
The IF toolset

VERIMAG

M. Bozga, S. Graf, L. Mounier, Y. Lakhnech, Il. Ober, Iu. Ober, J. Sifakis

4th International School on
Formal Methods for the Design of

Computer, Communication and Software Systems:
Real Time

September 2004

The IF toolset: objectives

Model-based development of real-time systems

Use of high level modeling and programming languages
• Expressivity for faithful and natural modeling
• Cover functional and extra-functional aspects
• Openness

Model-based validation
• Combine static analysis and model-based validation
• Integrate verification, testing, simulation and debugging

Applications:
Protocols, Embedded systems, Asynchronous circuits,

Planning and scheduling

The IF toolset: approach

Modeling and programming
languages (SDL, UML, SCADE,
Java …)

Transition systems

simulation
test

verification1
verification2

verification3

Optimisation and abstraction

IF: Intermediate Format, based on a
general and powerful semantic model

state
explosion

The IF toolset: challenges for IF

Find an adequate intermediate representation

Expressiveness: direct mapping of concepts and primitives
of high modeling and programming languages

• asynchronous, synchronous, timed execution
• buffered interaction, shared memory, method call …

Use information about structure for efficient validation and
traceability

Semantic tuning: when translating languages to express
semantic variation points, such as time semantics,
execution and interaction modes

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

Modeling real-time systems

Environment
Application

SW

Sc
he

du
lin

g

Res. Managt

& synchro.stimuli

response

Real-time system

Thesis :
A Timed Model of a RT system can be obtained by “composing”
its application SW with timing constraints induced by both its
execution and its external environment

Modeling real-time systems

Application SW Timed model

Reactive machine
+ External Environment
+ Execution Platform
Quantitative (internal) time
Consistency pbs- timelocks

Timing constraints on
interactions

Assumptions about
Execution Times
Platform-dependent

?e [0,6]

!e [0,4]

DESCRIPTION Reactive machine
(untimed)

TIME Reference to physical
(external) time

TRIGGERING Timeouts to control
waiting times

ACTIONS No assumption
about Execution Times
Platform-independent

TO(5)

?e

Modeling real-time systems – Taxys (1)

Environment

Esterel+C

DSP

Event handler

tin

tout

Deadline constraint
tout - tin<d

Throughput constraint:
no buffer overflow

Modeling real-time systems – Taxys (2)

C Code

ESTEREL
+ C Data

Machine
Description

Target Machine
executable code

SAXO-RT

SAXO

Environment
Timed Model

IF/KRONOS

Timing Diagnostics

Event Handler Timed
Model

Exec. Times

Timed
(instrumented)

C
Code

C2TimedC

Modeling real-time systems – Taxys(3)

Application =
ESTEREL
+ Pragmas

Instrumented
C Code

SAXO-RT

Event Handler

IF/KRONOS

Timing Diagnostics

Exec.T

QoS requ.

Environment =
ESTEREL
+ Pragmas

Instrumented
C Code

SAXO-RT

KRONOS
Algorithms and
Data Structures

Target Machine
Executable Code

SAXO

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

From application SW to implementations

Environment

Platform

Scheduler

Task1

Event handler Resource management and Task synchronization

Task2 Task3 Task4Environment

Application software

From application SW to implementations

Application
SW

Lustre ADA SDL RT- Java
Esterel UML

C C++

Jini CORBA

DSP µcontroller
RTOS OSEK

TTA CAN

Implementation

From application SW to implementations

Application
SW

Functional, Logical, Abstract time,
High level structuring constructs and primitives

Simplifying synchrony assumptions wrt environment

abstraction

refinement

Implementation

Physical, Non functional properties
Execution times, interaction delays, latency, QoS
Mapping functional design into tasks, data, resources
Task coordination, resource management, scheduling

From application SW to implementations – synchronous vs.
asynchronous

Application SW

Implementation

Component
based
approaches

• Non interruptible
execution steps

•Usually, single task,
single processor

• «Everybody gets
something »

Synchronous
Lustre, Esterel

Statecharts

• Event triggered
• Multi-tasking

- RTOS
• Usually static
Priorities – RMA

• «Winner takes all »

Asynchronous
ADA, SDL

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

Component-based construction

Build systems by composition of components

Component =
Interface (set of interactions) + Behavior (transition system)

input

output

input

output

in outin out in out

input

output

Composition operation allows building new components

⎢⎢ =

Component-based construction

Construction problem:
Given a component C and a property P find C’ and ⎢⎢ such that

C ⎢⎢ C’ satisfies P

C C’⎢⎢ satisfies P

Composition:
• Creates new interactions
• Restricts the behavior of the components

Key issue: Heterogeneity

Composition - interactions
Interactions are specified by connectors. They can be
• strict (rendez-vous in CSP) or non strict (msg sending,broadcast)
• atomic (rendez-vous) or non atomic (asynchronous comm.)
• binary (point to point as in CCS, SDL) or n-ary in general

Task1 Task2

Sem

p1 v1 p2 v2

p v

Comp1 out1in1 Comp2in2 out2

Composition - restriction

Restrictions enforce properties of execution such as synchrony,
scheduling policies, run-to-completion.

