
1

On Real-Time Requirements in 
Specification-Level

UML Models

Risto Pitkänen and Tommi Mikkonen
Tampere University of Technology

Finland
{risto.pitkanen,tommi.mikkonen@tut.fi}

Motivation for high-level modeling�Abstraction is a powerful thinking tool�High-level models�Better grasp of system as a whole�Early validation and verification�Real-time systems should be no exception�Inherent behavioral complexity�High-level facilities for expressing time-
related issues largely missing from UML

Use cases�Requirements/specification level modeling 
in UML�E.g. Unified Process�Serious handicaps from the point of view 
of real-time specification:�Use case interaction is not supported�use case A cannot require that use case B has been 

executed�No explicit time constructs

Formalization of use cases� Catalysis [D’Souza and Wills 1999]�Use case = joint action�Joint actions originate from DisCo

action assign_mentor(subject: Instructor,

watchdog: Instructor)

post subject.mentor = watchdog and

let ex_mentee = watchdog.mentee@pre in

ex_mentee <> null ==> ex_mentee.mentor = null

Our approach: joint action Layered Action Diagrams (LADs)



2

Properties of LADs�Simple LADs are superposed onto each 
other to form a total system�Aspect-oriented structuring of a model�Semi-executable:�Generate all joint action instances whose 

preconditions hold true in present state�Pick one, modify participant states such that 
postcondition becomes true

Extending LADs with real-time issues� LADs provide a suitable high-level modeling 
formalism also for real-time systems�We want to be able to express real-time 
dependencies between joint actions� Aim: easy and natural formalization of 
requirements such as “When gas valve is 
opened, it must be closed within 5 seconds 
unless the burner is ignited successfully.”

Generalized Railroad Crossing (GRC)� System controls gate at a 
railroad crossing� Requirements:�Safety: Whenever there is at 

least one train in the crossing, the 
gate must be down.�Utility: When there is no train in 
the crossing, the gate must be 
raised within a reasonable time.

GRC with LADs: Trains

Real-time semantics� Global clock Omega, typed Real, initialized to 0.0.� Initially empty set Delta of deadlines.� Holds pairs (DeadlineId, Real)� In each joint action, an implicit parameter now: 
Time. � Each joint action has an implicit precondition� now >= Omega and now <= Delta-

>minimum_deadline(),� and an implicit postcondition � Omega = now@pre.� In effect, this causes time to grow monotonically� never exceeding the minimum deadline currently in 
Delta

A

now >= Omega and 
now <= Delta->
minimum_deadline()

Omega = 
now@pre

Omega

Delta

Semantics of a real-time constraint

A
B@[ms, dl]

C

A

B

C
B_ms: Real
B_dl: Deadline

p.B_ms = now + ms and
p.B_dl = Deadline(nextid, now + dl)
and Delta = Delta@pre->
including(Deadline(nextid,

now + dl))
and
nextid = nextid@pre + 1

now >= p.B_ms

Delta = Delta@pre->
excluding(p.B_dl)

is syntactic sugar for



3

Another way of putting it

A
B

@[ms, dl]

C

A

Delta

C

adds deadline to

records minimum separation
and deadline
in common participant

Bchecks
minimum
separation

removes deadline
(remember that time cannot
proceed beyond minimum
deadline)

Gate

Controller Controller real-time constraints

Validation and Verification�Either theorem proving (using TLA) or 
model checking (timed automata) can be 
used for verification and validation�An equivalent GRC DisCo model has been 
model checked using the Kronos tool after 
mapping it to timed automata�Theorem proving applies to generic 
models, model checking currently only to 
specific instances (e.g. two trains)

Conclusions� Successful application of earlier RT modeling 
results and techniques in a UML profile based 
setting� New approach for expressing real-time 
requirements for formalized use cases (joint 
actions)�Real-time constraint associations�Methodological and notational support for 
separating real-time issues from the underlying 
control logic


