

Introduction to GSTE

Jin Yang, Ph.D.

Principal Research Scientist Validation Research Lab Microprocessor Technology Labs Corporate Technology Group

ATVA 2006, Beijing, China

Outline

- Background
- Circuit Model and Assertion Language
- STE
- GSTE
- GSTE for Concurrent Hardware
- Symbolic Simulation
- Quaternary Abstraction
- Conclusion

What Is GSTE?

Generalized Symbolic Trajectory Evaluation

A system used by FVers since 2000 on verifying Intel $\mu\text{-}processors$ with thousands of state elements

3 10/23/2006

Historical Perspective

Assertion Languages and Model Checkings

Validation Research Lab

Outline

• Background

- Circuit Model and Assertion Language
- STE
- GSTE
- GSTE for Concurrent Hardware
- Symbolic Simulation
- Quaternary Abstraction
- Conclusion

6

10/23/2006

Circuit Model

M = (I, L, N; O, F)

- I vector of Boolean input nodes
- L vector of Boolean latch nodes
- N set of Boolean next state functions

 $n_I(I, L)$ for each latch node $I \in L$

- O vector of Boolean output nodes
- F set of Boolean output functions

 $f_o(I, L)$ for each output node $o \in O$

Circuit Model: Example

- Next state functions
 - m0: ((wr & !a) -> din) & ((!wr | a) -> m0)
 - m1: ((wr & a) -> din) & ((!wr | !a) -> m1)
- Output functions

8

- dout = !wr & !a & m0 + !wr & a & m1

Circuit Model - Semantics

$$M = (I, L, N; O, F)$$

• State

S

- A Boolean assignment to elements in I and L
- s(o) = f₀(s(I), s(L)) for each $o \in O$
- Trace (waveform)

 $\tau = \mathbf{S}_0 \ \mathbf{S}_1 \ \mathbf{S}_2 \ \dots$

- For all $i \ge 0, I \in L, s_{i+1}(I) = n_i(s_i(I), s_i(L))$
- Infinite

9

- No initial condition, and therefore any suffix of $\boldsymbol{\tau}$ is also a trace
- $\Gamma(M)$ set of all traces in M

Circuit Model - Semantics: Example

Assertion Language

• Set of all Predicates over I, L, O and Z

Ρ

- Z vector of rigid Boolean variables (symbolic constants)
 - \bullet BV_Z denotes a Boolean value assignment to Z
- Assertion Alphabet

 $\Sigma = \{ (a, c) | a, c \in P \}$

- a antecedent
- c consequent
- Assertion Language

11

- A $\subseteq \Sigma^*$ (finite) assertion language
 - $w \in A$ assertion word
- $A^{\omega} \subseteq \Sigma^{\omega}$ (infinite) ω -assertion language
 - $w \in A^{\omega}$ ω -assertion word

Assertion Language - Semantics

- Trace Language
 - State sequence $\pi = s_0 s_1 s_2 \dots$ satisfies word $w = (a_0, c_0) (a_1, c_1) \dots (a_{k-1}, c_{k-1})$

 $\pi \models W$ if $\forall BV_Z$, $(\land_{0 \le i < k} a_i(s_i(I), s_i(L), s_i(O), BV_Z)) =>$

$$(\wedge_{0 \le i < k} C_i(S_i(1), S_i(L), S_i(O), BV_Z)).$$

"if all the antecedents are satisfied, then all the consequents must be satisfied"

- Trace language of assertion word w:

$$\Gamma(\mathsf{w}) = \{\pi \mid \pi \mid = \mathsf{w}\}$$

- Trace language of assertion language A:

$$\Gamma(\mathsf{A}) = \cap_{\mathsf{w} \in \mathsf{A}} \Gamma(\mathsf{w})$$

- Theorem: ("more words \Rightarrow more restricted behavior")

$$\mathsf{A}_1 \subseteq \mathsf{A}_2 \Rightarrow \Gamma(\mathsf{A}_2) \subseteq \Gamma(\mathsf{A}_1)$$

• Model satisfiablity

if $\Gamma(M) \subseteq \Gamma(A)$

• ω -Semantics can be similarly defined

Outline

- Background
- Circuit Model and Assertion Language
- STE
- GSTE
- GSTE for Concurrent Hardware
- Symbolic Simulation
- Quaternary Abstraction
- Conclusion

STE Assertion

• STE Assertion – prefix closure of an assertion word

 $A = \{\varepsilon, (a_0, c_0), (a_0, c_0) (a_1, c_1), ..., (a_0, c_0) (a_1, c_1) ... (a_{k-1}, c_{k-1}) \}$

STE Assertion: Example

"If a value is written to a memory cell, then the read from the cell immediately after will return the value."

