1-synchronous clocks, underspecified clocks and non-determinism

Guillaume Iooss, Albert Cohen, Marc Pouzet

ENS - PARKAS

April 29, 2019
Context of the presentation

- Link with the previous presentation:
 - Front-end in the previously presented compilation chain
 - Based on the synchronous compiler *Heptagon*
 - Orthogonal to the architecture used
Context of the presentation

- Link with the previous presentation:
 - Front-end in the previously presented compilation chain
 - Based on the synchronous compiler *Heptagon*
 - Orthogonal to the architecture used

- In relation to Lopht:
 - Manage the harmonic multi-periodic aspect
 - Normalization of the input Lustre program + annotations

- Other motivations:
 - Make specification easier to write manually in Lustre
 - Using more information which could be specified
Background - Synchronous language

- Manipulate infinite flow of values
- Global tick synchronize the production of values
- Point-to-point operators
- Accessing past values possible ("fby" ≈ memory)

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>4</td>
<td>−2</td>
<td>1</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>...</td>
</tr>
<tr>
<td>x + y</td>
<td>4</td>
<td>−1</td>
<td>2</td>
<td>6</td>
<td>...</td>
</tr>
<tr>
<td>42 fby y</td>
<td>42</td>
<td>4</td>
<td>−2</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>
Background - Clocks

- A stream might have no value on a tick
- **Clock**: $x :: clk$
 - Encode the presence of a value
 - Can be an arbitrary boolean stream
- Temporal operators: sub-sampling (when) and fusion (merge)
- Clocking analysis: check coherency of clocks

<table>
<thead>
<tr>
<th>x :: c</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>b :: c</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>...</td>
</tr>
<tr>
<td>$z = x$ when b :: c on b</td>
<td>0</td>
<td>$-$</td>
<td>1</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>y :: c on not b</td>
<td>$-$</td>
<td>42</td>
<td>$-$</td>
<td>$-$</td>
<td>...</td>
</tr>
<tr>
<td>merge $b z y$:: c</td>
<td>0</td>
<td>42</td>
<td>1</td>
<td>2</td>
<td>...</td>
</tr>
</tbody>
</table>
Background - Lustre

- Equational language for synchronous programs (similar languages: Scade, Heptagon, ...)

```
node accumulator(i : int) returns (o : int)
var x : int
let
    x = 0 fby o;
    o = x + i;
tel
```
Background - Lustre

- Equational language for synchronous programs
 (similar languages: Scade, Heptagon, ...)

```lustre
node accumulator(i : int) returns (o : int)
var x : int
let
  x = 0 fby o;
  o = x + i;
tel
```

- **Code generation:**
 - "reset" and "step" functions
 - Infinite "while" loop (1 iteration = 1 base tick)
 - Clocks: encoded using "if" conditions
Background - N-synchronous model

- **N-synchronous model:**
 - Ultimately periodic clocks
 - Example: 101(1001)
 - Strictly periodic: no initialization phase

⇒ Clocking analysis becomes more predictable
Background - N-synchronous model

- **N-synchronous model:**
 - Ultimately periodic clocks
 - Example: 101(1001)
 - Strictly periodic: no initialization phase

⇒ Clocking analysis becomes more predictable

- **buffer:** Communication between variables on two different clocks
 - Clocks must be compatible (adaptability relation: <:)
 ⇒ Able to compute the size of a buffer
1-synchronous clocks

Consider integration program:
Top-level node, orchestrating all tasks of an application
- Multiple harmonic periods (ex: 5 ms / 10 ms / 20 ms / …)
- Tasks are present only once per period
1-synchronous clocks

- Consider integration program:
 - Top-level node, orchestrating all tasks of an application
 - Multiple harmonic periods (ex: 5 ms / 10 ms / 20 ms / …)
 - Tasks are present only once per period

- 1-synchronous clocks: "\(0^k10^{n-k-1}\)" (or "\(0^k(10^{n-1})\)"
 with \(0 \leq k < n\), \(n = \text{period}\) and \(k = \text{phase}\)
1-synchronous clocks

- Consider integration program:
 Top-level node, orchestrating all tasks of an application
 - Multiple harmonic periods (ex: 5 ms / 10 ms / 20 ms / ...)
 - Tasks are present only once per period