Synchronous execution is a restriction of asynchronous execution

Synchronous

out2Comp1 out1in1 Comp2in2

EDF

Task1 Task2

Sem

p1 v1 p2 v2

p v

Composition - heterogeneity of interaction and execution

A: Atomic interaction S: Strict interaction

Synchronous Execution

Asynchronous Execution

A S nonA S nonA nonS

Lotos
CSP

Java
UML

SDL
UML

Esterel, Lustre
VHDL
Statecharts1

Statecharts2

A nonS

Composition: incrementality
Use a unique binary associative compositon operation (express
n-ary composition by binary composition)

receiver2in2

sender out receiver1in1

sender receiver1 sender receiver1

receiver2

=
receiver2

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

Layered system construction
A component is a pair (B,IM) where
• B is a transition system
• IM an interaction model

Composition operators:
• Parallel composition : (B1, IM1) ||IM[1,2] (B2, IM2) = (B, IM)
• Restriction to enforce a property p : (B, IM)→ (B/p, IM)

Integration/compositionality

La
ye

rin
g/

co
m

po
sa

bi
lit

y

IM1

B1

IM3

B3

p1

IM2

B2

p2
IM[1,2]

p12

IM[12,3]

Parallel composition: Interaction models - examples
cl1 |cl2

cl2cl1

cl1 cl2

out | in

inout

out | in
out in

out | in1

in1

in1| in2

in2

out | in2

out

in1| out | in2
out in1

in2

NB : Only complete or maximal incomplete interactions are legal!

Parallel composition: Interaction models - definition

Let K is a set of component names with disjoint action
vocabularies Ai for i∈K.

A connector c of K is a non empty subset of ∪i∈K Ai such that
|c∩Ai|≤1

The set of the interactions of a connector c, I(c), is the set of of
all the non empty subsets of c.

An interaction model IM is a pair IM=(C, I(C)+)

• A set of connectors C or equivalently the set of the interactions of C,
I(C) = ∪c∈C I(c)

• A set of the complete interactions I(C)+, I(C)+ ⊆ I(C) such that
a∈I(C)+ a ⊆ a’ implies a’∈I(C)+

Parallel composition: Interaction models - composition

a9

a1 a2

K1 a11

a5 a6 a7

⎢⎢

IM[K1,K2]:
C[K1,K2] = {{a1, a2, a3, a4}, {a11, a12}}
IC[K1,K2]+ = {a1|a2|a3|a4, a11, a11|a12}

IM[K1]:
C[K1] = {{a1, a2}, {a5, a9},{a6, a9}}
IC[K1] + = {a5, a6, a11, a5|a9, a6|a9}

K1

a1 a2 a9

a5 a6 a11

IM[K2]:
C[K2] = {{a3, a4}, {a7, a10}, {a8, a10}}
IC[K2] + = {a10, a7|a10, a8|a10}

K2

a3 a4 a10

a7 a8 a12

a8

a12

a3

a10

K2

a4

Parallel composition: Interaction models – composition (2)

⎢⎢

IM[K1,K2]:
C[K1,K2] = {{a1, a2, a3, a4}, {a11, a12}}
IC[K1,K2]+ = {a1|a2|a3|a4, a11, a11|a12}

IM[K1]:
C[K1] = {{a1, a2}, {a5, a9},{a6, a9}}
IC[K1] + = {a5, a6, a11, a5|a9, a6|a9}

K1

a1 a2 a9

a5 a6 a11

IM[K2]:
C[K2] = {{a3, a4}, {a7, a10}, {a8, a10}}
IC[K2] + = {a10, a7|a10, a8|a10}

K2

a3 a4 a10

a7 a8 a12

K1∪ K2

a1 a2 a9 a3 a4 a10

a5 a6 a11 a7 a8 a12

IM[K1 ∪ K2]:
C[K1 ∪ K2] = C[K1] ∪ C[K2] ∪ C[K1, K2]
IC[K1 ∪ K2] + = IC[K1] + ∪ IC[K2] + ∪ IC[K1, K2] +

Parallel composition: General definition

⎢⎢

IM[K1,K2]

B[K1]
IM[K1]

S[K1]

B[K2]
IM[K2]

S[K2]

B[K1∪K2]
IM[K1∪K2])

=

S[K1∪ K2]

S[K1] || SK[2] = (B[K1], IM[K1]) || (B[K2], IM[K2])
= (B[K1] × B[K2], IM[K1] ∪ IM[K2] ∪ IM[K1,K2])
= S[K1 ∪K2]

where × is an associative and commutative operation such that
B[K1] × B[K2] = B[K1 ∪K2]

Composition is associative and commutative

Flexible parallel composition : transition systems with priorities

Behavior : transition systems
Interaction model : priority relation on interactions

A transition system with priorities is a pair (B, 〈) where,
• B is a labeled transition system with labels from a set of
interactions A
• 〈 is a strict partial order on A that restricts B :

Semantics of (B, 〈) :
q−a1→ q’∈ (B, 〈) if q−a1→ q’∈ B

and there is no q−a2→ q’’∈ B, a1 〈 a2

The sum 〈 1⊕ 〈 2 of two priority orders 〈 1, 〈 2 is the least priority
order (if it exists) such that 〈 1∪ 〈 2 ⊆ 〈 1⊕ 〈 2

Remark : ⊕ is a (partial) associative and commutative operation

Flexible parallel composition - definition

B[K1]
〈 1

B[K2]
IM[K2]

B[K1∪K2]
⎢⎢

〈12

=〈 2 〈1 ⊕ 〈 2 ⊕ 〈 12

implies
(q1,q2)− a1 → (q1’,q2)
(q1,q2)− a2 → (q1,q2’)
(q1,q2)− a1 ⎢a2 → (q1’,q2’) if a1 ⎢a2∈IC[K1∪K2]

q1−a1→ q1’
q2 −a2→ q2’

Composition of behaviors:

〈 12 is defined by the rules :

• Maximal progress : a1 〈12 a1 ⎢a2, if a1 ⎢a2∈IC[K1∪K2]