STE Assertion Satisfiability: Example

 $(wr \& a=z_a \& din=z_d, 1) (!wr \& a=z_a, dout=z_d)$

- 1) $z_a=0, z_d=0:$ (wr & !a & !din, 1) (!wr & !a, !dout)
- 2) $z_a=0, z_d=1$: (wr & !a & din, 1) (!wr & !a, dout)
- 3) $z_a=1, z_d=0:$ (wr & a & !din, 1) (!wr & a, !dout)

4)
$$z_a=1, z_d=1$$
: (wr & a & din, 1) (!wr & a, dout)

STE Model Checking

• Post-Image Function

 $post(p(I,L,Z)) = (\exists I,L: p(I,L,Z) \land (\land_{I \in L} I'=n_I(I,L))) [L/L']$

Constrained reachability analysis

17

STE Model Checking (cont)

 $\begin{array}{l} \text{STEMC}(M, A) \\ \text{begin} \\ 1. \ ckt_stt((q_{0,} q_{1})) := stt_pred(a_{0}, M); \\ 2. \ for \ i = 1 \ to \ k-1 \ do \\ 3. \ if (!(ckt_stt((q_{i-1}, q_{i})) \Rightarrow_{M} c_{i-1})) \\ 4. \ return \ 0; \\ 5. \ ckt_stt((q_{i}, q_{i+1})) := post(ckt_stt((q_{i-1}, q_{i}))) \land stt_pred(a_{i}, M); \\ 6. \ endfor; \\ 7. \ return \ (ckt_stt((q_{k-1}, q_{k})) \Rightarrow_{M} c_{k-1}); \\ end. \end{array}$

Notes:
• stt_pred(a, M) :=

$$\exists O: a \land (\land_{o \in O} o = f_o(I, L))$$

• $p \Rightarrow_M c :=$
 $p \land (\land_{o \in O} o = f_o(I, L)) \Rightarrow c$

STE Model Checking (cont)

Lemma (Constrained Forward Reachability)
 For all BV_z,

$$\begin{split} s \in & ckt_stt((q_{j-1}, q_j)) \; [BV_Z/Z] \; iff \\ \exists \; \tau = s_0 \; s_1 \; ... \; s_{j-1} = s \; ..., \; s.t., \; \forall 0 \leq i < j, \; a_i(s_i(I), \; s_i(L), \; s_i(O), \; BV_Z) = 1 \\ for \; all \; state \; s \; and \; all \; 0 \leq j \leq k. \end{split}$$

•Theorem

STEMC(M, A)=1 iff M |= A

STE Model Checking: Example

Outline

- Background
- Circuit Model and Assertion Language
- STE

• GSTE

- GSTE for Concurrent Hardware
- Symbolic Simulation
- Quaternary Abstraction
- Conclusion

21

10/23/2006

STE Limitation

• STE assertion only specifies a single pattern

- E.g., (wr & $a=z_a \& din=z_d$, 1) (!wr & $a=z_a$, dout= z_d)

• In reality, (possibly infinitely) many patterns are needed for a complete specification

- E.g., $(wr \& a=z_a \& din=z_d, 1) (!wr + a!=z_a, 1)^* (!wr \& a=z_a, dout=z_d)$

"After a value is written to a memory cell, any read from the cell will return the value as long as there is no other writes to the cell in-between."

GSTE Assertion

• Assertion Automaton

 $G = (\Sigma, Q, q_0, \Delta, T)$

- Σ assertion alphabet
- Q a set of specification states
- $-q_0$ the initial state
- $\Delta \subseteq \mathbf{Q} \times \Sigma \times \mathbf{Q}$ state transition relation
- T terminal (accept) states
- G is strong if T = Q. Otherwise, G is weak.
- Assertion Language Language accepted by G

 $\mathsf{A}(\mathsf{G}) = \{ (\mathsf{a}_0, \, \mathsf{c}_0) \, ... \, (\mathsf{a}_{k-1}, \, \mathsf{c}_{k-1}) \mid \exists \mathsf{q}_0, ..., \mathsf{q}_k : \, \mathsf{q}_k \in \mathsf{T}, \, \forall 0 \leq i < k, \, (\mathsf{q}_i, \, (\mathsf{a}_i, \, \mathsf{c}_i), \, \mathsf{q}_{i+1}) \in \Delta \}$

Strong GSTE Assertion: Example

"After a value is written to a memory cell, any read from the cell will return the value as long as there is no other writes to the cell in-between."