- 1-synchronous clocks:

 \[(0^k 10^{n-k-1})\] (or \[0^k(10^{n-1})\])

 with \(0 \leq k < n\), \(n = \) period and \(k = \) phase

- Integration program: only 1-synchronous clocks are used
 \(\leadsto\) Can use that condition to do more inside a compiler
In this talk

Three incremental modifications on top of Lustre:

1. Restriction of the clock calculus to 1-synchronous clocks
 - Specialization of the N-synchronous clocks
 - Associated specialized clocking rules
 - Code generation possibilities (Hyperperiod Expansion)
In this talk

Three incremental modifications on top of Lustre:

1. **Restriction of the clock calculus to 1-synchronous clocks**
 - Specialization of the N-synchronous clocks
 - Associated specialized clocking rules
 - Code generation possibilities (Hyperperiod Expansion)

2. **Phases of the clock of some variables are not specified**
 - Kahn semantic satisfied, dataflow semantic not
 - Constraints on phases obtained from clocking rules
 - Solution used to go back to fully-specified Lustre program
In this talk

Three incremental modifications on top of Lustre:

1. Restriction of the clock calculus to 1-synchronous clocks
 - Specialization of the N-synchronous clocks
 - Associated specialized clocking rules
 - Code generation possibilities (Hyperperiod Expansion)

2. Phases of the clock of some variables are not specified
 - Kahn semantic satisfied, dataflow semantic not
 - Constraints on phases obtained from clocking rules
 - Solution used to go back to fully-specified Lustre program

3. Non-deterministic computation
 - Don’t mind which instance of a value used
 - Neither semantics are satisfied
 - More freedom for phase selection
 - Go back to deterministic program
1-synchronous clock calculus - Same period

- Clock calculus restricted to 1-synchronous clocks.
 - What happens to temporal operators?
1-synchronous clock calculus - Same period

- Clock calculus restricted to 1-synchronous clocks.
 \(\leadsto\) What happens to temporal operators?

- **buffer**: phase not specified \(\leadsto\) not yet
- **delay**: increment the phase of the clock / \(\text{delay}(d) = \text{delay}^d\)
 - Should not cross the period (no initialization)
 \[
 H \vdash a :: (0^k10^{n-k-1}) \quad 0 \leq d < n - k
 \]
 \[
 H \vdash \text{delay}(d) a :: (0^{k+d}10^{n-(k+d)-1})
 \]
Clock calculus restricted to 1-synchronous clocks.

What happens to temporal operators?

(buffer: phase not specified \(\leadsto\) not yet)

delay: increment the phase of the clock / \(\text{delay}(d) = \text{delay}^d\)

Should not cross the period (no initialization)

\[H \vdash a :: (0^k10^{n-k-1}) \quad 0 \leq d < n - k \]

\[H \vdash \text{delay}(d) a :: (0^{k+d}10^{n-(k+d)-1}) \]

delayfby(d): (initialization required / \(\approx\) "short fby")

\[H \vdash a :: (0^k10^{n-k-1}) \quad H \vdash i :: (0^{k+d-n}10^{n-(k+d-n)-1}) \quad 0 \leq k + d - n < n \]

\[H \vdash i \text{ delayfby}(d) a :: (0^{k+d-n}10^{n-(k+d-n)-1}) \]
Toward slower periods (when)

Clocks must be 1-synchronous + subclock condition:

⇒ Harmonicity condition

⇒ Argument of the when must be of the form \((F^k TF^{n-k-1})\)
Toward slower periods (when)

Clocks must be 1-synchronous + subclock condition:

⇒ Harmonicity condition

⇒ Argument of the when must be of the form "\((F^k TF^{n-k-1})\)"

\[
\begin{align*}
q \times n + k & \quad m = pn \quad l = qn + k \\
H \vdash a :: (0^k 10^{n-k-1}) \quad H \vdash a \text{ when } (F^q TF^{p-1-q}) :: (0^l 10^{m-l-1})
\end{align*}
\]
Toward faster periods (merge/current)

Clocks must be 1-synchronous + subclock condition:

⇒ Harmonicity condition

- **merge**: one branch per instance of fast period
- **current** (repetition of a value, with eventual updates)
 - Argument (when the update occurs) must be \((F^k TF^{n-k-1}) \)
 - Initialization needed ("i")
Toward faster periods (merge/current)

