

Application Use Case for

Multi-core Schedulability

Technical Note

Fotios Gioulekas, CERTH

Peter Poplavko, Verimag

Alexandros Zerzelidis, CERTH

Panagiotis Katsaros, CERTH

Pedro Palomo, DEIMOS SPACE

December 2017

MoSATT-CMP 2

Abstract

In this document, we describe the procedures and development phases that took place during the

porting of the Guidance, Navigation and Control application (GNC app) provided by Elecnor Deimos-

Space S.L.U. onto LEON4 multi-core processor which is facilitated by the next-generation multicore

platform (NGMP). During this design process, we followed the MoSATT-CMP design methodology

and its associated tool-chain. Test-results obtained throughout this process are also shown.

MoSATT-CMP 3

Table of Contents

Index of Figures ... 4

CHAPTER 1. Description of the Guidance, Navigation and Control Application .. 5

CHAPTER 2. GNC Design based on MoSATT-CMP design flow .. 8

2.1 TASTE-IV modelling and TASTE2DOLC model transformation ... 8

2.1.1. TASTE-IV modelling (GNC-A) ... 9

2.1.2. TASTE-IV modelling (GNC-B) ..12

2.2 DOLC2BIP model transformation ..14

2.2.1. GNC-A model ..14

2.2.2. GNC-B model ..15

2.3 Multithread-BIP execution on LEON4 ..15

2.3.1. Multithread-BIP Execution for GNC-A ..15

2.3.2. Multithread-BIP Execution for GNC-B ..16

2.4 Instrumentation and WCET measurements (ALEXANDROS TO PUT STUFF HERE)18

CHAPTER 3. Conclusions ..19

MoSATT-CMP 4

Index of Figures

Figure 1: The Fixed Priority Process Network of the GNC application .. 6

Figure 2: The MSC of the GNC application ... 7

Figure 3: The FPPN model of the GNC application in TASTE-IV tool ... 9

Figure 4: The task graph of the GNC application .. 12

Figure 5: Real-time execution on LEON4 of the GNC application (GNC-A) ... 16

Figure 6: Zoomed Gantt-Chart (GNC-A) .. 16

Figure 7: Real-time execution on LEON4 of the pipelined GNC application (GNC-B) 17

Figure 8: Time window with jobs parallel executions (GNC-B) ... 17

MoSATT-CMP 5

CHAPTER 1. Description of the Guidance, Navigation and Control

Application
The (Guidance, Navigation and Control) GNC module is applicable to space applications for the

complete mission profile, from launch to splashdown. The main objective of the GNC real-time

software subsystem is to effect the movement of the vehicles and provide the corresponding sensor

and controller with the necessary data. The process involves three steps: guidance equipment and

software first compute the orbital location required to satisfy mission requirements, navigation then

tracks the vehicle's actual location, and flight control then transports the orbital to the required

location. Therefore, depending on the specific phase, some components can be inactive, and/or the

specific data to be exchanged can have a different format. For example, during the orbital phase, the

guidance function will provide inertial reference attitude to the controller, whereas in the re-entry

phase reference aerodynamic angles will be sent.

Based on the MoSATT-CMP methodology, the derived FPPN model of the GNC app is shown in

Figure 1. It comprises four major tasks:

I. The Guidance Navigation Task which is responsible to execute the guidance and navigation

algorithms. Specifically, it estimates the current translational state of the vehicle based on

the measures provided by the sensors and the actuators commands, whenever applicable.

Also, it computes the derived air data parameters and aerodynamic. This task keeps the

vehicle on track during the flight to reach the desired location for parachute triggering. It

calculates the actual location and provides the reference attitude and the calculated air data

and aerodynamic parameters to the control task which in its turn assures its objective. It

should be noted that if the reference attitude is pre-computed (e.g. coming from reference

trajectory for the Orbital phase), it will pass through this block to keep the generality of the

operation. This is a periodic process with period equal to 500ms, deadline equal to 500ms

and measured WCET equal to 22ms. The Guidance Navigation Task is assigned to functional

priority equal to four (4). Its criticality is D.