Strong GSTE Assertion: Example (cont)

A collection of equivalent STE assertions:

Strong GSTE Model Checking

Forward constrained reachability analysis

GSTEMC(M, G) begin 1. for each $\delta \in \Delta$ 2. $ckt_stt(\delta) := 0;$ 3. add every $\delta' \in \Delta$ from q_0 to queue; 4. while (queue is not empty) 5. $\delta = (q, (a,c), q') := dequeue(queue);$ 6. if $(q = q_0)$ 7. $\operatorname{ckt_stt}(\delta) := \operatorname{stt_pred}(a, M);$ 8. else 9. $\operatorname{ckt_stt}(\delta) := \operatorname{post}(\bigvee_{\delta' \text{ to } q} \operatorname{ckt_stt}(\delta')) \land \operatorname{stt_pred}(a, M);$ 10. if $(!(ckt_stt(\delta) \Rightarrow_{M} c))$ 11. return 0; 12. if there is a change in $ckt_stt(\delta)$ 13. add every $\delta' \in \Delta$ from q' to queue; 14. endwhile; 15. return 1; end.

Strong GSTE Model Checking: Example

Iter. #	queue	ckt_stt(q ₀ , q ₁)	ckt_stt(q ₁ , q ₁)	ckt_stt(q ₁ , q ₂)
1	{(q ₀ , q ₁)}	wr & a=z _a & din=z _d	0	0
2, 3	{(q ₁ , q ₁), (q ₁ , q ₂)}	wr & a=z _a & din=z _d	$(!z_a \rightarrow m0=z_d) \& (z_a \rightarrow m1=z_d) \& (!wr + a!=z_a)$	0
4	{(q ₁ , q ₂)}	wr & a=z _a & din=z _d	$(!z_a \rightarrow m0=z_d) \& (z_a \rightarrow m1=z_d) \& (!wr + a!=z_a)$	$(!z_a \rightarrow m0=z_d) \& (z_a \rightarrow m1=z_d) \& !wr \& a=z_a$

Strong GSTE Model Checking (cont)

• Lemma (Constrained Forward Reachability) For all BV₂,

$$\begin{split} s \in & \mathsf{ckt_stt}(\delta)[\mathsf{BV}_{\mathsf{Z}}/\mathsf{Z}], \text{ iff} \\ \exists (\mathsf{q}_0, (\mathsf{a}_0, \mathsf{c}_0), \mathsf{q}_1) (\mathsf{q}_1, (\mathsf{a}_1, \mathsf{c}_1), \mathsf{q}_2) \dots (\mathsf{q}_{j-1}, (\mathsf{a}_{j-1}, \mathsf{c}_{j-1}), \mathsf{q}_j) = \delta, \\ \exists \tau = \mathsf{s}_0 \mathsf{s}_1 \dots \mathsf{s}_{j-1} = \mathsf{s} \dots, \mathsf{s.t.}, \forall 0 \leq i < j, \mathsf{a}_i(\mathsf{s}_i(\mathsf{I}), \mathsf{s}_i(\mathsf{L}), \mathsf{s}_i(\mathsf{O}), \mathsf{BV}_{\mathsf{Z}}) = 1 \\ \text{for all state s and all } \delta \in \Delta. \end{split}$$

• Theorem

GSTEMC(M, G)=1 iff M |= A(G)

Strong GSTE limitation

Strong assertion automaton is typically enough for describing a large class of hardware correctness. However,

- It cannot describe properties where consequents also depend on antecedents in the future
- E.g., "if value 1 is read out from the cell, then the last write to the cell must be value 1."

Weak GSTE Assertion: Example

 $(wr \& a=z_a, din=1) (!wr + a!=z_a, 1)^* (!wr \& a=z_a \& dout=1, 1)$

Weak GSTE Model Checking

Step 1: constrained backward reachability analysis

- Pull back future constraints (reverse of the forward reachability analysis)
- Pre-Image Function

pre(p(I,L,Z)) =

 $\exists L': (\exists I': p(I',L',Z)) \land (\land_{I \in L} I'=n_I(I,L))$

31

Weak GSTE Model Checking (cont)

Step 1: constrained backward reachability analysis

```
BackStrengthen(M, G)
begin
1. for each \delta \in \Delta
2. br stt(\delta) := 0;
3. add every \delta' \in \Delta to T to queue;
4. while (queue is not empty)
5. \delta = (q, (a,c), q') := dequeue(queue);
6. if (q' \in T)
7. br_stt(\delta) := stt_pred(a, M);
8.
     else
9. br_stt(\delta) := pre(\bigvee_{\delta' \text{ from } q'} br_stt(\delta')) \land stt_pred(a, M);
10. if there is a change in br_stt(\delta)
11. add every \delta' \in \Delta to g to queue;
12. endwhile;
end.
```