Clocks must be 1-synchronous + subclock condition:

\[\Rightarrow \text{Harmonicity condition} \]

- **merge**: one branch per instance of fast period
- **current** (repetition of a value, with eventual updates)
 - Argument (when the update occurs) must be "\((F^k \cdot TF^{n-k-1})\)"
 - Initialization needed ("i")

\[
H \vdash a :: (0^k 10^{n-k-1}) \\
H \vdash i :: (0^l 10^{m-l-1}) \\
n = pm \\
l = k - mq
\]

\[
H \vdash \text{current}((F^q \cdot TF^{p-1-q}), i, a) :: (0^l 10^{m-l-1})
\]
Code generation

- Use 1-synchronous restriction to generate efficient code
 - Know exactly when the activation will happen
 - All "buffer" are of size 1 → memory cell
Code generation

- Use 1-synchronous restriction to generate efficient code
 - Know exactly when the activation will happen
 - All "buffer" are of size 1 \(\sim\) memory cell

- Three code generation schemes:
 - Classical step function (base clock)
 - If conditions
 - One step function per phase (base clock)
 - No if conditions / while loop looping on them in order
 - One step function for the whole period (slowest clock)
 \(\Rightarrow\) Hyperperiod expansion transformation
Hyperperiod expansion - Example

Idea: change base period to a slower one (ex: scm of all periods)
⇒ (duplicate fast computation)
Hyperperiod expansion - Example

Idea: change base period to a slower one (ex: scm of all periods)
⇒ (duplicate fast computation)

Example:

<table>
<thead>
<tr>
<th>Input:</th>
<th>x :: (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local:</td>
<td>a :: (1), b :: (10)</td>
</tr>
<tr>
<td></td>
<td>a = f(x); // f stateless</td>
</tr>
<tr>
<td></td>
<td>b = g(a when (10)); // g stateless</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input:</th>
<th>x₀, x₁ :: (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local:</td>
<td>a₀, a₁, b :: (1)</td>
</tr>
<tr>
<td></td>
<td>a₀ = f(x₀);</td>
</tr>
<tr>
<td></td>
<td>a₁ = f(x₁);</td>
</tr>
<tr>
<td></td>
<td>b = g(a₀);</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
Hyperperiod expansion - More details

Transformed equation gives a set of equations. Intuitions:

- \(r(\text{Var}) \in \mathbb{N}^* \): ratio between \(\text{Var} \)'s period and slowest period
- Variable duplication: \(\text{Var} \sim \text{Var}_0, \ldots, \text{Var}_{r(\text{Var})-1} \)
- Applied on a normalized program
- Each equation is duplicated \(r(\text{lhsVar}) \) times
Hyperperiod expansion - More details

Transformed equation gives a set of equations. Intuitions:

- $r(Var) \in \mathbb{N}^*$: ratio between Var’s period and slowest period
- Variable duplication: $Var \sim Var_0, \ldots, Var_{r(Var)-1}$
- Applied on a normalized program
- Each equation is duplicated $r(lhsVar)$ times

Some interesting rules (informally written):

- $a = op(b1, \ldots, bm) \Rightarrow a_i = op(b1_i, \ldots, bm_i)$ for $0 \leq i < r$
Hyperperiod expansion - More details

Transformed equation gives a set of equations. Intuitions:

- \(r(Var) \in \mathbb{N}^* \): ratio between \(Var \)'s period and slowest period
- Variable duplication: \(Var \sim Var_0, \ldots, Var_{r(Var)-1} \)
- Applied on a normalized program
- Each equation is duplicated \(r(lhsVar) \) times

Some interesting rules (informally written):

- \(a = op(b1, \ldots, bm) \Rightarrow a_i = op(b1_i, \ldots, bm_i) \) for \(0 \leq i < r \)
- \(a = i \ fby \ b \Rightarrow a_0 = i \ fby \ b_{r-1} \mid a_i = b_{i-1} \) for \(1 \leq i < r \)
Hyperperiod expansion - More details

Transformed equation gives a set of equations. Intuitions:

- \(r(\text{Var}) \in \mathbb{N}^* \): ratio between Var's period and slowest period
- Variable duplication: \(\text{Var} \sim \text{Var}_0, \ldots, \text{Var}_{r(\text{Var})-1} \)
- Applied on a normalized program
- Each equation is duplicated \(r(\text{lhsVar}) \) times

