task1.resume
connector fin3 res2 = task3.finish, task2.resume
priority

// Priorities are shown below
end

The connectors are used to enforce mutual exclusion, that is, at most one
task can be in state EXECUTE. For example, the connector begi is used to force
preemption by taski of the other tasks when they are at state EXECUTE. The
connector fini resj(i 6= j) is used to resume preempted tasks when taski finishes.
It is easy to check mutual exclusion between tasks in the compound component.

We show below the three types of rules used to enforce decreasing priorities
between the tasks.Rules begi j(i 6= j) for beginning tasks of higher priority. Rules
begiprej to avoid preemption of tasks of higher priority. Finally, the rule fin1 2 3

ensures that when both task2 and task3 are suspended, task2 will resume.

priority // resume task2 if both task3 and
// task2 are suspended
priority fin1 2 3 task1.finish|task3.resume < task1.finish|task2.resume
// do not start 3 if 1 is ready
priority beg1 3 task3.begin, task3.begin|task1.preempt, task3.begin|task2.preempt

< task1.begin
// do not start 2 if 1 is ready
priority beg1 2 task2.begin, task2.begin|task1.preempt, task2.begin|task3.preempt

< task1.begin
// do not start 3 if 2 is ready
priority beg2 3 task3.begin, task3.begin|task2.preempt, task3.begin|task1.preempt

< task2.begin
// do not start 2 if 1 is executing
priority beg2pre1 task2.begin|task1.preempt < task1.preempt
// do not start 3 if 1 is executing
priority beg3pre1 task3.begin|task1.preempt < task1.preempt
// do not start 3 if 2 is executing
priority beg3pre2 task3.begin|task2.preempt < task2.preempt

2.5 Implementation

The implementation of the BIP framework (see figure 6) includes a frontend
for editing and parsing BIP programs, and a dedicated platform for the valida-
tion of models. The execution platform (BIP/Linux Platform on fig. 6) consists
of an Engine and software infrastructure for executing the models. It directly
implements BIP’s operational semantics in the following manner:

At a given control state, an atomic component waits for interactions through
the ports of the transitions enabled at that state. The Engine has access to the
connectors and the priority rules of the compound components. When all the
atomic components are waiting for interaction, the Engine:



Fig. 6. BIP Framework

1. computes the possible interactions;
2. filters by using priority rules the possible interactions by considering only

the maximal ones according to the priority orders;
3. chooses and executes one maximal interaction. The execution may involve

transfer of data between the interacting components. These are notified at
the end of the transfer to continue the execution of their interacting transi-
tions.

The platform allows state space exploration and provides access to the model-
checking tools of the IF toolset [20, 21]. It generates a finite state model that is
fed to the IF tools permitting to validate BIP models and ensure that they meet
properties such as deadlock-freedom, state invariants and schedulability.

For instance, it is easy to check that the FPPS example is deadlock-free. For
schedulability analysis, a timed BIP model is needed. It can be obtained by
adding timing constraints (e.g. enforcing periodicity of the awake port and worst
case execution times on the finish port) to the system model. Timing constraints
are expressed in BIP by using variables modeling clocks following the hybrid
automata paradigm [24]. More information about modeling real-time systems in
BIP can be found at [19].

3 The Think framework

Think[6, 25] (THink Is Not a Kernel) is a software framework for the develop-
ment of small-footprint embedded systems. It includes a programming model, a



library of operating system abstractions, and a set of tools dedicated to autom-
atize the configuration and building processes.

Think is an implementation of the Fractal component model [26]. Fractal
has been implemented on various software platforms (Java [27], .Net, C++ [28],
etc.) and for various uses (middlewares, multimedia applications, aspect-oriented
programming, etc.). Think is a C/assembly implementation of Fractal aiming as
easing the development of low-footprint embedded systems. Fractal is a hierar-
chical component model which advocates design patterns, such as separation of
concerns for instance, to reduce development and maintenance costs of complex
software systems. A component in Fractal consists of two parts: a functional core
which implements the service provided by the component, and a control layer
used to manage the component itself and implement non-functional properties.
Fractal programming model is based on the export-bind design pattern, which
guarantees the flexibility of the composition and permits to develop modular
implementations of system services. Components in Fractal can be dynamically
reconfigured or replaced due to the separation between the functional part of a
component and its control interface [29]. This programming model is a major
asset compared to similar system-building tools such as the OSKit [30] for in-
stance, as it permits to manage components as runtime entities which can be
easily reconfigurated or replaced.