• Completeness : a1 〈12 a2 , if a1 is incomplete and non maximal
a2 is complete in IC[K1∪K2]

Flexible parallel composition : producer-consumer

Producer Consumer

put getprod put

put |get

put get

get cons

Producer Consumer
put|get

put get

get put

cons prod

prod cons

×
×

×

×

×
Producer ⎢⎢Consumer

put 〈 put | get, get 〈 put | get
put 〈 cons, get 〈 prod

consprod

Flexible parallel composition : deadlock-fredom by construction

(B1, 〈 1) ⎢⎢(B2, 〈 2) = (B1 × B2, 〈 1⊕ 〈 2 ⊕ 〈 12)
is an associative total operation on components if no incomplete
interaction dominates a complete interaction in the components

(B, 〈) is deadlock-free if B is deadlock-free

(B1, 〈 1) ⎢⎢(B2 , 〈 2) is deadlock-free if B1, B2 are deadlock-free

! Check that after composition the resulting component
cannot execute incomplete interactions which are not
maximal

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

Adding timing constraints

⎜⎜ P2P1

⎜⎜T P2TP1T

• there exist different timed
extensions for ⎜⎜T
corresponding to different
assumptions about idling
before interaction

• compositionality:
define ⎜⎜T so as to preserve
properties such as
well-timedness,
deadlock-freedom,
liveness.

Timing
Constraints ⊕

Adding timing constraints: Timed systems

Automata: labeled transition relations on a
set of actions

begin

arrive

Types of urgency τ associated with guards
express priority over time progress at states
ε (eager) : if enabled then must fire asap
λ (lazy) : if enabled then may fire
δ (delayable) : if enabled must fire before it becomes

disabled

τ

Timers: real-valued variables that can
- be reset and tested at transitions
- increase (derivative =1) or remain
unchanged at states (derivative =0)

t:=0

(t≤D)

t’=1

t’=0

t’=1

Adding timing constraints : example

A periodic process of period T and execution time E

sleep

wait

use

e
b

a
Actions
a: arrive
b: begin
e: end

(t=T)ε
t:=0

(t≤T-E)δ

(x=E) ε
x:=0 t’=x’=1 at all states

Adding timing constraints

Three different kinds of timing constraints:

• from the execution platform e.g. execution times,
latency times

• from the external environment about arrival times of
triggering events e.g. periodic tasks

• user requirements e.g. QoS, which are timing
constraints relating events of the real-time system
and events of its environment e.g. deadlines, jitter

Adding timing constraints

Each shared resource induces a partition on the control states
of a process { Sleep, Wait, Use}.

begin

Sleep

Use

Wait

arrive

end

t:=0 T_min ≤ t ≤T_maxArrival

Execution

times (t)

x:=0

(E_min ≤ x ≤E_max)

times (x)

t ≤ D - E_max

t ≤ D - E_max

∧
(t ≤ D)

Deadline D

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

Scheduler modeling

Timed SWEnvt
(QoS)

state
Scheduler

Kpol
choice

A scheduler is a controller which restricts access to resources so as to
meet the timing constraints (deadlock-free behavior) by applying a
scheduling policy Kpol :

Kpol = ∧r ∈R Kr_pol
Kr_pol = Kr_res∧ Kr_adm

Kr_res says how conflicts for the acquisition of
resource r are resolved e.g. EDF, RMS, LLF

Kr_adm says which requests for r are considered by
the scheduler at a state e.g. masking

Scheduler modeling

Example : Kpol for the Priority Ceiling Protocol

Admission control: “Process P is eligible for resource r
if the current priority of P is higher than the ceiling priority
of any resource allocated to a process other than P”

Conflict resolution: “ The CPU is allocated to the process
with the highest current priority”

Result : Any feasible scheduling policy Kpol induces a restriction
that can be described by dynamic priorities

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

Timed Systems with priorities

〈

(wait1, wait2)

(use1, wait2)

bgn1 bgn2
g1 g2

(wait1, use2)

Priority rule Strengthened guard of bgn1
true → bgn1 〈 bgn2 g1’ = g1 ∧ ¬g2

C → bgn1 〈 bgn2 g1’ = g1 ∧ ¬(C ∧ g2)

Timed Systems with priorities

A priority order is a strict partial order, 〈 ⊆ A x A
A set of priority rules, pr = { Ci → 〈i }i where {Ci }i is a set of
disjoint state predicates

pr = { Ci → 〈i }i

ak gk

TS TS’

ak g’k

g’k = gk ∧ ∧ C → 〈 ∈pr (C ⇒ ∧ak 〈ai ¬ gi)

Timed Systems with priorities: FIFO policy

t1≤ t2 → b1〈 b2 t2≤ t1 → b2〈 b1

e1
x1=E1

b1
t1≤T1-E1
x1:=0

a1
t1=T1
t1:=0

b2
t2≤T2-E2

x2:=0

a2
t2=T2
t2:=0

sleep1

wait1

use1

sleep2

wait2

use2
e2

x2=E2#

Timed Systems with priorities : Least Laxity First policy

L1≤ L2 → b2 〈 b1 L2≤ L1 → b1 〈 b2
where Li =Ti-Ei-ti is the laxity of process i

e1
x1=E1

b1
t1≤T1-E1
x1:=0

a1
t1=T1
t1:=0

b2
t2≤T2-E2

x2:=0

a2
t2=T2
t2:=0

sleep1

wait1

use1

sleep2

wait2

use2
e2

x2=E2#

Timed Systems with priorities: composition of priorities

pr1
pr2

pr1⊕ pr2

=

(pr1⊕ pr2)(q) is the least priority order containing pr1(q) ∪pr2(q)