II. The Control FM Task which performs the control and flight management algorithms. This is a

periodic process with period equal to 50ms, deadline equal to 50ms and measured WCET

equal to 8ms. Its criticality is D. The control FM task is assigned to functional priority equal to

two (2).

III. The Control Output Task that is in charge of sending the outputs of the GNC to the Dynamics

Kinematics and Environment module (DKE). The output data consists of the geodetic altitude,

the longitude, the mach and the dynamic pressure values. This is also a periodic process with

period equal to 50ms, deadline equal to 50ms and measured WCET equal to 4ms. The

Control Output Task is assigned to functional priority equal to three (3). Its criticality is D.

IV. The Data Input Dispatcher Task, a periodic process with period equal to 50ms, deadline

equal to 50ms and measured WCET equal to 6ms. This task is signalled each time new data is

available; it reads the data, decodes the information and dispatches the data to the right

destination (i.e. Control FM and Guidance Navigation Tasks). In the GNC model used in this

case study, the MVM (Mission and Vehicle Management), IMU (Inertial Measurement Unit),

GPS (Global Positioning System) data which is fed to the data input dispatcher has been pre-

computed through measurements by their relevant subcomponents and stored in static-

memory buffers as C arrays for simplicity reasons. The Data Input Dispatcher Task is assigned

to functional priority equal to one (1). Its criticality is D.

MoSATT-CMP 6

Figure 1: The Fixed Priority Process Network of the GNC application

The GNC app as provided by Elecnor Deimos-Space S.L.U includes RTEMS calls and operates on one

of the four cores of the NGMP’s LEON4 multi-core processor. The Message sequence chart (MSC) of

the GNC app operations are delineated in Figure 2. The main objective in this activity is to port the

GNC app so as to utilise more than one core from the available four cores of LEON4 processor. To this

end, we followed the MoSATT-CMP design-flow and performed the next design steps toward the

GNC app porting procedure:

I. GNC app modelling in TASTE-IV.

II. Removal of RTEMS calls from the C code.

III. Generation of TASTE-IV functional C code primitives.

IV. Production of the GNC app task graph and the equivalent DOLC functional model (xml2xml

and c2c model transformation) through the incorporation of TASTE2DOLC tool.

V. Compilation of BIP models to Multithreaded C++ code (c2c++ model transformation) by

invoking the DOLC2BIP and RTBIP tools, respectively.

VI. Compilation for Multithread-BIP for LEON4 multi-core with thread-to-core affinity and

obtaining real-time performance measurements.

VII. C code instrumentation based on Rapita Verification Suite (RVS), data trace extraction and

WCET estimation.

It is noted that while working on steps i-vi, we expedited the WCET estimation procedure by

following a parallel path. Therefore, we re-organised the C code hierarchy of the GNC app produced

in step ii listed above, so as to enable successful instrumentation based on Rapita Verification Suite.

Specifically, 1) we developed a main function that executes the steps shown in the MSC chart of

Figure 2 emulating the GNC app operations, 2) we allocated all source code files to a single folder and

created a single make file. The file organisation of the original code was using four hierarchy levels

and multiple make-files.

MoSATT-CMP 7

Figure 2: The MSC of the GNC application

MoSATT-CMP 8

CHAPTER 2. GNC Design based on MoSATT-CMP design flow
We proceeded with GNC development targeting to LEON4 execution using more than one compute

core. Therefore, two versions of the GNC sub-module were designed.

The first one (GNC-A) is based on the timing constraints of the original specification, utilising 2 cores.

Note that this version gave relatively high offsets (close to the end of their periods) to two tasks out

of four. In the second version, which so-called pipeline version (GNC-B), we assume that there is

headroom to increase the latency constraint (i.e. their deadline) of these two tasks to go higher than

their period (D > T is commonly known as “pipelining” and as one of the methods to exploit multi-

core parallelism). This version uses 3 compute cores. The two versions of the application can be

installed by executing the following command in the folder tree of the repository:

Within the gnc-tas2bip folder there are the following folders:

The folders gnc-fppn and gnc-taste-initial contain the DOL-C source code and TASTE-IV model of the

first version of the GNC application (GNC-A). The folders pipegnc-fppn and pipegnc-taste-initial

include the DOL-C source code and TASTE-IV model of the pipeline version of the application

(GNC-B).

