On Real-Time Requirements in
Specification-Level
UML Models

Risto Pitkanen and Tommi Mikkonen
Tampere University of Technology

Finland
{risto.pitkanen,tonmm .m kkonen@ut.fi}

Motivation for high-level modeling

® Abstraction is a powerful thinking tool

® High-level models
OBetter grasp of system as a whole
OEarly validation and verification

® Real-time systems should be no exception
Olnherent behavioral complexity

® High-level facilities for expressing time-
related issues largely missing from UML

Use cases

® Requirements/specification level modeling
in UML
OE.g. Unified Process

® Serious handicaps from the point of view
of real-time specification:

OuUse case interaction is not supported

®use case A cannot require that use case B has been
executed

ONo explicit time constructs

Formalization of use cases

® Catalysis [D’Souza and Wills 1999]
O Use case = joint action
O Joint actions originate from DisCo

action assign_mentor(subject: Instructor,
watchdog: Instructor)
post subject.mentor = watchdog and
let ex_mentee = watchdog.mentee@pre in
ex_mentee <> null ==> ex_mentee.mentor = null

Our approach: joint action

ParticipantClass_1
pzi ParticipantClass_2 I

pn|
ParticipantClass_n

name
(parameters)

precondition

postcondition

Layered Action Diagrams (LADsS)

<<ladLayer>>
transfers

transfer(sum: Integer)

sum >0 and
source.bal >= sum

Account

bal: Integer




Properties of LADs

® Simple LADs are superposed onto each
other to form a total system
OAspect-oriented structuring of a model
® Semi-executable:
OGenerate all joint action instances whose
preconditions hold true in present state
OPick one, modify participant states such that
postcondition becomes true

Extending LADs with real-time issues

® LADs provide a suitable high-level modeling
formalism also for real-time systems

® We want to be able to express real-time
dependencies between joint actions

® Aim: easy and natural formalization of
requirements such as “When gas valve is
opened, it must be closed within 5 seconds
unless the burner is ignited successfully.”

Generalized Railroad Crossing (GRC)

@® System controls gate at a
railroad crossing
® Requirements:

O Safety: Whenever there is at
least one train in the crossing, the
gate must be down.

O Utility: When there is no train in
the crossing, the gate must be
raised within a reasonable time.

GRC with LADs: Trains

<<ladLayer== trains

®
CD o oo )

PAST ) -n_ens
out

@2

Real-time semantics

® Global clock Omega, typed Real, initialized to 0.0.

@ |nitially empty set Delta of deadlines.
O Holds pairs (Deadlineld, Real)
® |n each joint action, an implicit parameter now:
Time.

@ Each joint action has an implicit precondition
O now >= Omega and now <= Delta-
>minimum_deadline(),
® and an implicit postcondition e

O Omega = now@pre. now<= Delta->
minimum_deadiine()

® |In effect, this causes time to grow monotonically
O never exceeding the minimum deadline currently in "°W@P’e
elta

Semantics of a real-time constraint

Y g
A
p.B_ms = now+ ms and now >= p.B_ms
p.B_dl = Deadline(nextid, now + di)
and Delta = Delta@pre-> C Delta = Delta@pre->
mludmg(Deadlme(n':xxfi " B ms: Real excluding(p.B_d)
B_dI: Deadline|

and
nextid = nextid@pre + 1




Another way of putting it

records minimum separation checks
and deadline
in common participant

minimum
eparation

adds deadline to

proceed beyond minimum
deadline)

Gate

<<ladLayer>> gates

Cr (o)

down

) G

Controller

P—

wan_erst) (10Loner
- f N
ColnSIeAT_LAST) - To_use | (war_tast

Controller real-time constraints

<<ladLayer>> controller

. approach

c@pre.oclinState(WAIT_FIRST) = @1
c@pre.oclinState(TO_RAISE) => @CANCEL : A

c@pre.n_trains=1 and c.oclinState(WAIT_LAST)=> @[0..1]

exit

Validation and Verification

® Either theorem proving (using TLA) or
model checking (timed automata) can be
used for verification and validation

® An equivalent GRC DisCo model has been
model checked using the Kronos tool after
mapping it to timed automata

® Theorem proving applies to generic
models, model checking currently only to
specific instances (e.g. two trains)

Conclusions

® Successful application of earlier RT modeling
results and techniques in a UML profile based
setting

® New approach for expressing real-time
requirements for formalized use cases (joint
actions)
O Real-time constraint associations

® Methodological and notational support for
separating real-time issues from the underlying
control logic