Results :
The operation ⊕ is partial, associative and commutative
Sufficient conditions for deadlock-freedom and liveness

Timed Systems with priorities: mutual exclusion + FIFO

true → b1〈 e2 true → b2〈 e1

t1≤ t2 → b1〈 b2 t2≤ t1 → b2〈 b1

e1
x1=E1

b1
t1≤T1-E1
x1:=0

a1
t1=T1
t1:=0

b2
t2≤T2-E2

x2:=0

a2
t2=T2
t2:=0

sleep1

wait1

use1

sleep2

wait2

use2
e2

x2=E2

Systems with priorities : Fixed priority preemptive scheduling

s1

e1

b1

w1

a1

e1’
r1 p1

f1

s2

e2

b2

w2

a2

e2’
r2 p2

f2

si

ei

bi

wi

ai

ei’
ri pi

fi

sn

en

bn

wn

an

fn

ei’
ri pi

en’
rn pn

bi 〈 bj , bi |pk 〈 bj |pk , fi |rk 〈 fj |rk for n ≥ I >j ≥1
Scheduling policy

bj|pi, fj|ri ∈IC, for n ≥i,j ≥ 1 ai, fi, bi ∈ IC+, for n ≥i ≥ 1
Interaction model

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

IF notation: System description

Processes

Interactions

Data

extended timed systems
(non-determinism, dynamic creation)

asynchronous channels
shared variables

predefined data types
(basic types, arrays,
records)

abstract data types

IF notation: System description

• A process instance:
– executes asynchronously with other instances
– can be dynamically created
– owns local data (public or private)
– owns a private FIFO buffer

• Inter-process interactions:
– asynchronous signal exchanges (directly or via

signalroutes)
– shared variables

P1(N1)

const N1 = … ; // constants
type t1 = … ; // types

signal s2(t1, t2), // signals

// signalroutes
signalroute sr1(1) … // route attributes

from P1 to P3

// processes
process P1(N0)

… // data +
behaviour
endprocess;

…
process P3(N3)

…
endprocess;

IF notation: System description

P1(N1)

P3(N3)

P2(N2)

signalroute

process

signal

(N1 initial
instances)

s2 (t1, t2)

s1(t1)

…

…

…
…

parameter

sr(1)

…

local data

IF notation: Process description

Process = hierarchical, timed systems with actions

process P1(N1);
fpar … ;

// types, variables, constants,
procedures

state s0 … ;
… // transition t1

endstate;

state s1 #unstable…;
… // transitions t2, t3

endstate;

… // states s2, s3, s4
endprocess;

parameters

local data

state

outgoing transitions
s2

s1

s3

s0

s4

t1

t4

t5

t3t2

local data + local clocks

s41

s42

t6 t7

P1(N1)

IF notation: dynamic creation

• process creation:

p := fork client (true) a new instance is
created

process name

parameters

pid of the newly
created instance

• process destruction: the instance is destroyed,
together with its buffer,
and local datakill client(2)

kill p pid expression

• process termination:
stop

the “self” instance is
destroyed, together with
its buffer, and local data

IF notation: Process description-transition

transition = urgency + trigger + body

state s0
…

urgency eager
provided x!=10;
when c2 >= 4;
input update(m);

body ….
nextstate s1;
…
endstate;

urgency

untimed guard

timed guard

signal consumption
from the process

buffer

statement list

= trigger

t1

statement = data assignment
message emission,
process or signalroute creation or destruction, …

sequential. conditional, or
iterative composition

IF notation: Data and types

Variables:
• are statically typed (but explicit conversions allowed)
• can be declared public (= shared)

Predefined basic types: integer, boolean, float, pid, clock

Predefined type constructors:
• (integer) interval: type fileno = range 3..9;
• enumeration: type status= enum open, close endenum;
• array: type vector= array[12] of pid
• structure: type file = record f fileno; s status endrecord;

Abstract Data Type definition facilities …

⊇ {self, nil}

IF notation: interactions - signal routes

signal route = connector = process to process communication channel with
attributes, can be dynamically created

signalroute s1(1) #unicast #lossy #fifo
from server to client with grant, fail;

route
name

initial instance number attributes
signal set

endpointsattributes:
• queuing policy: fifo | multiset
• reliability: reliable | lossy
• delivery policy: peer | unicast | multicast
• delay policy: urgent | delay[l,u] | rate[l,u]

IF notation: interactions - delivery policies

peer

server(0) server(0) server(0)

to one
specific
instance

client(1) client(0) client(2)client(1) client(0) client(2)client(1)

unicast multicast

to all instancesto a randomly
chosen
instance

IF notation: interactions - signal exchange

Signal emission (non blocking):

to a specific process: output req (3, open) to server(2);

signal

via a signalroute: output req(3, open) via s0(1);

mixed: output token via link(1) to client(k+1)%N;

parameters

signalroute

pid expression

Signal consumption (blocking):

input req (f, s);
formal parameters

pid expression

k=integer(self)

IF notation: System description - example

server(NS) client(NC)grant, fail(reason)

req(file,status)

stop

aborts0

s1

s2

update(file)

fail(reason)

const NS= … , NC= … ;
type file= … , status= … , reason= … ;

signal stop(), req(file, status), fail(reason), grant(), abort(), update(data);

signalroute s0(1) #multicast
from server to client with abort;

signalroute s1(1) #unicast #lossy
from server to client with grant,fail;

signalroute s2(1) #unicast
from client to server with req;

process server(NS) … endprocess;
process client(NC) … endprocess;

