
Testing, Optimization, and Games

Mihalis Yannakakis
Columbia University

The Software Reliability Problem

Systems are becoming larger, more complex,distributed,…

⇒ harder to create, get them right, test them …

• Large part of the cost of software development goes to
testing

Problem: Improve cost, time, reliability

Focus: Behavior/Control of Systems

Reactive/Event-driven Systems
– Switching Software
– Communication Protocols
– Controllers
– ….

Model: State Machines of various types

Finite State Machine for Phone

States: Idle, Dial tone, ….
Inputs: off-hook, on-hook, digit, …
Outputs: sound dial tone, loud beep, play message,….

Testing

Test
scenarios

SystemTest GeneratorSpec.

(eg. Model,

Property) Criteria

Does the System satisfy the specification?

(conform to the model ? satisfy the property?)

Different Views of Testing

• Testing as an Optimization problem
Optimize the use of testing resources to
achieve maximum fault coverage

• Testing as a Game
Tester vs. System
Who wins? Best strategy?

• Testing as a learning problem

Outline
• Testing framework, issues
• Conformance Testing

– Deterministic FSM’s
– Nondeterministic FSM’s

• Testing Properties

• Optimum Coverage problems
– FSM’s, graph models

– Extended FSM’s

– Hierarchical FSM’s

Finite State Machine

a

a a

ab

b b

b

s4
s3

s2s1 a
b

s5

Moore machine
•States: s1, …., s5
•Inputs: a, b
•Outputs: red, green - function of the state
•Transitions: for every state and input

Deterministic FSM: one transition for every state and input

Mealy machine: variant where outputs are produced on
transitions instead of states; theory is similar

Test

system
B

input

Tester
output

Problem: Given some a priori information about B,
compute a desired function of B

Preset Test: input sequence selected ahead of time

Adaptive Test: inputs selected online adaptively,
i.e. can depend on previous outputs

Testing as a Game
• Game:

1. A priori information (“testing hypothesis”): Set U of
possible B’s
2. Desired information: function f of B

• Players:
- Tester: selects inputs, gives verdict at end
- System: Selects B in U, and moves of B in each step
(if B not deterministic)

• Tester wins if verdict=f(B)

• Game with incomplete information

Questions
• Can the Tester always win?

i.e. ∃ strategy (test) that arrives at correct result?

Questions
• Can the Tester always win?

i.e. ∃ strategy (test) that arrives at correct result?

• How fast can we determine if the Tester has a
winning strategy?

Questions
• Can the Tester always win?

i.e. ∃ strategy (test) that arrives at correct result?

• How fast can we determine if the Tester has a
winning strategy?

• What is the testing complexity = length of the test
(winning strategy)

• and the computational complexity = time to
compute a winning strategy?

Example: Adaptive Distinguishing “Sequence”

s2
b

s1 a
aGiven: State diagram of B =

a deterministic FSMb

s3

ba

s4 b

a

Goal: Determine the initial state of B

Example: Adaptive Distinguishing “Sequence”

s2
b

s1 a
a

b

s3

ba

s4 b

a ab

FSM

s4 s3s2s1

adaptive distinguishing “sequence”

= winning testing strategy

Questions
• Can the Tester always win?

– No (not even if FSM is reduced, i.e. has no
equivalent states)

s2
b

s1 a
a

ba

b
a

a b

s5

bs4 s3

Questions
• Can the Tester always win?

– No (not even if FSM is reduced, i.e. has no
equivalent states)

• How fast can we determine if the Tester has a winning
strategy?
– O(dnlogn), n=#states, d=#inputs
– For Preset test: PSPACE-complete

Questions
• Can the Tester always win?

– No (not even if FSM is reduced, i.e. has no
equivalent states)

• How fast can we determine if the Tester has a winning
strategy?
– O(dnlogn), n=#states, d=#inputs

• What is the testing complexity = length of the test
(winning strategy)
– O(n²)

• and the computational complexity = time to compute a
winning strategy?
– O(dn²)

• Preset: Exponential [Lee-Yannakakis]

• Machine Identification Problem:

• Given:

• B is a reduced (minimized) deterministic FSM
(tests cannot tell the difference between equivalent machines)

- and strongly connected
(i.e. any state can reach any other state)

• bound on # states of B

Goal: Identify machine B

Unknown state diagram of black box B

Machine Identification is hard

• Suppose that we know B has n states and
looks like this combination lock machine

b b a,ba a

aa bb

d = # inputs, n = # states

combination

Must try all possible combinations: 1−nd

[Moore]