Think includes a library of standard system abstractions optimized for var-
ious embedded platforms (ARM, PowerPC, Xscale, AVR, etc) that can be used
to build minimal systems suitable for execution on severely constrained hard-
ware platforms. Think includes both platform-independent services (i.e. mem-
ory manager, TCP/IP stack, file-systems, etc.) and services depending on the
characteristics of the underlying hardware (i.e. MMU manager, NIC and IDE
drivers, etc.). The modularity of the Fractal component model permits to link
only the required services, without having to manage cross-dependencies be-
tween modules as this is often the case in monolithic kernels. This flexibility
is a major asset with respect to traditional embedded operating systems which
typically include all the system services that could possibly be used by applica-
tions, resulting in a major waste of memory for embedded applications. Think
is thus especially well suited for resource-limited embedded systems as it permits
to build dedicated runtime environments including only the system abstractions
needed by the embedded applications.

Think offers various tools easing the configuration and building of the sys-
tem. The structure of the system is described using an Architecture Description
Language (ADL) that permits to specify which component must be included in
the system and the static links between the components. An Interface Descrip-
tion Language is used to describe the services implemented by the components
and how they can interact. A generation chain takes these descriptions and auto-
matically generates a minimal system composed of the applications, the selected
system services and the software framework needed to make them interact.



4 The BIP to Think compiler

We developed a compiler which generates Think components from BIP source
code, as well as the glue code needed to bind them (C and ADL source files).
Figure 7 depicts the translation process, which preserves the structure of BIP
models. Atomic components are translated into Think components. For each
connector a Think component is generated. Priorities are implemented by using
a specific Think component. Finally, an Engine component is used to implement
the operational semantics of BIP. Checking the correctness of the translation can
be decomposed into two steps:

– checking the correctness of each individual translation for atomic compo-
nents, connectors and priorities. These translations are simple expansions of
the BIP code which are easy to check.

– checking correctness of the Engine which is the only active component. The
Engine implements the semantics in the form of a simple automaton (see
figure 8).

Bellow, we illustrate the method by using the FPPS example.

Fig. 7. The BIP to Think translation process

4.1 Atomic components

Each BIP atomic component is mapped into a Think component. Each data
variable of an atomic BIP component is translated into an interface (Data) ex-
ported by the corresponding primitive Think component. The interface consists
in two simple methods get and set.

Similarly, each port of an atomic BIP component is translated into an in-
terface (Port) with 2 main methods: isSynced, to evaluate the guard of the
transition associated with this port, and execute, to compute the function of
this transition. We provide below the code generated for the port begin and the
transition from state WAIT to EXECUTE:

#define TASK_EXECUTE 3



// self variable is the Task component

// instance reference used to access

// bound interfaces and component’s

// variables

_enter_state_EXECUTE (Taskdata *self) {

reset_ports(self);

self->finish_port = 1;

self->preempt_port = 1;

self->state = TASK_EXECUTE;

}

_begin_execute (Taskdata *self){

if (self->state == TASK_WAIT){

_enter_state_EXECUTE(self);

}

}

Notice that when a state is entered (method enter state EXECUTE here), the
variables associated with ports (finish port and preempt port, ...) are reset (i.e.
set to 0) and only the variables associated with the ports that can be enabled
(ie. the port labels an outgoing transition from present state and its guard (if
any) evaluates to true) are toggled. Interactions eligible for execution must have
their port variables set to 1.

4.2 Connector components

Each connector of a BIP description is translated into a Think component.
This component is bound to the Port interface of each port of the connector and
exports a Connector interface. If the connector has guarded commands, it is also
bound to the Data interface of each involved variable.

The connector component computes the feasible interactions of the connec-
tor and triggers the execution of a maximal one, when it is needed. This is
implemented by using 2 methods:

– execute which executes one maximal feasible interaction of the connector
and returns false if there is no feasible interaction;

– isLegal which tests whether there is at least one feasible interaction to exe-
cute.