IF notation: timed behavior

The model of time [timed systems]
– global time → same clock speed in all processes
– time progress in stable states only → transitions are instantaneous

time = 0
q0

t1

t2

q1 q2

δ0(q2)

q3
time = δ0

q4

δ1(q4)

P1

P2

P3

Pk

…

sy
st

em
 c

on
fig

ur
at

io
n

q5
time = δ0 + δ1

…

IF notation: timed behavior

• operations on clocks
– set to value
– deactivate
– read the value into a variable

• timed guards
– comparison of a clock to an integer
– comparison of a difference of two

clocks to an integer

state send;
output sdt(self,m,b) to {receiver}0;
set t:= 10;
nextstate wait_ack;

endstate;

state wait_ack;
input ack(sender,c);
…
when 10 <t<20 ;
…

endstate;

IF notation: dynamic priorities

• priority order between process instances p1, p2 (free
variables ranging over the active process set)

priority_rule_name : p1 < p2 if condition(p1,p2)

• semantics: only maximal enabled processes can execute

• scheduling policies
– fixed priority: p1 < p2 if p1 instanceof T and p2 instanceof R

– run-to-completion: p1 < p2 if p2 = manager(0).running

– EDF: p1 < p2 if Task(p2).timer < Task(p1).timer (p1)

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

IF toolset: overall architecture

UML RT/UML
OMEGA SDL

aml2if uml2if sdl2if

IF
Description

IF
Exploration Platform

TGV
Test Generation

Test Suites

model
construction

LTS

model
checking

guided
exploration

mincost path
extraction

schedules

Objecteering Rational Rose ObjectGeode

CADPSPIDER

IF
Static Analyzer

LASH

RMC

TReX

guided
simulation

Core components

syntactic
transformation tools:

- static analyser
- code generator LTS exploration tools

-- debugging
-- model checking
-- test generation

dynamic scheduling

asynchronous execution
state space

representation

writer

IF specifications

reader

C/C++ code

IF AST
application specific

process code

predefined modules

(time, channels, etc.)compiler

Core components: syntactic transformations

IF specifications

writer
• Gives programming access to the AST of

an IF description

• AST represented as a collection of C++
objects

syntactic
transformation tools:

- static analyser
- code generator

reader

IF AST

Core components : exploration platform - API

• gives programming access
to the underlying labeled
transition system of an IF
description

• the API provides
– state, label representation

• type definition
• access primitives

– forward traversal primitives
• initial state function (init)
• successor function (post)

• on-the-fly, forward, explicit,
enumerative

LTS exploration tools
-- debugging

-- model checking
-- test generation

dynamic scheduling

asynchronous execution
state space

representation

application
specific

process code

predefined modules

(time, channels, etc.)

Core components: exploration platform

Offers primitives for exhaustive state space
exploration

Main features
– process execution simulation

• inter-process interaction
• process creation / destruction
• control of simulation time

– non-determinism handling
• asynchronous execution
• internal non-deterministic choices
• open environment

– state space representation

Core components: exploration platform - architecture

Exploration API

dynamic scheduling

asynchronous execution
state space

representation

C/C++ code

IF AST
application specific

process code

predefined modules

(time, channels, etc.)compiler

Core components: exploration platform – execution

1st layer: emulates asynchronous parallel execution to obtain globa
(system) steps from local (process) steps
– it asks successively, each process instance to execute its

enabled transitions
– during the execution of a transition by a process instance,

• it ensures message delivery and shared variable update
• it manages dynamic instance creation and destruction
• it records generated observable events

– when a local step is finished,
• It takes a snapshot of the global configuration and stores it
• It sends the successor to the 2nd layer (dynamic scheduler)

– It manages time progress and clocks updates

Core components: exploration platform – execution

2nd layer: dynamic scheduling (priorities)
– collects all potential global successors
– filters them according to dynamic priorities

• evaluates each priority constraint
• if applicable on current state, it

removes successors produced by the low priority
instance

– delivers the remaining set to the user
application through the exploration API

Core components: exploration platform – execution

step

Succ!

asynchronous execution

I1:P2I2:P1 TimeI1:P1 Ik:Pj
active

instances

process 1 process 2 process j Time
module

output

I2:P2

create

set, reset

execution
control

run

Succ?

dynamic scheduling

run step
run

step run step

Core components: exploration platform – time

i) discrete time
•clock valuations represented as
varying size integer vectors

•time progress is explicit and
computed w.r.t. the next enabled
deadline

ii) continuous time
•clock valuations represented using
varying size difference bound
matrices (DBMs)

•time progress represented
symbolically

•non-convex time zones may arise
because of deadlines: they are
represented implicitly as unions of
DBMs

Dedicated module
• including clock variables
•handling dynamic clock allocation
(set, reset)
•checking timing constraints (timed
guards)
• computing time progress conditions
w.r.t. actual deadlines and
• fires timed transitions, if enabled

Two implementations for
discrete and continuous time
(others can be easily added)

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

Validation
Model-Based Validation
- model checking
- test generation
- optimization
- static analysis

UML RT/UML
OMEGA SDL

aml2if uml2if sdl2if

IF
Description

IF
Exploration Platform

TGV
Test Generation

Test Suites

model
construction

LTS

model
checking

guided
exploration

mincost path
extraction

schedules

Objecteering Rational Rose ObjectGeode

TReX

CADPSPIDER

IF
Static Analyzer

LASH

RMC

guided
simulation

Validation: model-checking using observers

• Observers are used to specify safety properties in an
operational way

• They are described as the processes – specific command for
monitoring events, system state, elapsed time

• 3 types of states : normal / error / success
• Semantics: Transitions triggered by monitored events and

executed with highest priority

idle

error

match output SDT(void, b)