Some interesting rules (informally written):

- \(a = \text{op}(b_1, \ldots, b_m) \Rightarrow a_i = \text{op}(b_{1i}, \ldots, b_{mi}) \) for \(0 \leq i < r \)
- \(a = i \text{ fby } b \Rightarrow a_0 = i \text{ fby } b_{r-1} \mid a_i = b_{i-1} \) for \(1 \leq i < r \)
- \(a = b \text{ when } (F^p \top F^{n-p-1}) \Rightarrow a_i = b_{p+i\times n} \) for \(0 \leq i < r(a) \)
Hyperperiod expansion - More details

Transformed equation gives a set of equations. Intuitions:

- \(r(Var) \in \mathbb{N}^* \): ratio between Var’s period and slowest period
- Variable duplication: \(Var \leadsto Var_0, \ldots, Var_{r(Var) - 1} \)
- Applied on a normalized program
- Each equation is duplicated \(r(lhsVar) \) times

Some interesting rules (informally written):

- \(a = op(b_1, \ldots, bm) \Rightarrow a_i = op(b_{1i}, \ldots, b_{mi}) \) for \(0 \leq i < r \)
- \(a = i \ fby \ b \Rightarrow a_0 = i \ fby \ b_{r-1} \mid a_i = b_{i-1} \) for \(1 \leq i < r \)
- \(a = b \) when \((F^p \ T \ F^{n-p-1}) \Rightarrow a_i = b_{p+i\times n} \) for \(0 \leq i < r(a) \)
- \(a = \text{current}((F^p \ T \ F^{n-p-1}), \ \text{init}, \ b) \)

\[
\Rightarrow \begin{cases}
 a_i = \text{init}_i \ fby \ b_{r(b)-1} & \text{for } 0 \leq i < p \\
 a_i = b_{\left\lfloor \frac{i-p}{n} \right\rfloor} & \text{for } p \leq i < r(a)
\end{cases}
\]
Hyperperiod expansion - Discussion

- Positive points:
 - Get rid of the multi-periodic aspect
 - Natural way to manage long tasks (with no cutting)
 - Decouple the phases of different instances of a variable
Hyperperiod expansion - Discussion

- **Positive points:**
 - Get rid of the multi-periodic aspect
 - Natural way to manage long tasks (with no cutting)
 - Decouple the phases of different instances of a variable

- **Negative points:**
 - Stateless functions needed
 (If stateful, need to expose the internal state and pass it
 + reset function to get initial state
 + at annotation to reuse the memory of states)
 - Additional real-time constraints needed on inputs/outputs
 (release/deadline)
The problem with phases

- Phases = large-grain schedule across the periods
 - "Good" choice of phases is architecture dependent
 (sequential: WCET balancing / parallel: ...more complicated)
The problem with phases

- Phases = large-grain schedule across the periods
 - "Good" choice of phases is architecture dependent
 (sequential: WCET balancing / parallel: ...more complicated)
- Phase computation is tedious to write and modify:
 - One phase modification impacts many equations
 - Humanly impossible for large applications
The problem with phases

- Phases = large-grain schedule across the periods
 - "Good" choice of phases is architecture dependent
 (sequential: WCET balancing / parallel: ...more complicated)
- Phase computation is tedious to write and modify:
 - One phase modification impacts many equations
 - Humanly impossible for large applications

⇒ Choice of phases should be separated from the computation
The problem with phases

- Phases = large-grain schedule across the periods
 → "Good" choice of phases is architecture dependent
 (sequential: WCET balancing / parallel: ...more complicated)
- Phase computation is tedious to write and modify:
 - One phase modification impacts many equations
 - Humanly impossible for large applications
 ⇒ Choice of phases should be separated from the computation

Modification proposed:
- Option to only define the period of some local variables
- Implicit buffers operator (clock of rhs <: clock of lhs)

Compilation flow:
- Clocking analysis gathers the constraints on phase
- Solver finds a solution (given cost function)
- Use this solution to explicit phases and buffer (→ delay)
Extracting constraints from clocking rules