32

10/23/2006

Backward Reachability Analysis: Example

Iter. #	queue	br_stt(q ₀ , q ₁)	br_stt(q ₁ , q ₁)	br_stt(q ₁ , q ₂)
1	{(q ₁ , q ₂)}	0	0	!wr & $a=z_a & (!z_a -> m0=1) & (z_a -> m1=1)$
2, 3	$\{(q_1, q_1), (q_0, q_1)\}$	0	$(!wr + a!=z_a) \& (!z_a -> m0=1) \& (z_a -> m1=1)$!wr & $a=z_a & (!z_a -> m0=1) & (z_a -> m1=1)$
4	{(q ₀ , q ₁)}	wr & a=z _a & din=1	$(!wr + a!=z_a) \& (!z_a -> m0=1) \& (z_a -> m1=1)$!wr & $a=z_a & (z_a -> m0=1) & (z_a -> m1=1) $

33

Weak GSTE Model Checking (cont)

Lemma (Constrained Backward Reachability)
 For all BV₇,

$$\begin{split} s \in br_stt(\delta)[BV_Z/Z], \text{ iff} \\ \exists (q_1, (a_1, c_1), q_2) = \delta (q_2, (a_2, c_2), q_3) \dots (q_{j-1}, (a_{j-1}, c_{j-1}), q_j \in T), \\ \exists \tau = s_1 = s \dots s_{j-1} \dots, \text{ s.t.}, \forall 1 \le i < j, a_i(s_i(I), s_i(L), s_i(O), BV_Z) = 1 \\ \text{for all state s and all } \delta \in \Delta. \end{split}$$

• Lemma (Antecedent Strengthening)

Construct G' = (Σ , Q, q₀, Δ' , Q) from G = (Σ , Q, q₀, Δ , T) by strengthening a in each δ =(q, (a, c), q') $\in \Delta$ with br_stt(δ) \wedge a. Then G' |= M iff G |= M

• Theorem

34

GSTEMC(M, G')iff $G \mid = M$

ω-GSTE Assertion and Model Checking

- To achieve ω -regularity in expressiveness
- ω-Assertion Automaton

 $G^{\omega} = (\Sigma, Q, q_0, \Delta, \{T_1, T_2, ..., T_k\})$

- Σ assertion alphabet
- Q a set of specification states
- q0 the initial state
- $\Delta \subseteq \mathbf{Q} \times \Sigma \times \mathbf{Q}$ state transition relation
- T_1 , T_2 , ..., T_k fair sets of states
- Assertion Language Language accepted by G^{ω}
 - A transition path is fair if it visits T_1 , ..., T_k infinitely often.
 - Only look at the $\omega\textsc{-assertion}$ word captured by a fair transition path.
- Model checking

35

- A fix-point of backward reachability strengthening + GSTEMC

Outline

- Background
- Circuit Model and Assertion Language
- STE
- GSTE
- GSTE for Concurrent Hardware
- Symbolic Simulation
- Quaternary Abstraction
- Conclusion

GSTE Limitation

- GSTE assertions are sequential in nature, not suitable for describing concurrent behaviors
- In reality, there are possibly many current behaviors in a circuit

Ex. : out becomes 1 after each of the three inputs has been set to 1 at least once.

It will be very tedious to describe all possible orders of three inputs being set to 1!

The Meet Operator

• Meet of assertion letters:

$$(a_1, c_1) \sqcap (a_2, c_2) = (a_1 \land a_2, c_1 \land c_2)$$

• Meet of assertion words:

$$\sigma_1 \sigma_2 ... \sigma_k \sqcap \sigma_1^{'} \sigma_2^{'} ... \sigma_k^{'} = (\sigma_1 \sqcap \sigma_1^{'}) (\sigma_2 \sqcap \sigma_2^{'}) ... (\sigma_k \sqcap \sigma_k^{'})$$

• Meet of assertion languages:

$$A_{1} \sqcap A_{2} = \{ w_{1} \sqcap w_{2} \mid w_{1} \in A_{1}, w_{2} \in A_{2}, |w_{1}| = |w_{2}| \}$$

The Meet Operator (cont)

• Repeated application

 $\sqcap {}^{0} \mathsf{A} = \mathsf{A}, \quad \sqcap {}^{k} \mathsf{A} = (\sqcap {}^{k-1} \mathsf{A}) \sqcap \mathsf{A} \ (k > 0)$

• Lemma

 $\sqcap {}^{k}A \subseteq \sqcap {}^{k+1}A \text{ but } \Gamma(\sqcap {}^{k}A \text{ }) = \Gamma(\sqcap {}^{k+1}A \text{ })$