The TASTE-IV models are used as input to TASTE2DOLC tool to generate the task-graphs of the

GNC app and the initial code skeletons in DOL-C. To expedite the work process of porting the original

C code of the GNC sub-system and using it in our design methodology, we have built the TASTE-IV

model at first and designed a “bridge” API between the C libraries of GNC on one side and the

FPPN/DOL-C functional code style on the other side. After generating the task-graph and the skeleton

DOL-C code, we ported the C code of the GNC application into the DOLC code and proceeded with

the implementation on LEON4 following the proposed design stages.

2.1 TASTE-IV modelling and TASTE2DOLC model transformation

The first step is to design the corresponding TASTE-IV model of the GNC FPPN model. Figure 3

illustrates the equivalent TASTE-IV model of the GNC app and located at the folders gnc-taste-initial

(GNC-A) and pipegnc-taste-initial (GNC-B). The top-level structure of both versions is the same; the

difference is in the attributes.

gnc-fppn
gnc-taste-initial
pipegnc-fppn
pipegnc-taste-initial

pi

source ./tools/sourceme.rc

cd ./app/

./instal.sh

cd gnc-tas2bip

MoSATT-CMP 9

Figure 3: The FPPN model of the GNC application in TASTE-IV tool

2.1.1. TASTE-IV modelling (GNC-A)
The functional priority values for the tasks (based on their execution order in the MSC diagram) were

assigned as follows:

I. Data Input Dispatcher: Fpriority=1
II. Control FM Task: Fpriority=2
III. Guidance Navigation Task: Fpriority=4
IV. Control Output Task: Fpriority=3

The length of the Navigation_DATA_MB mailbox is equal to 10 due to the fact that according to the

MSC diagram of Figure 2 the Guidance-Navigation task requires 10 IMU packets to be signalled. After

the generation of the corresponding C code skeletons and the description of the C function code, the

TASTE2DOLC tool was invoked. Since the Control-Output-Task and the Guidance-Navigation-Task

exhibit 30ms and 450ms time offsets, respectively, we set the offsets.dat file as follows:

File: offsets.dat

control_output_task=30
guidance_navigation_task=450

The TASTE2DOLC tool transformed the TASTE-IV functional model to the equivalent DOLC functional

model under the generated fppn folder. The outputs of the TASTE2DOLC generator that are placed

into the fppn folder under the gnc-taste-initial folder comprise: a) generator.out (logging

information), b) fppn-dolc.xml (DOLC xml model), c) src folder with the DOLC C code generation,

d) fppn_tg.jobsprocs (jobs per task) and e) fppn_tg.jobs (task-graph description). Subsequently, we

MoSATT-CMP 10

proceeded with the RTEMS calls removal from the GNC app C source code and defining FPPN-API

bridge between FPPN/DOL-C API of the generated C skeletons and the plain C source code.

d) fppn_tg.jobsprocs

control_fm_task 10
guidance_navigation_task 1
control_output_task 10
data_input_dispatcher 10

Thus, control_fm_task generates jobs J1 - J10.

guidance_navigation_task generates job J11.

control_output_task generates jobs J12-J21.

data_input_dispatcher generates jobs J22-J31.

J1
J2
J3
J4
J5
J6
J7
J8
J9
J10
J11
J12
J13
J14
J15
J16
J17
J18
J19
J20
J21
J22
J23
J24
J25
J26
J27
J28
J29
J30
J31

e) fppn_tg.jobs

0 50 2 8 8
50 100 2 8 8
100 150 2 8 8
150 200 2 8 8
200 250 2 8 8
250 300 2 8 8
300 350 2 8 8
350 400 2 8 8
400 450 2 8 8
450 500 2 8 8
450 500 2 22 22
30 80 2 4 4
80 130 2 4 4
130 180 2 4 4
180 230 2 4 4
230 280 2 4 4
280 330 2 4 4
330 380 2 4 4
380 430 2 4 4
430 480 2 4 4
480 500 2 4 4
0 50 2 6 6
50 100 2 6 6
100 150 2 6 6
150 200 2 6 6
200 250 2 6 6
250 300 2 6 6
300 350 2 6 6
350 400 2 6 6
400 450 2 6 6
450 500 2 6 6
(J1, J2)
(J2, J3)
(J3, J4)
(J4, J5)
(J5, J6)
(J6, J7)
(J7, J8)
(J8, J9)
(J9, J10)
(J10, J11)
(J22, J1)
(J1, J23)
(J23, J2)
(J2, J24)
(J24, J3)
(J3, J25)
(J25, J4)
(J4, J26)