A connector component can also inhibit some interaction so as to respect
priorities (see 4.3). This is implemented by 2 methods:

– inhibit(id) method which marks the id interaction as not eligible
– the isInteractionLegal(id) that tests whether or not the id interaction is

feasible.

We provide below the isLegal and execute methods for a connector connect-
ing port begin of the component task1, and ports preempt of components task2



and task3. The compiler is able to statically compute the maximum interac-
tion and stores it in the MAX INT macro. The example below shows a broadcast
synchronization used when the first task begins (connector beg1):

// max interaction code

#define MAX_INT 0x0007

// connector local port coding

#define TASK1_BEGIN 0x1

#define TASK2_PREEMPT 0x2

#define TASK3_PREEMPT 0x4

// self variable is the connector component

// instance reference

bool isLegal(beg1data *self) {

// this mask has 1 bit for each port

self->port_mask = 0;

//ask if task1.begin is synced or not

if(CALL(self->task1_begin, isSynced)){

self->port_mask |= TASK1_BEGIN;

}

if(CALL(self->task2_preempt, isSynced)){

self->port_mask |= TASK2_PREEMPT;

}

if(CALL(self->task3_preempt, isSynced)){

self->port_mask |= TASK3_PREEMPT;

}

// legal iff begin port synced

return (self->port_mask & TASK1_BEGIN);

}

bool execute(beg1data *self){

// if begin not synced, nothing to execute

if (!(self->port_mask & TASK1_BEGIN)) {

return 1;

}

//notify all synced ports

if (self->port_mask & TASK1_BEGIN){

CALL(self->task1_begin, execute);

}

if (self->port_mask & TASK2_PREEMPT){

CALL(self->task2_preempt, execute);

}

if (self->port_mask & TASK3_PREEMPT){

CALL(self->task3_preempt, execute);

}

return 0;

}



4.3 The priority component

All BIP priority rules are implemented into a single Think component. This
component is bound to the Connector interface of each involved connector and
to the Data interface of each variable used in the guards. It exports a simple
Priority interface which includes the method apply. This method sequentially
applies all the priority rules in the system. For example, one relation of the BIP
priority rule beg1 3 from the previous example is translated into:

// beg3 : task3.begin, task2.preempt

// < beg1 : task1.begin

// self variable is the priority component

// instance reference

// guard is empty

guard = 1;

// low prio connector : beg2

cn_low = self->beg2;

// high prio connector : beg1

cn_high = self->beg1;

iid_low = BEG2_TASK2_BEGIN |

BEG2_TASK3_PREEMPT ;

// high prio inter. id (iid)

iid_high = BEG1_TASK1_BEGIN ;

// ask high prio connector if it is legal

// and inhibit inter on lower prio connector

// if needed

if (guard && CALL(cn_high,

isInteractionLegal, iid_high))

CALL(cn_low, inhibit, iid_low);

4.4 The Engine

The Engine component implements the BIP Engine using a Think component.
It contains the entry point of the system generated by Think and is responsible
for scheduling the computation. It runs an infinite loop (see figure 8) choosing
one maximal feasible interaction out of all possible ones and executing it. The
Engine first builds a list of connectors for which at least one interaction is feasible
(using the isLegal method for connectors), then it asks the priority component
to apply priorities (using the apply method). Finally, it chooses a connector from
the previous list and executes it (using the execute method of the connector).

4.5 Deployment

Figure 9 shows the architecture generated for FPPS after it has been deployed
(running). For the sake of clarity, only one connector component is represented.
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Fig. 8. Engine’s loop

Fig. 9. The generated system after deployment

The FPPS example described in BIP in the previous section includes three
tasks running in mutual exclusion. This property has been validated on the
BIP code using model-checking tools. The correctness of the translation process
ensures that mutual exclusion between the three tasks is respected in the code
generated by the BIP2Think compiler.



5 Evaluation

To illustrate our methodology and evaluate the performances and memory-
footprint of the generated system, we considered a software MPEG encoder.
We started from monolithic legacy C code (approx. 7000 lines of code). We used
BIP as a programming model for componentizing the C code so as to reveal
causality dependencies between functions. This led to a BIP model consisting
of 20 components and 34 connectors. A high-level decomposition of the BIP en-
coder model in shown below. Bullets represent incomplete ports and thick lines
represent buffered connections (i.e 2 connectors with a buffer component in the
middle).
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Fig. 10. BIP encoder model

We used scheduling policies proposed in [31] to control the execution of the
model so as to respect given deadlines and optimize quality. The BIP to Think
compiler produces 56 components. The resulting code is 6300 lines of C code
and 1000 lines of ADL code.