- proof sketch
 - $(\mathbf{w}_1 \sqcap \mathbf{w}_2 \sqcap ... \sqcap \mathbf{w}_k) \sqcap \mathbf{w}_k = \mathbf{w}_1 \sqcap \mathbf{w}_2 \sqcap ... \sqcap \mathbf{w}_k$
 - w \sqcap w' may be new, but $\Pi(w) \land \Pi(w') \subseteq \Pi(w \sqcap w')$
- Theorem (Self Consistency)

 $\mathsf{A} \subseteq \bigcup_{k \ge 0} \sqcap {}^k \mathsf{A} \text{ but } \Gamma(\mathsf{A}) = \Gamma(\bigcup_{k \ge 0} \sqcap {}^k \mathsf{A})$

Concurrent Specification in GSTE

 $\mathsf{CS} = (\Sigma, Q_{\bullet} \cup Q_{+} \cup Q_{*}, q_{0}, \Delta_{\bullet} \cup \Delta_{+} \cup \Delta_{*})$

• Concatenation (transition) Δ_{\bullet} : for each $q_i \in Q_{\bullet}$,

 $q_i = q_j \bullet \sigma_j \qquad (q_j \in Q_{\bullet} \cup Q_{+} \cup Q_{\star})$

• Summation Δ_+ : for each $q_i \in Q_+$,

$$q_i = q_{i_1} + ... + q_{i_k}$$
 $(q_{i_h} \in Q_{\bullet}, 0 \le h < k)$

• Meet $\Delta_{\!\scriptscriptstyle \times}$: for each $q_i \in Q_{\!\scriptscriptstyle \times}$,

$$q_i = q_{i_1} \times \dots \times q_{i_k} \quad (q_{i_h} \in Q_{\bullet} \cup Q_{+}, 0 \le h < k)$$

Concurrent Specification: Semantics

• Initial state:

$$A(q_0) = (1, 1)^*$$

• Concatenation
$$q_i = q_j \cdot \sigma_j$$
:
 $A(q_i) = A(q_j) \cdot \sigma_j$

• Summation
$$q_i = q_{i_1} + \dots + q_{i_k}$$
:

$$A(q_i) = A(q_{i_1}) \cup \dots \cup A(q_{i_k})$$

• Meet
$$q_i = q_{i_1} \times \dots \times q_{i_k}$$
:

$$A(q_i) = A(q_{i_1}) \sqcap \dots \sqcap A(q_{i_k})$$

• Assertion language of CS:

$$\mathsf{A}(\mathsf{CS}) = \bigcup_{q \in Q \bullet \cup Q + \cup Q^{\times}} \mathsf{A}(q)$$

Theorem There is a unique solution to the system

Concurrent Specification: Example

Out becomes 1 after each of the three inputs has been set to 1 at least once.

42

10/23/2006

Concurrent Specification: Serialization

Theorem

43

 $\bigcup_{k \ge 0} \sqcap {}^k A(q)$ is regular

for any q in CS.

- proof sketch
 - $\bullet \cup_{k \ge 0} \sqcap^k (\mathsf{A}_j \bullet \sigma_j) = (\cup_{k \ge 0} \sqcap^k \mathsf{A}_j) \bullet \sigma_j$
 - $\bullet \cup_{k \ge 0} \sqcap^k (\mathsf{A}_1 \cup \mathsf{A}_2) = (\cup_{k \ge 0} \sqcap^k \mathsf{A}_1) \cup (\cup_{k \ge 0} \sqcap^k \mathsf{A}_2) \cup (\cup_{k \ge 0} \sqcap^k \mathsf{A}_1) \sqcap (\cup_{k \ge 0} \sqcap^k \mathsf{A}_2)$
 - $\bullet \cup_{k \geq 0} \sqcap^k (\mathsf{A}_1 \sqcap \mathsf{A}_2) = (\cup_{k \geq 0} \sqcap^k \mathsf{A}_1) \sqcap (\cup_{k \geq 0} \sqcap^k \mathsf{A}_2)$

• construct a strong GSTE automaton over $P(\{\cup_{k\geq 0} \sqcap^k A_1, ..., \cup_{k\geq 0} \sqcap^k A_n\})$

- Since Γ(A) = Γ(∪_{k≥0} □ ^k A), this effectively provides a precise solution to model check a CS, however
- The sequential assertion automaton may be exponentially large