Conformance Testing

• Given: specification FSM A

• Goal: check that B conforms to (behaves like) A
(i.e. B≡A for deterministic FSMs)

• Long History since 50’s [Moore, Hennie,…]

Conformance Testing - Deterministic FSM
Assumptions

• Specification machine A is reduced (minimized)
(tests cannot tell the difference between equivalent states)

and strongly connected
(i.e. any state can reach any other state)

• Bound on #states of B

• Checking sequence: If implementation machine B has no
more states than A: detect arbitrary combinations of output,
and next-state faults

- effect of extra states orthogonal

Effect of extra states

Extra factor of , where k =#extra states, d=# inputskd

A

B : combination lock

Questions
• Can the Tester always win?

1. Can test that B has the same state diagram as A
2. But in general may not be able to verify the initial

state (if no reset) even if we know state diagram of B

• Can perform a test such that if B passes it, then
can conclude that B≡A and B is at an equivalent
state at the end of the test

Easy cases

• Spec FSM A is fully observable:
every state has a distinct output ⇒ suffices to
traverse all the transitions

• Spec FSM A has a distinguishing sequence:
3 checking sequence of length ()O dn⇒

[Hennie,LY]

Machines with Reliable Reset

reset

reset
reset

• There is a special input symbol “reset” which takes
every state back to the initial state

• Reliable: works properly in the implementation FSM B

• Then checking sequence of length
• Matching lower bound

)(3dnO

[Vasilevski- Chow]

General machines

• Randomized polynomial time algorithm which,
given a specification machine A constructs with
high probability a checking sequence for A of
length [LY]

• For “almost all” specs A, length O(d·n·polylogn)

• Deterministic algorithm?

)log(4 ndnO

Sketch of (simplified) Test
• Pick a set W of “separating” input sequences such that

every pair of states of the spec FSM A is distinguished by
one of these sequences
– There is always such a set of at most n sequences of length at

most n

Repeat the following “enough” times
• Choose at random a transition (state s, input a)
• Apply an input sequence that takes A from the current

state to state s
• Decide at random whether to check the state of B or

check the transition
– In the first case, apply a random separating sequence from W
– In the second case, apply input a followed by a random separating

sequence from W

A universal traversal problem

Directed graphs with n nodes, outdegree d
1 2

d

• Blocking sequence over {1,...,d}:
For every graph and starting node,
path traverses all edges out of at least one node.

• Random sequences of polynomial length blocking

• Deterministic polynomial construction?
Then deterministic construction of checking
sequence for all spec FSM’s

Nondeterministic FSM

Many possible transitions for same input and state

a a

• Nondeterminism in spec A: multiple acceptable choices

• Nondeterminism in system B: some transitions are not
under tester’s control

- abstraction, other entities, concurrency, ..

FSM B conforms to FSM spec A if every response to
any input sequence could have been produced by A

Example

Spec A

a

a,b a,b

a,b
a,b

a

a,b a,b

a,b
a,b

FSM B

a

• B does not conform to A:
On input aa , B may output • • •, but not A

• B may also output • • • or • • • or • • • which are
consistent with A

Distinguishing Between Machines

s
Spec A

(correct FSM)

t

Possible faulty FSM B

Two-player game

• Tester chooses inputs
• System player chooses what’s in the black box

and how to resolve the nondeterminism

• Should we view the system player as trying to
– Help the tester?
– Oppose the tester?
– Indifferent (random)?

a a

Opposing System Player
• Tester has winning strategy ⇔ can find a fault (if present) no

matter how hard the system tries to hide it

⇔ Games with incomplete information against a malicious
adversary

• Game graph of positions, controlled by the two players
• Player 1 gets only partial information about current position
• Goal of Player 1: reach a winning position

Who wins?
preset test: PSPACE-complete

adaptive test: EXPTIME-complete

Polynomial time for NFSM that are input-output deterministic (observable)

[Reif; Alur, Courcoubetis, Y]

Indifferent System player: Random moves

If the system has reliable reset, then easy: can test with
probability →1

B does not conform to A ⇒ for some input sequence α it
can produce (for some nondeterministic path) an output

sequence that can’t be produced by A

Test: Apply repeatedly reset α , reset α, ….

Indifferent System player: Random moves

In general, Game with incomplete information
against “Nature” (a Random adversary)
Partially observable Markov Decision Process
- maximize probability of reaching goal
- can we reach goal a.s.?

Can the Tester win with probability 1 (in the limit)?