We generated an implementation of the encoder for an Apple iPod Video
on which we only used one of the two ARM cores running at 80Mhz. The test
consists in the encoding of 2 different videos.

To estimate the overhead added by the BIP componentization, we compare
the generated encoder system against a monolithic implementation derived from
the original encoder source code (i.e. without BIP or Think). Results are given
on Figures 11 and 12.



Resolution Length Encoding time Speed
(in pixels) (in frames) (in seconds) (in fps)

320×240 40 500 0.08
64×48 161 77 2

Fig. 11. Performances on the iPod Video for the BIP+Think encoder.

Resolution Length Encoding time Speed
(in pixels) (in frames) (in seconds) (in fps)

320×240 40 200 0.203
64×48 161 37 4.3

Fig. 12. Performances on the iPod Video for the monolithic encoder.

The overall encoding frame rate seems reasonable given the low CPU fre-
quency and memory bandwidth of the iPod. Figure 12 shows an overhead in
performance of roughly 100% for the BIP+Think version. This is reasonably
good considering that our compiler is still in an early stage of development and
has no optimization features. A more detailed analysis of the overheads by profil-
ing, shows that this is due for approximately 66% to execution of connectors and
for 33% to execution of priority rules. These can be reduced by code optimiza-
tion. One possible optimization is to replace the priority component and take
into account priorities at compile time by restricting the guards of the atomic
components. This solution is more efficient but less modular as it is not pos-
sible to incrementally modify priorities. A similar optimization can be applied
for connectors. It is possible, by using BIP’s operational semantics, to replace
two components by a single product component. The execution of connectors
between composed components becomes an internal transition of the product
component. This avoids communication overheard but also leads to a less mod-
ular solution.

The system size (including the video encoder) is 300Kb for the BIP+Think
and 216Kb for the monolithic version which results in a 38% overhead in size.
For comparison, a regular iPod linux kernel weights more than 1Mb without any
application code.

6 Conclusion and future work

We presented a methodology and tools for the design, validation and implemen-
tation of component-based systems. The methodology integrates two existing
component frameworks: one for high-level system description and analysis, the
other for component-based execution and reconfiguration. BIP allows high-level
system descriptions which can be simulated and validated on a workstation be-
fore being deployed on the target embedded platform. Think offers a large li-
brary of system services, already optimized for embedded hardware platforms,



to produce a minimal system, based on the modularity of the library and com-
pilation chain.

Integration is through a transformation preserving not only the semantics
but also the structure of the system model. The implementation includes a set of
components for scheduling, interconnect and functionality, which can be dynam-
ically reconfigured. Rigorous operational semantics of BIP allows application of
state-of-the-art validation techniques on system models for checking properties
such as deadlock-freedom, state invariants and schedulability. Model validation
implies validation of the implementation, provided that the tool chain and the
low-level services included in the system are correct. This is ensured by the sys-
tematic approach used in the translator which maps BIP concepts directly into
Think components, and by the simplicity of the nano-kernel which includes only
basic services, due to the exokernel architecture.

Bare-machine implementation is particularly appropriate for embedded sys-
tems. It allows tailored, lightweight, low-overhead solutions and precise control of
execution timing. Another advantage is validation of the implementation which
may be problematic when legacy operating systems are used. Faithfully modeling
the underlying execution mechanisms for a given operating system is non-trivial.

Future work concerning the BIP to Think translator includes support for
external events, such as interrupts or I/O. This type of events are currently
supported by Think and can be modeled in BIP as external ports. Another
work direction is the optimization of bindings in the Think framework, in order
to keep the flexibility of the export-bind design pattern without enduring the
cost of going through a proxy each time an inter-component method invocation
is executed.
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28. Layäıda, O., Hagimont, D.: Plasma: A component-based framework for building
self-adaptive applications. In: Proceedings of the Conference on Embedded Multi-
media Processing and Communications. (January 2005)
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