MoSATT-CMP 11

(J26, J5)
(J5, J27)
(J27, J6)
(J6, J28)
(J28, J7)
(J7, J29)
(J29, J8)
(J8, J30)
(J30, J9)
(J9, J31)
(J31, J10)
(J22, J23)
(J23, J24)
(J24, J25)
(J25, J26)
(J26, J27)
(J27, J28)
(J28, J29)
(J29, J30)
(J30, J31)
(J31, J11)
(J1, J12)
(J12, J2)
(J2, J13)
(J13, J3)
(J3, J14)
(J14, J4)
(J4, J15)
(J15, J5)
(J5, J16)
(J16, J6)
(J6, J17)
(J17, J7)
(J7, J18)
(J18, J8)
(J8, J19)
(J19, J9)
(J9, J20)
(J20, J10)
(J10, J21)
(J12, J13)
(J13, J14)
(J14, J15)
(J15, J16)
(J16, J17)
(J17, J18)
(J18, J19)
(J19, J20)
(J20, J21)

The hyperperiod by the TASTE2DOLC generator is H=500ms. The derived task-graph is depicted on

Figure 4, where Ji =pi [ki] is the job name, ki is some identifier number (different from i), Ai is the

arrival time of the job Ji, Di is the absolute deadline and Ci is WCET. The tasks Guidance Navigation

and Control Output exhibit time-offsets of 450 and 30ms, respectively. The next step included the

incorporation of the task-graph data to scheduling tool and the porting of the C code of the GNC app

to the basic DOLC code. The gnc-fppn folder includes the DOLC source code of the GNC app and the

relevant scripts for performing the compilations DOLC to BIP and Multithread-BIP. WCET values have

been measured based on LEON4 profiling after performing C++ compilation with -O3 compiler option

and linking with the Multithread-BIP library.

MoSATT-CMP 12

Figure 4: The task graph of the GNC application

2.1.2. TASTE-IV modelling (GNC-B)

The pipelined version of the GNC application, as mentioned above, targets to increase the number of

cores to be utilised in parallel. To this end, we modified the execution order of the tasks without

violating the data dependency among them. Specifically, we removed the offsets from the Control

Output and Guidance Navigation Tasks, but instead we skipped their first execution in the modified

version of the corresponding periodic “fire()” function calls. As a result their effective implicit offsets

become equal to their respective period (effectively, the offset jumped from 30ms to 50ms for

Control Output Task and from 450ms to 500ms for Guidance Navigation Task).

Since now the deferred tasks process the data from the previous period, to preserve the functional

behaviour in the new version these tasks should execute earlier, so they get higher (numerically

smaller) functional priorities. Further, to ensure extra parallelism (i.e. the goal of this pipelining

experiment) we use buffering technique: we added one extra place into the mailbox between

Data Dispatcher and Guidance Navigation, thus its length increased from 10 to 11 data items.

We assigned the new priority values for the tasks, as follows:

I. Data Input Dispatcher: Fpriority=1

II. Control FM Task: Fpriority=4

III. Guidance Navigation Task: Fpriority=3

IV. Control Output Task: Fpriority=2

MoSATT-CMP 13

Note that if we did not use buffering between Data Dispatcher and Guidance Navigation we would

have to inverse the priority order between these two tasks as well, but due to buffering their relative

priority order does not matter and they should not have precedence constraints between each other

(and hence executable in parallel on two different cores).

However, TASTE2DOLC tool is not aware of the extra buffering place in the mailbox between

Data Dispatcher and Guidance Navigation. By default it implies precedence constraints on the

mailbox. Therefore, we have modified the generated fppn-dolc.xml file manually by removing the

‘<precedence_chain>’ element that dictates the priority between Data Input Dispatcher and

Guidance Navigation Task. We also modified the generated task-graph description (we deleted the

job-precedence arcs (J22, J11) and (J11, J23)).