[b <> R(0).flag]
[b = R(0).flag]

set x := 0

[x >= t_ack]

match input ACK(void)
[x =< t_ack]

test

wait

Validation: requirements - using µ-calculus

• alternating-free fragment
ϕ ::= T | X | <a>ϕ | ¬ϕ | ϕ∧ϕ | µX.ϕ(X)

where a denotes a regular expression on labels
• macros available to describe complex formula e.g,

all ϕ ≡ υX. ϕ ∧ [*]X
pot ϕ ≡ µX. ϕ ∨ <*>X

inev ϕ ≡ µX. ϕ ∨ <*>T ∧ [*]X
• On-the-fly local model-checker
• diagnostics can be extracted either as sequences (if the

property is “linear”) or sub-graphs (if the property is
“branching”)

Validation: behavioral equivalence checking

• LTS comparison:
– equivalence relations (“behavior equality”):

System ≈ Requirements
– preorder relations (“behavior inclusion”):

System ≤ Requirements

• LTS minimization:
– quotient w.r.t an equivalence relation:

(System / ≈)
• CADP can be used to check the following relations :

weak/strong bisimulation, branching, safety, trace equivalence

Validation: behavioral equivalence checking

reduction w.r.t.
branching bisimulation

Validation: optimization

• User defined costs associated to
transitions of IF descriptions e.g,
execution times

• problem: find the min-cost
execution path leading from
some initial state to some goal
state

• three algorithms implemented:
– Dijkstra algorithm (best first)
– A* algorithm (best first +

estimation)
– branch and bound (depth-first)

• applications:
– job-shop scheduling (find the

makespan),
– asynchronous circuit analysis

(find the maximal stabilization
time)

init

goal goal

tick(5)

tick(3)

tick(7)

tick(2)

tick(1)

Validation: static analysis

• approach
– source code transformations for model reduction
– code optimization methods

• techniques implemented so far
– live variable analysis: remove dead variables and/or

reset variables when useless in a control state
– dead-code elimination: remove unreachable code

w.r.t. assumptions about the environment
– variable abstraction: extract the relevant part after

removing some variables

• usually, impressive state space reduction

Validation: static analysis – live variables

find live variables
usual backward dataflow analysis extended
to IF interaction primitives

asynchronous interaction via queues
parameter passing at process creation

live variables are propagated both intra and
inter processes !

a variable is dead at a control point if its
value is not used before being redefined
on any path starting at that point

y := z+2

y := 3*x

?m(x, y)

y not used
here

reset yreset y exploit live variables
transform IF description by

removing completely dead variables and
signal / process parameters
resetting partially dead variables

the gains are multiple:
drastically reduce the size of the model
(orders of magnitude on realistic examples)
strongly preserve the initial behaviour

Validation: static analysis – dead code elimination

find dead code
algorithm for static accessibility of control
states and control transitions given user
assumptions about the environment

accessibility propagated both intra- and
inter processes

a part of code is dead if it will never
been entered, for any execution

process P(1) process Q(0) process R(0)

?b

fork R

?c

!afork Q

!c

?a

!b

?b

exploit dead code
transform IF description by

removing processes never created
removing signals never sent
removing unreachable control states and
control transitions

the gains are
reduce the size of the description
enable more reduction by live analysis
strongly preserve the initial behavior, under
the given assumptions

provides only “a” signals to the process P

Validation: static analysis – variable elimination

find undefined variables
forward dataflow analysis propagating the
influence of removing variables

local undefined-ness of variables
global undefined-ness of signal and process
parameters

the propagation is performed both intra-
and inter-processes

abstraction w.r.t. a set of variables
(to eliminate) provided by the user

i

exploit undefined variables
transform IF descriptions by

removing assignments to undefined variables
removing undefined signal and process
parameters
relaxing guards involving undefined variables

obtain a conservative abstraction of the initial
description i.e, including all the behaviors of
the initial one

!b(i)

i:=0

[i<N][i=N]

i:=i+1

?b(k)

[k even][k odd]

x:=0

k, x

x:=x+k

!b

?b

x:=0

x

reset x

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

Front-Ends
- sdl2if
- uml2if UML RT/UML

OMEGA SDL

aml2if uml2if sdl2if

IF
Description

IF
Exploration Platform

TGV
Test Generation

Test Suites

model
construction

LTS

model
checking

guided
exploration

mincost path
extraction

schedules

Objecteering Rational Rose ObjectGeode

TReX
IF

Static Analyzer
LASH

RMC

CADPSPIDER

Front ends: UML2IF – Omega UML

UML for real-time and embedded systems (OMEGA IST project)

• covers operational specifications
– classes with operations, attributes, associations, generalization,

statecharts; basic data types
• defines a particular execution model

– a notion of active class
– instances of active classes define activity groups
– run-to-completion for activity groups

• interaction and behavior
– primitive operations – procedural, stacked
– triggered operations – embedded in state machine, queued
– asynchronous signals

• define an Action Language

Front ends: UML2IF – translation principle

• structure
– class → process type
– attributes & associations → variables
– inheritance → replication of features
– signals, basic data types → direct mapping

• behavior
– state machines (with restrictions) → IF hierarchical

automata
– action language → IF actions, automaton encoding
– operations:

• operation call/return → signal exchange
• procedure activations → process creation
• polymorphism → untyped PIDs
• dynamic binding → destination object automaton determines

the executed procedure

Front ends: UML2IF – architecture

Rhapsody

Rose

Objecteering

Argo

XMI 1.0/1.1
(UML 1.4 +
stereotypes)

XMI reader UML 1.4
repository

UML 1.4
API

IF 2.0
translator

UML2IF

IF 2.0
TOOLBOX

IF description

Front ends: UML2IF – simulation interface

• user friendly
simulation

• system state
exploration…

• customizable
presentation
of results for
UML users

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

Case studies: protocols

SSCOP
Service Specific Connection Oriented Protocol
M. Bozga et al. Verification and test generation for the SSCOP
Protocol. In Journal of Science of Computer Programming - Special
Issue on Formal Methods in Industry. Vol. 36, number 1, January 2000.