Model Checking Concurrency

cGSTEMC(M, CG) begin 1. for each $q \in Q$ 2. ckt stt(δ) := 0; 3. add q_0 to queue; 4. while (queue is not empty) 5. q := dequeue(queue); 6. if $(q = q_0)$ 7. ckt_stt(q) := 1; 8. else if $(q = q' \bullet (a,c))$ 9. ckt_stt(q) := post(ckt_stt(q')) ^ stt_pred(a, M); 10. if ($!(ckt_stt(q) \Rightarrow_{M} c)$) 11. return 0; 12. else if $(q = q_1 + ... + q_k)$ 13. $\operatorname{ckt_stt}(q) := \bigcup_{1 \le i \le k} \operatorname{ckt_stt}(q_i);$ 14. else 15. $\operatorname{ckt_stt}(q) := \bigcap_{1 \le i \le k} \operatorname{ckt_stt}(q_i);$ 16. endif; 10. if there is a change in ckt stt(q) 11. add every q' that has q in its RHS to queue; 12. endwhile; 13. return 1; end.

Model Checking Concurrency (cont)

Lemma (Constrained Forward Reachability)
 For all BV_Z,

$$\begin{split} s \in & \mathsf{ckt_stt}(q)[\mathsf{BV}_Z/\mathsf{Z}], \text{ if} \\ & \exists (a_0,c_0) (a_1,c_1) \dots (a_{j-1},c_{j-1}) \in \mathsf{A}(q), \\ & \exists \tau = \mathsf{s}_0 \, \mathsf{s}_1 \dots \, \mathsf{s}_{j-1} = \mathsf{s} \dots, \, \mathsf{s.t.}, \, \forall 0 \leq i < j, \, a_i(\mathsf{s}_i(\mathsf{I}), \, \mathsf{s}_i(\mathsf{L}), \, \mathsf{s}_i(\mathsf{O}), \, \mathsf{BV}_Z) = 1 \\ & \text{for all state s and all } q \in Q. \end{split}$$

• Theorem

cGSTEMC(M, CG)=1 implies M |= A(CG)

Model Checking Concurrency (cont)

in O

• Why Completeness No Longer Holds?

Solution: (Partial) Serialization

46

Concurrency GSTE: An Exercise

Out becomes 1 after each of the three inputs has been set to 1 at least once.

47

10/23/2006

The Missing Piece

48

10/23/2006

Outline

- Background
- Circuit Model and Assertion Language
- STE
- GSTE
- GSTE for Concurrent Hardware
- Symbolic Simulation
- Quaternary Abstraction
- Conclusion

Symbolic Simulation

- Network of basic logic functions
 - Rather than a monolithic transition relation
- Simulation by successive evaluations of basic logic functions with Boolean expressions
 - Rather than relational product computation
 - Need Boolean function vectors

50

10/23/2006

Ordered Binary Decision Diagrams

OBDD – provide a canonical form for any Boolean function/expression (Bryant 92)

Predicates vs Function Vectors

52

Predicates vs Function Vectors: Example

53

10/23/2006

Set Union and Canonization

- Set union is simple. - $(f_1, f_2, ..., f_k) \cup (g_1, g_2, ..., g_k) =$ p := newP() in (!p&f_1 + p&g_1, !p&f_2 + p&g_2, ..., !p&f_k + p&g_k)
- What about equivalence check?

-
$$(f_1, f_2, ..., f_k) = (g_1, g_2, ..., g_k)$$
?

- Need canonicity

Outline

- Background
- Circuit Model and Assertion Language
- STE
- GSTE
- GSTE for Concurrent Hardware
- Symbolic Simulation
- Quaternary Abstraction
- Conclusion

Quaternary Abstraction: Movitation

```
GSTEMC(M, G)
begin
1. for each \delta \in \Delta
2. ckt stt abs(\delta) := 0;
3. add every \delta' \in \Delta from q_0 to queue;
4. while (queue is not empty)
5. \delta = (q, (a,c), q') := dequeue(queue);
6. if (q = q_0)
7. ckt stt_abs(\delta) := stt_pred_abs(a, M);
8. else
9. \operatorname{ckt\_stt\_abs}(\delta) := \operatorname{post\_abs}(\bigvee_{\delta' \text{ to } q} \operatorname{ckt\_stt\_abs}(\delta')) \land \operatorname{stt\_pred\_abs}(a, M);
10. if ( !(ckt_stt_abs(\delta) \Rightarrow_{M} c) )
11. return 0;
12. if there is a change in ckt stt abs(\delta)
13. add every \delta' \in \Delta from q' to queue;
14. endwhile;
15. return 1:
end.
```

Would like to work on <u>dynamic</u> abstractions of circuit states to reduce complexity, not a <u>static abstraction</u> of M.