In this approach we assumed that 20 ms extra latency on producing the output at control_output is

tolerable for the system. The pipegnc_fppn folder contains the DOLC source files and the modified

task graph descriptions together with the relevant script files for model transformations.

fppn_tg_MODIFIED.jobs

0 50 2 8 8

50 100 2 8 8

100 150 2 8 8

150 200 2 8 8

200 250 2 8 8

250 300 2 8 8

300 350 2 8 8

350 400 2 8 8

400 450 2 8 8

450 500 2 8 8

0 500 2 22 22

0 50 2 4 4

50 100 2 4 4

100 150 2 4 4
150 200 2 4 4

200 250 2 4 4

250 300 2 4 4

300 350 2 4 4

350 400 2 4 4

400 450 2 4 4

450 500 2 4 4

0 50 2 6 6

50 100 2 6 6

100 150 2 6 6

150 200 2 6 6

200 250 2 6 6

250 300 2 6 6

300 350 2 6 6

350 400 2 6 6

400 450 2 6 6

450 500 2 6 6

(J11, J1)

(J1, J2)

(J2, J3)

(J3, J4)

(J4, J5)

(J5, J6)

(J6, J7)

(J7, J8)

(J8, J9)

(J9, J10)

(J22, J1)

(J1, J23)

(J23, J2)

(J2, J24)

(J24, J3)

(J3, J25)

(J25, J4)

(J4, J26)

MoSATT-CMP 14

(J26, J5)
(J5, J27)

(J27, J6)

(J6, J28)

(J28, J7)

(J7, J29)

(J29, J8)

(J8, J30)

(J30, J9)

(J9, J31)

(J31, J10)

(J23, J24)

(J24, J25)

(J25, J26)

(J26, J27)

(J27, J28)

(J28, J29)

(J29, J30)

(J30, J31)

(J12, J1)

(J1, J13)

(J13, J2)

(J2, J14)

(J14, J3)

(J3, J15)

(J15, J4)

(J4, J16)

(J16, J5)

(J5, J17)

(J17, J6)

(J6, J18)

(J18, J7)

(J7, J19)

(J19, J8)

(J8, J20)

(J20, J9)

(J9, J21)

(J21, J10)

(J12, J13)

(J13, J14)

(J14, J15)

(J15, J16)

(J16, J17)

(J17, J18)

(J18, J19)

(J19, J20)

(J20, J21)

(J22, J23)

2.2 DOLC2BIP model transformation

2.2.1. GNC-A model
The DOLC C code is compiled together with GNC C code (without the RTEMS calls C code) under the

invocation of the DOLC2BIP tool and a simulation is executed on BIP framework. Therefore, the DOLC

GNC model is transformed to the BIP C++ model. The simulation outputs are consistent with the

output produced by the original GNC app single-core RTEMS variant provided by Deimos which we

ran on LEON4 as well to obtain reference data output traces. The execution of the script “run”

located at the gnc-fppn folder performs the dolc2bip transformation and then BIP C++ compilation. It

should be noted here that the 30ms and 450ms offsets for the Control Output Task and Guidance

Navigation Task, respectively, are inserted by manually modified script during the dolc-to-bip

process. To be more specific, we inserted the following lines into the “run” script at dolc to bip

mechanism:

sed -i 's/cPeriodicSourcecontrol_output_task(0, 50)/cPeriodicSourcecontrol_output_task(30, 50)/g' ${APP_APSW}.bip

sed -i 's/cPeriodicSourceguidance_navigation_task(0, 500)/cPeriodicSourceguidance_navigation_task(450, 500)/g' ${APP_APSW}.bip

MoSATT-CMP 15

This transformation replaces zero offet by the required offset in the `PeriodicSource’ BIP components

for the respective tasks. These components are part of the `Task Controller’ functionality (see

TECHNICAL NOTE ON ENSURING SCHEDULABILITY).

We also use `sed’ to modify the initial arrival time assumed for these tasks in the `PrecedenceMutex’

components. These components ensure correct precedence order according to FPPN MoC semantics

and make part of the `MoC Controller’ functionality (see TECHNICAL NOTE ON ENSURING

SCHEDULABILITY).