MASCARA
Mobile Access Scheme based on Contention and Reservation for ATM
case study proposed in VIRES ESPRIT LTR
S. Graf and G. Jia. Verification Experiments on the Mascara Protocol.
In M.B. Dwyer (Ed.) Proceedings of SPIN Workshop 2001, Toronto,
Canada. LNCS 2057.

PGM
Pragmatic General Multicast
case study proposed in ADVANCE IST-1999-29082

Case studies: distributed applications

TCP/ECN Transit Computerization Project
case study proposed in AGEDIS IST-1999-20218

MQ Series Integration Broker
case study proposed in AGEDIS IST-1999-20218

Case studies: manufacturing

Job-shop Scheduling

Axxom Lacquer Production
case study proposed in AMETIST IST-2001-35304

Case studies: asynchronous circuits

timing analysis
O. Maler et al. On timing analysis of combinational
circuits. In Proceedings of the 1st workshop on formal
modeling and analysis of timed systems, FORMATS’03,
Marseille, France.

functional validation
D. Borrione et al. Validation of asynchronous circuit
specifications using IF/CADP. In Proceedings of IFIP Intl.
Conference on VLSI, Darmstadt, Germany

Case studies: Embedded software

Ariane 5 Flight Program
joint work with EADS Lauchers
M. Bozga, D. Lesens, L. Mounier. Model-checking Ariane 5
Flight Program. In Proceedings of FMICS 2001, Paris, France.

K9 Rover Executive
S.Tripakis et al. Testing conformance of real-time software by
automatic generation of observers. In Proceedings of
Workshop on Runtime Verification, RV’04, Barcelona, Spain.

Akhavan et al. Experiment on Verification of a Planetary
Rover Controller. In Proceedings of 4th International Workshop
on Planning and Scheduling for Space, IWPSS’04, Darmstadt,
Germany.

Ariane-5 flight program

Flight program specification

• built by reverse engineering by EADS-LV

• two independent views
1. asynchronous

– high level, non-deterministic, abstracts the whole
program as communicating extended finite-state
machines

2. synchronous
– low level, deterministic, focus on specific

components …

– we focus on the asynchronous view

Flight program architecture

Regulation
engines/boosters
ignition/extinction

Configuration
stage/payload

separation

Control
Navigation
Guidance

Algorithms

OBC (On Board Computer)

Ground

OBC
(Redundant)

~3500 lines
of SDL code

Regulation components

• initiate sequences of
“regulation” commands at right
moments in time :
– at T0 - ∆1 execute action1

– at T0 - ∆2 execute action2

…
– at T0 - ∆n execute actionn

• if necessary, stopped at any
moment

• described as “sequential”
processes, moving on specific,
precise times

start

state1

action1

state2

state3

now = T0- ∆1

now = T0- ∆2 action2

now = T0- ∆3 action3

input start-date(T0)

Configuration components

• initiate “configuration” changes depending on :
– flight phase : ground, launch, orbit, …
– control information: reception of some signal, ...
– time : eventually done in [T0+L,T0+U]

• described as processes combining signal and
timeout-driven transitions

Configuration component: example

start

wait-sig

done

the opening
action eventually
happens between
Tearly and Tlate
moments, if
possible, on the
reception on the
open signal.

ready

wait-time

now = Tearly

« opening »

input open

input open
now = Tearly now = Tlate

Control components

• compute the flight commands depending on
the current flight evolution
– guidance, navigation and control algorithms

• abstracted over-simplified processes
– send flight commands with some temporal

uncertainty

Control components: example

time non-deterministic:
the firing signal can be sent
between T0 + L and T0 + U

time deterministic:
the firing signal is

sent exactly at T0 + K

init

done

output firing
to vulcain

T0 + K = now

eager

init

done

output firing
to vulcain

T0 + L ≤ now and
now ≤ T0+U

lazy

Flight program requirements

• general requirements
– e.g, no deadlock, no timelock

• overall system requirements
– e.g, flight phase order
– e.g, stop sequence order

• local component requirements
– e.g, activation signals arrive eventually in some

predefined time intervals

Validation: model exploration

• test simple properties by random or guided simulation
• several inconsistencies found

e.g, deadline lost because of ∆1 > ∆2

output status
now = T0+∆1

now = T0+∆2
output desactivation

input status

Validation: static analysis

• Clock reduction
1st version: 143 clocks reduced to 41 clocks
2nd version : 55 clocks, no more reduction

• Live variable analysis
20% of all variables are dead in each state

• Slicing
eliminate passive processes, without outputs

Validation: model generation

Some results (31 processes)
time
deterministic

time
non-deterministic

- live reduction
- partial order

n.a. n.a.

+ live reduction
- partial order

2201760 st.
18796871 tr.

n.a.

+ live reduction
+ partial order

1604 st.
1642 tr.

195718 st.
278263 tr.