- **buffer**: delay of an unknown length
 - $(0^k10^{n-k-1}) <: (0^l10^{m-l-1})$ iff $m = n$ and $k \leq l$

 \[
 H \vdash a : (0^k10^{n-k-1}) \quad 0 \leq k \leq l < n
 \]

 \[
 H \vdash \text{buffer} \ a : (0^l10^{n-l-1})
 \]
Extracting constraints from clocking rules

- **buffer**: delay of an unknown length
 \[(0^k10^{n-k-1}) <: (0^l10^{m-l-1}) \text{ iff } m = n \text{ and } k \leq l \]

\[
H \vdash a :: (0^k10^{n-k-1}) \quad 0 \leq k \leq l < n
\]

buffer by:
additional initialization (period crossed)

Variations of buffer with other constraints:
 - buffer which fixes its phase (ex: \(p \leq 3 \))
 - buffer which constraint the latency (ex: \(p_B - p_A \leq 3 \))
Example of clock extraction

a, e :: period(1);
b, d :: period(2);
c :: period(6);
b = buffer f_1(a when (FT));
c = buffer f_2(b when (TFF));
d = buffer f_3(current((FFT), 0, c))
e = buffer f_4(current((TF), 0, d))
Example of clock extraction

\[
\begin{align*}
\text{a, e} &:: \text{period}(1); \\
\text{b, d} &:: \text{period}(2); \\
\text{c} &:: \text{period}(6); \\
\text{b} &= \text{buffer } f_1(\text{a when (FT)}); \\
\text{c} &= \text{buffer } f_2(\text{b when (TFF)}); \\
\text{d} &= \text{buffer } f_3(\text{current((FFT), 0, c)}); \\
\text{e} &= \text{buffer } f_4(\text{current((TF), 0, d)}); \\
\end{align*}
\]

- **Bounds from variable declaration:**
 \[0 \leq p_a, p_e < 1 / 0 \leq p_b, p_d < 2 / 0 \leq p_c < 6\]

- **Constraints from buffer:**
 \[p_a + 1 \leq p_b / p_b \leq p_c / p_c - 4 \leq p_d / p_d \leq p_e\]

- **Solutions:**
 \[p_a = p_e = 0 / p_b = 1 / p_d = 0 / 1 \leq p_c \leq 4\]
Solving the constraints (1)

- **Solving:**
 - Constraint form allows efficient solving
 - Issue: Constraints for the cost function have a different form
Solving the constraints (1)

- **Solving:**
 - Constraint form allows efficient solving
 - Issue: Constraints for the cost function have a different form

- **Use case:** flight control application
 (6k nodes, 30k data, 4 harmonic periods)
 - Sequential case: load balancing across phases
 (task weight = its WCET)
 - Direct ILP formulation of the problem tricky possible
 (Introduce boolean variable $\delta_{T,k}$ for the phases)
 \Rightarrow Does not scale...
Solving the constraints (1)

- **Solving:**
 - Constraint form allows efficient solving
 - Issue: Constraints for the cost function have a different form

- **Use case:** flight control application
 (6k nodes, 30k data, 4 harmonic periods)
 - Sequential case: load balancing across phases
 (task weight = its WCET)
 - Direct ILP formulation of the problem tricky possible
 (Introduce boolean variable $\delta_{T,k}$ for the phases)
 \[\Rightarrow \text{Does not scale...} \]
 - ILP formulation with only boolean variable
 \[\Rightarrow \text{First integral solution found after 40 mins} \]
 - Good solution, non-optimal, but takes too much time
Solving the constraints (2)

- Using an ILP is an overkill
 - In this context, no need for an optimal solution
 - A "good enough" solution is enough
Solving the constraints (2)

- Using an ILP is an overkill
 - In this context, no need for an optimal solution
 - A "good enough" solution is enough

- **Heuristic:**
 - Initial solution: smallest valid phases for all nodes
 - Decrease toward local minimum:
 - Soft push (moving a phase without moving the rest)
 - Intermediate data structure \rightarrow quick evaluation of solution
Solving the constraints (2)

- Using an ILP is an overkill
 - In this context, no need for an optimal solution
 - A "good enough" solution is enough

- **Heuristic:**
 - Initial solution: smallest valid phases for all nodes
 - Decrease toward local minimum:
 - Soft push (moving a phase without moving the rest)
 - Intermediate data structure → quick evaluation of solution

⇒ **Result:** decreasing takes less than a second
 0,6% above the rational average
Solving the constraints (2)