This modification of the default design script demonstrates the possibility for the designer to have

access to the model transformation procedure of BIP and control the associated model generation.

Furthermore, the designer can also address late changes of the model behaviour without requiring to

return back to the first design step i.e. TASTE-IV model and without hacking the runtime environment

at the low level.

2.2.2. GNC-B model
Similarly, the execution of the script “run” located at the pipegnc-fppn folder performs the dolc2bip

transformation and the BIP C++ compilation. The file named fppn-dolc_SWModel.bip.x is the BIP

executable model. Also in this case the BIP simulation exhibited the same functional behaviour as the

original single-core GNC application.

2.3 Multithread-BIP execution on LEON4

2.3.1. Multithread-BIP Execution for GNC-A
The last step in the MoSATT-CMP design flow is to launch Multithread-BIP tool and compile the

generated BIP model under the BIP RTE framework and target it for execution on LEON4 processor.

The execution of the script “build-leon4”, which builds the Multithread-BIP executable based on the

compilation with the sparc-rtems-gcc (C part of the GNC app) and sparc-rtems-g++ (BIP code parts of

the GNC app) compilers. The executable was loaded under grmon and executed on LEON4.

Figure 5 delineates the Gantt Chart of the execution traces within a time frame equal to the

hyperperiod of the 500 ms. The PDF Gantt charts are obtained as described in Tast2BIP User Manual.

Core-0 is used as the `control core’ and runs BIP RTE engine and all the controller components (as

specified in textual file “threadmap.txt”). Core-1 and core-2 are `compute cores’ and run the

processes (as specified in the same file).

The GNC-A application built under the MoSATT-CMP methodology utilises 2 compute cores of the

LEON4 processor of the NGMP. Process P1 corresponds to the Data Input Dispatcher, P2 to the

Control FM Task, P3 to the Control Output Task and P4 to the Guidance Navigation Task. P20 is the

BIP Real Time Engine that runs on core-0. Processes P1, P2 and P3 utilise core -1 while P4 executes its

operations on core-2.

MoSATT-CMP 16

 Figure 5: Real-time execution on LEON4 of the GNC application (GNC-A)

Figure 6 zooms to the time frame where the parallel execution of P4 with P3 is shown with more

details. Right after the execution of 10 consecutive jobs of P1 and P2 the first job on P4 is executed.

The 10th job of P3 is operating in parallel with the 1st job of P4. Moreover, minor time shifts to the

jobs execution time are noticed and this is due to the P20 overhead.

Figure 6: Zoomed Gantt-Chart (GNC-A)

2.3.2. Multithread-BIP Execution for GNC-B
Similarly to the previous procedures we executed the “build-leon4” located at the pipegnc-fppn

folder and executed the Multithread-BIP pipelined version of the GNC app on LEON4. Figure 7 shows

the Gantt Chart of the execution traces within a time frame equal to the hyperperiod of the 500ms

while Figure 8 focuses on the time-window that jobs are executed in parallel on 4 cores.

MoSATT-CMP 17

Figure 7: Real-time execution on LEON4 of the pipelined GNC application (GNC-B)

Figure 8: Time window with jobs parallel executions (GNC-B)

As mentioned previously P4 and P3 processes skip their first job execution. This is noticeable in

Figure 7 where the first job of P4 (Guidance Navigation Task) is executed after the time-frame of the

500ms. In the same way, the first job of P3 is executed after 50ms. We also see that the 11th job of P1

is executed in parallel with the 1st job of P4, which means that P4 and P1 access to the buffered

mailbox concurrently. But this should happen correctly, as P4 reads the first 10 valid IMU frames

stored there while P1 writes the 11th frame. In the pipelined version, we, in fact, employ all 4 cores of

LEON4. P3 is executed on core-3 and in parallel to P1 and P4 which are executed on core-1 and

core 2, respectively.