Quaternary Abstraction

Basic gates:

&	X	0	1	С	
X	Χ	0	Χ	С	
C	0	0	0	С	
1	Χ	0	1	С	
С	С	С	С	С	

+	Χ	0	1	С
Х	Χ	Χ	1	С
0	Χ	0	1	С
1	1	1	1	С
С	С	С	С	С

T	
X	Χ
0	0
1	1
С	С

Quaternary Vector

- A quaternary vector is an abstraction of a set of Boolean vectors
 A quaternary assignment to I and L is an abstraction of a set of states
- Point-wise abstraction of set union, intersection
- Complexity reduction

Boolean vector sets	quaternary vector
{ (1, 1) }	(1, 1)
$\{ (0, 1), (1, 1) \}$	(X, 1)
$\{ (1, 0), (1, 1) \}$	(1, X)
$\{ (0, 1), (1, 0), (1, 1) \}$	(X, X)
$\{ (0, 0), (0, 1), (1, 0), (1, 1) \}$	(X, X)

\cap	Χ	0	1	С
Χ	X	0	1	С
0	0	0	С	С
1	1	С	1	С
С	С	С	С	С

U	Χ	0	1	С
X	Χ	X	X	X
0	Χ	0	X	0
1	Χ	Χ	1	1
С	Χ	0	1	С

Quaternary Function Vector

- It is often desired to work on a set of quaternary vectors
 - Capture different cases

59

10/23/2006

- Avoid too coarse abstraction
- A quaternary function vector encodes a set of quaternary vectors

Quaternary Abstraction

- Find the maximum level of quaternary abstraction without losing model checking precision
- Currently, it is up to the verifier to decide what is the right level, by
 - Encoding it in the specification, or
 - Specifying elements in L and L that must always have Boolean values
- Automation through X-driven abstraction refinement would help greatly

Dual Rail Encoding in Practice

$$(f_{H}, f_{L}) \xrightarrow{(f_{H}, g_{L})} (f_{H}, g_{H}, g_{L}) \xrightarrow{(f_{H}, g_{L})} (f_{H}, g_{L}) \xrightarrow{(f_{H}, f_{L})} (f_{H}, g_{L}) \xrightarrow{(f_{H}, f_{L})} (f_{H}, f_{L}) \xrightarrow{(f_{H}, f_{L})} (f_{H}, f_{L}) \xrightarrow{(f_{H}, f_{L})} (f_{H}, f_{L}) \xrightarrow{(f_{H}, f_{L})} (f_{H}, g_{L}) \xrightarrow{(f_{H}, g_{L})} (f_{H}, g_{L}) \xrightarrow{(f_{H},$$

Memory Example Revisited

Memory Example Revisited

Iter. #	queue	ckt_stt(q ₀ , q ₁)	ckt_stt(q ₁ , q ₁)	ckt_stt(q ₁ , q ₂)
1	{(q ₀ , q ₁)}	$\begin{array}{l} \text{wr} \leftarrow (1, 0), \\ \text{a} \leftarrow (\textbf{z}_{\text{a}}, \textbf{!}\textbf{z}_{\text{a}}), \\ \text{din} \leftarrow (\textbf{z}_{\text{d}}, \textbf{!}\textbf{z}_{\text{d}}) \end{array}$	С	С
2,3	{(q ₁ , q ₁), (q ₁ , q ₂)}	$\begin{array}{l} \text{wr} \leftarrow (1, 0), \\ \text{a} \leftarrow (\textbf{z}_{\text{a}}, \textbf{!}\textbf{z}_{\text{a}}), \\ \text{din} \leftarrow (\textbf{z}_{\text{d}}, \textbf{!}\textbf{z}_{\text{d}}) \end{array}$	$ \begin{array}{l} \text{wr} \leftarrow (p, !p), \\ \text{a} \leftarrow (!p+!z_{\text{a}}, !p+z_{\text{a}}), \\ \text{m0} \leftarrow (z_{\text{a}}+z_{\text{d}}, z_{\text{a}}+!z_{\text{d}}), \\ \text{m1} \leftarrow (!z_{\text{a}}+z_{\text{d}}, !z_{\text{a}}+!z_{\text{d}}) \end{array} $	С
4	{(q ₁ , q ₂)}	$\begin{array}{l} \text{wr} \leftarrow (1, 0), \\ \text{a} \leftarrow (\textbf{z}_{\text{a}}, \textbf{!}\textbf{z}_{\text{a}}), \\ \text{din} \leftarrow (\textbf{z}_{\text{d}}, \textbf{!}\textbf{z}_{\text{d}}) \end{array}$	$ \begin{array}{l} \text{wr} \leftarrow (p, !p), \\ \text{a} \leftarrow (!p+!z_{\text{a}}, !p+z_{\text{a}}), \\ \text{m0} \leftarrow (z_{\text{a}}+z_{\text{d}}, z_{\text{a}}+!z_{\text{d}}), \\ \text{m1} \leftarrow (!z_{\text{a}}+z_{\text{d}}, !z_{\text{a}}+!z_{\text{d}}) \end{array} $	$\label{eq:wr} \begin{array}{l} wr \leftarrow (1,0),\\ a \leftarrow (z_a, !z_a),\\ m0 \leftarrow (z_a + z_d, z_a + !z_d),\\ m1 \leftarrow (!z_a + z_d, !z_a + !z_d) \end{array}$