Complexities similar to adversarial game –

algorithms different

[ACY]

Blindfold (Preset) Game
• Given FSM M of the game, construct deterministic FSM D
• There is an a.s. winning strategy iff

there is a state U of D and input words α, β s.t.

αinitial state U β
set

winning
and for all u in U, M has a path u

β
position

• Winning strategy: αββββ…

Adaptive Strategies
• Regard the game FSM M as a Mealy machine (transfer

state color output to incoming edges)
• Construct graph G that is deterministic wrt input-output

pairs, by subset construction
• G will be iteratively pruned until it gets stabilized. At any

point, say that state u of M reaches state v in G iff the
current G has a path

vu

Adaptive Strategies ctd.
• Repeat until no change

- Choose a node U of G with a state u in U s.t. no
winning state v is reachable from u in G; if no such u
exists then terminate
- If there is an edge in G from a node V into U with
input label a, then delete all edges from V with input
label a
- Delete U

• There is an a.s. winning strategy iff the final graph G
contains the initial state set

Testing Properties

Testing Properties
• Given a required property of executions

– e.g., if off-hook then dial-tone; no deadlock …
– between any two green states always a red state

• and a black box B (the system)
Test that B satisfies the property

Testing Properties
• Given a required property of executions

– e.g., if off-hook then dial-tone; no deadlock …
– between any two green states always a red state

• and a black box B (the system)
Test that B satisfies the property

Model

conformance testingmodel checking

Property

black box checking
[Peled, Vardi, Yannakakis]

Learning FSM with a teacher

• Algorithm to identify a deterministic FSM using
– “membership queries” (tests) on the black box
– “equivalence queries” to the teacher

• FSM with reset: polynomial algorithm [Angluin]

• General FSM: randomized polynomial algorithm
[Rivest –Shapire]

Black Box Checking

Learning
algorithm

Model
Checker

Conformance
tester

Yes
Yes

OK Error track

ok

ctexample

System

ctexample
refuted

ctexample

model

Property

Optimization

Optimal Coverage Problems

• Find a minimum number of short test sequences
(paths) starting at initial state that cover all
transitions, states

• Applies to FSM models and other graph models
• Use Case (MSC) Graphs: scenario based models

uBET - Lucent Behavior Engineering Toolset

Scenario-based Models

1. Message Sequence Charts

line_1 switch line_2
connect_request

connect_request

ring_tone

answer

answer

Partial order of events

Scenario-based Models ctd.

2. MSC Graphs
Graphs whose nodes are MSC’s on the same processes

start

Path through the graph → combined message sequence chart

Scenario-based Models ctd.

3. Hierarchical MSCs
Graphs whose nodes are MSC’s or nested HMSC’s

start

Path through the nested graphs → message sequence chart

uBET - Lucent Behavior Engineering Toolset

Graph Coverage

• Transition Coverage
Can minimize in PTIME

(1) the number of paths,
(2) their total length, subject to (1)

(or any linear combination of 1 and 2)
- Network flows, Chinese Postman Problem

• State Coverage
Can minimize the number of paths

but not the length
- Asymmetric Traveling Salesman Problem

Extended Finite State Machine

FSM + variables

- States
- Variables

(Boolean, arithmetic, …)

- Transitions
input

condition P(vars.) ts

transformation (vars.)

- Initial state, variable assignment

Covering Tests for EFSM

• Find minimum number of valid paths that cover all
the transitions of the EFSM
(or all states, or all transitions + conditions, ….)

x=1 x:=0

x=0

x :=1

Covering Tests for EFSM

• Find minimum number of valid paths that cover all
the transitions of the EFSM

• Not all paths of the EFSM graph are valid

x=0

x :=1

x=1 x:=0

invalid

Covering Tests for EFSM

• Find minimum number of valid paths that cover
all the transitions of the EFSM

• Not all paths of the EFSM graph are valid

x:=0

x=0

x :=1

valid

x=1

EFSM → Colored Graph

• One color per transition of EFSM

EFSM

Expanded FSM

(no variables)

Find minimum number of paths covering all the colors

EFSM → Colored Graph

• The full expanded graph may be too large

• We may generate a subgraph of it
- ok: all paths in the subgraph are valid
(but subgraph may lack some other potentially better paths)

• We can generate a minimized graph
(equivalence relation on expanded states that respects
transitions and colors)
- does not miss any paths

Colored Graph Covering Problem

• Given a graph with colored edges (and/or nodes),
find minimum set of paths covering all colors

• Reduces to acyclic graphs:
compute strongly connected components and shrink them

• Dynamic programming algorithm:
exponential in #colors.