MoSATT-CMP 18

Although, the pipelined GNC application utilises more cores than the first version, we notice that,

unfortunately, the aspired parallelism gain, which should increase the potential throughput speedup

of the application or minimize its required timing-partition size, was not achieved. This is visible if we

compare Figure 8 and Figure 6. The timing window where the task run after the beginning of the

period in the two cases is roughly the same: roughly 38 ms, leaving the slack of only 12 ms.

This is hypothetically due to the strong interference between P1 to P4. The job in P4 (Figure 8)

requires more time to be completed than the corresponding job of P4 shown in Figure 6. However,

there is room for improvement by improving the implementation of the mailbox and letting P4 ten

data items in one call to the `read’ interface instead of issuing 10 calls as it is done now.

2.4 Instrumentation and WCET measurements (ALEXANDROS TO PUT STUFF HERE)
We proceeded with the instrumentation after the GNC C code was “cleaned” from the RTEMS calls.

As mentioned previously, we redesigned the GNC C code hierarchy so as to include all files under a

single directory and form one makefile substituting the original multiple Makefiles, towards the

WCET measurements of the GNC app based on the instrumentation. Furthermore, we defined a main

function that models the GNC app operation. Table 1 shows the main file. The new C code hierarchy

was built both under gcc and bcc compiler and downloaded on one of the 4 cores of LEON4. The file

WCET_main_flat_bcc.tar.gz located at \trunk\tools\work_forge\GNC_app\ includes the single

directory file hierarchy of the GNC app compiled under bcc compiler.

File: wcetgnc.c
--
#include <stdio.h>
#include "data_input_dispatcher_API.h"
#include "control_fm_task_FPPN_API.h"
#include "control_output_task_FPPN_API.h"
#include "data_input_dispatcher_API.h"
#include "guidance_navigation_task_FPPN_API.h"
#include "Compilation_Flags.h"

int main(void) {

 // Call init functions for buffers
 GNC_Message_IF_FPPN__Init();
 Navigation_Input_Data_Buffer_FPPN__Init();
 Control_Input_Data_Buffer_FPPN__Init();

 Data_Input_Dispatcher_Task_FPPN__Init();
 void* status_DIP = Data_Input_Dispatcher_FPPN__ThreadInit();

 Control_FM_Task_FPPN__Init();
 void* status_Control_FM = Control_FM_Task_FPPN__ThreadInit();

 Control_Output_Task_FPPN__Init();
 void* status_Control_Output = Control_Output_Task_FPPN__ThreadInit();

 Guidance_Navigation_Task_FPPN__Init();
 void* status_GN = Guidance_Navigation_Task_FPPN__ThreadInit();

 int i,j;
 j = 0;
 while (1) { // repeat hyperperiod forever = models 500 ms cycle
 for (i=0; i<9; i++)
 {
 Data_Input_Dispatcher_FPPN__Fire(status_DIP);
 Control_FM_Task_FPPN__Fire(status_Control_FM);
 Control_Output_Task_FPPN__Fire(status_Control_Output);
 }//end for
 Data_Input_Dispatcher_FPPN__Fire(status_DIP);
 Control_FM_Task_FPPN__Fire(status_Control_FM);

MoSATT-CMP 19

 Guidance_Navigation_Task_FPPN__Fire(status_GN);
 Control_Output_Task_FPPN__Fire(status_Control_Output);
#ifdef LOGGING_DEBUGDATA
 printf("\n################################\n");
 printf("[TRACE while loop] = %d\n",j);
 printf("################################\n");
#endif

 j++;
 if(j==400)

 {

 return 0;
 }

 }//end while

 return 0;

}

Table 1: GNC main function

Instead of instrumenting the RTE BIP code of the GNC app as generated by the MoSATT-CMP design-

flow process, we have performed this step in parallel with the porting of the GNC app to the TATE-IV,

DOLC and BIP design phases due to the lack of time.

CHAPTER 3. Conclusions
This document describes the development and porting of the GNC application to the LEON4 multi-

core processor of the NGMP platform. We have successfully ported the code on the LEON4 multi-

core utilising more than 1 core in parallel. Two versions of the GNC application were designed to

show potential possibilities to imrove the parallelism (and hence either the throughput or the timing

partition size) at the cost of paying extra latency. The obtained results were reported and

demonstrated the capabilities of the current MoSaTT-CMP methodology and its associated design

tools.