Validation: model-checking

• evaluation of µ-calculus formula

Property: “the stop sequence no. 3 could happen only
in a flight phase”

¬ µ X. <EPC!Stop3>True ∨ <EAP!Fire>X

• construction and visualisation of bisimulation reduced
models

Validation: model-checking

Property: whenever a
problem is detected
during the ignition of the
Vulcan engine, then the
whole ignition is
aborted, otherwise the
launcher eventually lifts
off

Graph obtained by weak
bisimulation
minimisation

EPC!Fire1

EPC!Fire2

EPC!Fire3

EAP!Fire

EPC!Anomaly

EPC!Anomaly

EAP!Anomaly

EPC!Anomaly

Outline
Key Research issues
• Modeling Real-time systems
• From application SW to implementations
• Component-based construction

The modeling framework
• Parallel composition
• Adding timing constraints
• Scheduler modeling
• Timed systems with priorities

The IF toolset
• IF notation
• Core components
• Validation
• Front ends
• Case studies

Discussion

Discussion : Modeling – the framework

Specific and tractable construction methodology

Rely on a minimal set of constructs and principles e.g.
combines parallel composition and restriction by priorities

Avoid declarative formalisms such as temporal logic, LSC

Focus on specific construction principles and rules to ensure
correctness constructively, especially for safety and deadlock-
freedom

Discussion : Modeling - combining behavior and priorities

Priorities prove to be a very powerful modeling tool
they can advantageously replace static restriction
they allow straightforward modeling of urgency and of

scheduling policies
run to completion and synchronous execution can be

modeled by assigning priorities to threads
Layered description => separation of concerns =>

incremental description

The IF notation is expressive enough to map compositionally
most UML constructs and concepts e.g. Classes, state
machines, activity groups

Discussion : validation

Combination of static analysis and validation techniques
proves to be crucial for coping with complexity and broadens the
scope of application of the tool e.g.,

use static analysis for data intensive applications
use partial order reduction techniques for control intensive applications

The use of high level languages incurs additional costs wrt low
level modeling languages

There is a price to pay for enhanced expressivity and faithful modeling
Abstraction and simplification can be carried out automatically by static

analysis

Observers are a powerful formalisms for safety requirements
Easy to use by practitioners
Limitation to safety properties is not a serious one, especially for RT systems

	The IF toolsetVERIMAGM. Bozga, S. Graf, L. Mounier, Y. Lakhnech, Il. Ober, Iu. Ober, J. Sifakis4th International School
	The IF toolset: objectives
	The IF toolset: approach
	The IF toolset: challenges for IF
	Outline
	Modeling real-time systems
	Modeling real-time systems
	Modeling real-time systems – Taxys (1)
	Modeling real-time systems – Taxys (2)
	Modeling real-time systems – Taxys(3)
	Outline
	From application SW to implementations
	From application SW to implementations
	From application SW to implementations
	From application SW to implementations – synchronous vs. asynchronous
	Outline
	Component-based construction
	Component-based construction
	Composition - interactions
	Composition - restriction
	Composition - heterogeneity of interaction and execution
	Composition: incrementality
	Outline
	Layered system construction
	Parallel composition: Interaction models - examples
	Parallel composition: Interaction models - definition
	Parallel composition: Interaction models - composition
	Parallel composition: Interaction models – composition (2)
	Parallel composition: General definition
	Flexible parallel composition : transition systems with priorities
	Flexible parallel composition - definition
	Flexible parallel composition : producer-consumer
	Flexible parallel composition : deadlock-fredom by construction
	Outline
	Adding timing constraints
	Adding timing constraints: Timed systems
	Adding timing constraints : example
	Adding timing constraints
	Adding timing constraints
	Outline
	Scheduler modeling
	Scheduler modeling
	Outline
	Timed Systems with priorities
	Timed Systems with priorities
	Timed Systems with priorities: FIFO policy
	Timed Systems with priorities : Least Laxity First policy
	Timed Systems with priorities: composition of priorities
	Timed Systems with priorities: mutual exclusion + FIFO
	Systems with priorities : Fixed priority preemptive scheduling
	Outline
	IF notation: System description
	IF notation: System description
	IF notation: System description
	IF notation: Process description
	IF notation: dynamic creation
	IF notation: Process description-transition
	IF notation: Data and types
	IF notation: interactions - signal routes
	IF notation: interactions - delivery policies
	IF notation: interactions - signal exchange
	IF notation: System description - example
	IF notation: timed behavior
	IF notation: timed behavior
	IF notation: dynamic priorities
	Outline
	IF toolset: overall architecture
	Core components
	Core components: syntactic transformations
	Core components : exploration platform - API
	Core components: exploration platform
	Core components: exploration platform - architecture
	Core components: exploration platform – execution
	Core components: exploration platform – execution
	Core components: exploration platform – execution
	Core components: exploration platform – time
	Outline
	Validation
	Validation: model-checking using observers
	Validation: requirements - using -calculus
	Validation: behavioral equivalence checking
	Validation: behavioral equivalence checking
	Validation: optimization
	Validation: static analysis
	Validation: static analysis – live variables
	Validation: static analysis – dead code elimination
	Validation: static analysis – variable elimination
	Outline
	Front ends: UML2IF – Omega UML
	Front ends: UML2IF – translation principle
	Front ends: UML2IF – architecture
	Front ends: UML2IF – simulation interface
	Outline
	Case studies: protocols
	Case studies: distributed applications
	Case studies: manufacturing
	Case studies: asynchronous circuits
	Case studies: Embedded software
	Ariane-5 flight program
	Flight program specification
	Flight program architecture
	Regulation components
	Configuration components
	Configuration component: example
	Control components
	Control components: example
	Flight program requirements
	Validation: model exploration
	Validation: static analysis
	Validation: model generation
	Validation: model-checking
	Validation: model-checking
	Outline
	Discussion : Modeling – the framework
	Discussion : Modeling - combining behavior and priorities
	Discussion : validation