- Using an ILP is an overkill
 - In this context, no need for an optimal solution
 - A "good enough" solution is enough

- **Heuristic:**
 - Initial solution: smallest valid phases for all nodes
 - Decrease toward local minimum:
 - Soft push (moving a phase without moving the rest)
 - Intermediate data structure → quick evaluation of solution

⇒ **Result:** decreasing takes less than a second
 0,6% above the rational average

- **Reinjection step:**
 - Complete the clocks of local variables
 - Replace all buffer with delay (or remove them)
Non-deterministic computation

- Physical values with low temporal variability
 - Ex: outside temperature
 - Want last value, but not strict requirement (older one ok)
 - Constraint on phase can be relaxed

⇒ Express and use ND to give more freedom to the compiler

Wanted constraint: $p_a + 2 \leq p_b$
(instead of $p_a + 4 \leq p_b$)
Non-deterministic computation

- Physical values with low temporal variability
 - Ex: outside temperature
 - Want last value, but not strict requirement (older one ok)
 - Constraint on phase can be relaxed

⇒ Express and use ND to give more freedom to the compiler

| ? |
|---|---|---|---|
| | | | |

Wanted constraint: \(p_a + 2 \leq p_b \)
(instead of \(p_a + 4 \leq p_b \))

- How to express notion in a minimal way in the language?
Non-deterministic operator: fby?

- **Proposition:** operator "fby?" to control non-determinism
Non-deterministic operator: fby?

- **Proposition:** operator "fby?" to control non-determinism
- Value of (i fby? expr) can be:
 - expr
 - or (i fby expr)
- **Analysis:**
 - Clocking: same rule than fby
 - Initialization: no issue
 - Causality: conservatively assume no fby
Non-deterministic operator: \texttt{fby}?

- **Proposition:** operator "\texttt{fby}?" to control non-determinism
- Value of \((i \ \texttt{fby}? \ expr)\) can be:
 - expr
 - or \((i \ \texttt{fby} \ expr)\)

- **Analysis:**
 - Clocking: same rule than \texttt{fby}
 - Initialization: no issue
 - Causality: conservatively assume no \texttt{fby}

- Value of \((i \ \texttt{fby}?^n \ expr)\) can be:
 - expr
 - or \((i \ \texttt{fby}^k \ expr)\) (with \(0 \leq k \leq n\))
Non-deterministic operator: $fby?$

- **Proposition:** operator "$fby?$" to control non-determinism
- Value of $(i \ fby? \ expr)$ can be:
 - $expr$
 - or $(i \ fby \ expr)$

- **Analysis:**
 - Clocking: same rule than fby
 - Initialization: no issue
 - Causality: conservatively assume no fby

- Value of $(i \ fby?^n \ expr)$ can be:
 - $expr$
 - or $(i \ fby^k \ expr)$ (with $0 \leq k \leq n$)

- **Determinization pass:** Replace all $fby?$ by a possible value (in our case: fix that depending on its phase)
Constraint extraction with non-determinism

\[y = (i \ fby?^2 \ x) \ \text{when (FFT)} \]

\[y = i \ fby?^2 \ \text{current}((\text{TFF}), 0, x) \]
Constraint extraction with non-determinism

\[y = (i \ fby^2 \ x) \text{ when } (\text{FFT}) \quad y = i \ fby^2 \ \text{current}((\text{TFF}), 0, x) \]

- Typing analysis: rule for \(fby? \) doesn’t give any constraint
 - Recognize \(fby? \) under a \(\text{when} \) & above a \(\text{current} \)
 - Typing rules for these specific situations
- Other option: defining \(\text{when}? \) and \(\text{current}? \) operators
In summary...

- 3 incremental extensions:
 - 1-synchronous clocks
 - ...with unknown phases
 - ...with non-deterministic computation

- Hyperperiod expansion transformation

- Constraints on phase can be inferred from the clocking rules

- Non-deterministic operator & adaptation of constraints
In summary...

- 3 incremental extensions:
 - 1-synchronous clocks
 - ... with unknown phases
 - ... with non-deterministic computation

- Hyperperiod expansion transformation

- Constraints on phase can be inferred from the clocking rules

- Non-deterministic operator & adaptation of constraints

- Thank you for listening, ...
 - ... Do you have any questions?