Complexity Analysis on A Single Rail

For an $n=2^k$ cell memory, the size of all the BDD nodes in a single rail is: k + 1 + n * (k + 1) + 1

64

Outline

- Background
- Circuit Model and Assertion Language
- STE
- GSTE
- GSTE for Concurrent Hardware
- Symbolic Simulation
- Quaternary Abstraction
- Conclusion

65

10/23/2006

Real Life Results

Intel® Pentium® 4 1.5G

Ex.	#Latches	#Gates	# Spec. vars	#Prec. Nodes	Time (sec.)	Memory (MB)
1	718	17367	68	4	122	36
2	7506	62735	95	41	5220	260
3	22433	187928	401	0	117	509
4	22433	187928	103	0	500	240
5	34899	406630	24	0	451	361
6	46682	241854	282	12	132	295

- They are all over the places in a u-processor
- All cover non-trivial functionalities, a majority from inputs to outputs
- No prior model pruning/abstraction

The GSTE System

1		E cv4		
forte	Help	Eile	Find pattern	± Zoom 100 ±
: GSTE "-w -s" ckt spec_slow; it::GSTEres evaluate edge (_DuMmY_iNiT_,anywher Time: 1 Time: 2	e)	ssslowwb3pdst	ckfreerunm2p 0 ckfreerunm1p	? ? ? p. ? wbslowpdstm357h[6:0]
evaluate edge (anywhere,pre_match) Time: 0		wv5	_ 🗆 🗵	Node browser (ssfp0dcv1)
Time: 1 Time: 2 Time: 3		Eile Selection	n 「 Time line 」 Display Value	Node browser ssfp0d
Time: 1 .Time: 2	,	ckfreerunmlp		wbfpldpdstm357h[6:0] wbfpldpdstvm357h
.Time: 3 evaluate edge (pre_unmatch,unmatch) Time: 0 .Time: 1		ssslowwb3pdstc ? X ?	f391h[6:0]	wbslowtppdstm3561 wbslowfppdstm357h wbslowpdstm3561[6:0] wbslowpdstm357h[6:0]
.Time: 2 .Time: 3 evaluate edge (pre_match,match) Time: 0		wbslowpdstm356 X ? X wbslowpdstm357	1[6:0] ? X ? X h[6:0]	wbslowpdstvm356l wbslowpdstvm357h
.Time: 1 .Time: 2 .Time: 3 finishing up				Levels of hierarchy to expand: 3
Time: 0 .Time: 1 .Time: 2 .Time: 3		let slow_wb = ("slow_w [b", "anywhere",	
.Time: 4 .Time: 5 .Time: 6 .Time: 7		("any (CT "pre_ ("pre	wnere", , (TRAJ (slow_writeback slow_wb_ca match"), match".	se src) T), X_Traj),
Time: 8 done		(CT "matc	(TRAĴ clk_hilo T), X_Traj), h"), here",	
<pre>edge indexing: E0> (anywhere,pre_match) E1> (anywhere,pre_urmatch) E2> (pre_urmatch,unmatch) E3> (pre_match,match)</pre>		(ČT "pre_ ("pre_ (CT	, (TRAJ (slow_nowriteback nowb_sel unmatch"), unmatch", , (TRAJ clk_hilo T), X_Traj),	src) T), X_Traj),
GSTE SUCCEEDED		"unma] ■);	tch")	

Conclusion

- An integration of high capacity of STE with expressive power of traditional model checking (Yang & Seger ICCD'00)
- Further extension to efficiently handle concurrency (Yang & Seger CAV'04)
- A multi-dimensional approach to achieve high capacity while maintaining accuracy (Yang & Seger FMCAD'02)
- A system used by FVers since 2000 on verifying Intel μ-processors with thousands of state elements (Bently HLDVT'02, Yang & Seger FMCAD'02, Schubert ICCAD'03)

Some future directions:

- Automated abstraction refinement
- High level abstraction schemes
- High level specification language with link to GSTE

Thank You Very Much!

Q/A