• In general, problem is NP-hard.
• At least as hard as Set Cover problem ⇒ cannot

approximate min # paths within < logn factor.

Relation to Set Cover

• Set Cover Problem:
– Given a set U of elements and a family F of subsets

S1, …, Sm of U, find minimum number of sets from F
that covers U

• Colored graph has color set = U

S1
S2

Sm

Greedy Covering algorithm
Given a graph with colored edges,
• Find a path covering maximum number of colors
• Include the path in the solution, discard the colors and

iterate

• The Max Color Path problem is also NP-hard and MAX

SNP-hard

⇒ can’t approximate below some constant factor

Max Color Path Problem
• Open: Is there a constant factor approximation algorithm?

• Simple Greedy → worst-case ratio = #colors

• “Transitive” (more careful) Greedy → finds path with at
least colors, if best path has OPT colors

• Another quasipolynomial algorithm finds path with at least
OPT / c⋅log(OPT) colors

OPT

Min Covering Problem
• Often in practice, the first few paths of the Greedy

covering algorithm cover many colors, and then the rest of
the paths, which form the bulk of the test set, cover a few
colors each

» In the latter part we can find optimal paths:

• Finding a path covering at least k colors with k fixed (or up

to logn) can be done in polynomial time.

Pythia

Toolset for automated test generation for
FSM’s and EFSM’s (Lee & Yannakakis)

Incorporates optimization algorithms

Applications to systems:

PHS, 5ESS INAP, Diamond, H.248

Hierarchical FSM/Graph

Nodes are ordinary states or
superstates mapped to lower
level FSMs/graphs

Compact representation of large flat FSM

- Useful way to structure large FSM

Hierarchical Testing
• Approach 1: Expand the hierarchy
- Cover every transition/state of every module (subgraph) in

every possible context: Polynomial time in the flattened
graph but the flat graph can be exponentially larger
⇒ state explosion
⇒ test explosion

• Approach 2: No expansion
- Cover every transition/state in at least some context,
• Find minimum number of tests to cover all transitions of all

the modules
Goal: construct the tests without expanding the hierarchy

Hierarchical FSM Testing

- Could expand to flat FSM and reduce to
the colored graph covering problem

• Find minimum number of tests to
cover all transitions of all the modules

• Much better: Can avoid flattening (state explosion) and can
get constant approximation ratio = nesting depth [MY]

• Can also approximate more general metrics that involve both
the number of paths and their length, costs on the edges, …

Conclusions

• Long line of research

• Theoretical and practical interest

• Rich variety of problems

• Connections with different areas (optimization,
verification, learning, games, combinatorics,…)

	Testing, Optimization, and Games
	The Software Reliability Problem
	Focus: Behavior/Control of Systems
	Finite State Machine for Phone
	Testing
	Different Views of Testing
	Outline
	Finite State Machine
	Test
	Testing as a Game
	Questions
	Questions
	Questions
	Example: Adaptive Distinguishing “Sequence”
	Example: Adaptive Distinguishing “Sequence”
	Questions
	Questions
	Questions
	
	Machine Identification is hard
	
	Conformance Testing - Deterministic FSM
	Effect of extra states
	Questions
	Easy cases
	Machines with Reliable Reset
	General machines
	Sketch of (simplified) Test
	A universal traversal problem
	Nondeterministic FSM
	Example
	Distinguishing Between Machines
	Two-player game
	Opposing System Player
	Indifferent System player: Random moves
	Indifferent System player: Random moves
	Blindfold (Preset) Game
	Adaptive Strategies
	Adaptive Strategies ctd.
	Testing Properties
	Testing Properties
	Testing Properties
	Learning FSM with a teacher
	Black Box Checking
	Optimization
	Optimal Coverage Problems
	Scenario-based Models
	Scenario-based Models ctd.
	Scenario-based Models ctd.
	Graph Coverage
	Extended Finite State Machine
	Covering Tests for EFSM
	Covering Tests for EFSM
	Covering Tests for EFSM
	EFSM ? Colored Graph
	EFSM ? Colored Graph
	Colored Graph Covering Problem
	Relation to Set Cover
	Greedy Covering algorithm
	Max Color Path Problem
	Min Covering Problem
	Pythia
	Hierarchical FSM/Graph
	Hierarchical Testing
	Hierarchical FSM Testing
	Conclusions

