
Worst-Case Execution Time Analysis
from UML-based RT/E Applications

Chokri Mraidha, Sébastien Gérard, François Terrier, David Lugato

CEA-List
91191 Gif sur Yvette, France

{chokri.mraidha; sebastien.gerard ;
francois.terrier ; david.lugato}@cea.fr

Abstract. Moving from code-centric to model-centric development seems to be
a promising way to cope with the increasing complexity of real-time embedded
systems (RT/ES). These systems have various critical requirements that must
be validated. Validation is then one of the key-point of their development. Re-
lating to this goal, schedulability analysis methods are usually used to validate
the system’s real-time requirements. Most of these methods rely on the knowl-
edge of the Worst-Case Execution Time (WCET) of every task of the system.
This paper presents an approach to derive WCET estimates for an application’s
UML model.

1 Introduction

The Object Management Group (OMG) has been recently promoting the Model
Driven Architecture (MDA) [1], an approach to cope with the increasing complexity
of real-time embedded systems. The main idea is to move from code-centric to
model-centric development. It relies mainly on UML [2] model refinement and trans-
formation as the basic step of an iterative design process leading to automatic synthe-
sis of the application.

For RT/E systems, validation is one of the key point of their development. And re-
lating to this goal, schedulability analysis methods are usually used to validate the
fulfilment of those real-time requirements of an application (e.g. deadline, ready
time…). Most of these methods rely on the knowledge of the Worst-Case Execution
Time (WCET) of every task of the system [3, 4]. This WCET is the execution time of
a given task before scheduling, thus this WCET estimate does not take into account
possible pre-emption of this task. The scheduler will then use WCET estimates to
schedule tasks of the system.

The proposition made in this paper is then to give a practical solution to its reader.
This solution is based on a method on the one hand, but also supported by tools on
the other hand, to quantify WCET.

The paper is organized around four main parts. The first one describes related
works considering WCET analysis. The following section outlines the UML model
on which it is possible to apply the ideas this paper is presenting. The third section

consists then in describing our approach for WCET analysis for UML behavioral
models. Before concluding some experimental results of our approach are presented.

2 Related works

Real-time systems and especially hard real-time systems have to meet strict real-time
constraints. Missing such constraints can have disastrous consequences. Therefore, a
large community aims to supply validation techniques of real-time systems.

Most schedulability and performance analysis methods used to validate real-time
behavior of applications rely on the knowledge of WCET. Execution time of a pro-
gram may depend on various factors, for example on the different values that input
data of the program may have. Depending on the various values of the input data, a
program execution follows different paths. Execution time of the different paths may
vary of course depending of the actions to perform. The highest value among all these
execution times is called the worst-case execution time. As stated in [5], there are two
main families of methods for WCET analysis: static and dynamic methods.

2.1 Static methods

Static methods are independent of input data values and consist in analyzing a pro-
gram statically without running it. Usually this kind of techniques is divided in two
steps: high-level analysis determines all execution paths of a program; and low-level
analysis estimates execution time of these paths. Static methods give an upper bound
of WCET. The main difficulty that static methods have to overcome is to not overes-
timate WCET in order to avoid overscaled hardware design of the system.

Despite significant research advances in static analysis methods, some difficulties
to deal with modern microprocessors architectures and mechanisms [6] (e.g. branch
prediction, out of order executions…) remain. Generally static analysis tools rely on
simulators of microprocessors rather than on the microprocessor itself to perform
WCET analysis. This raises the problem to use a valid and accurate simulator [7].

2.2 Dynamic methods

Dynamic methods rely on time measurement through testing techniques. These meth-
ods are data-centric and consist in measuring a program execution time on a real
system or with a simulator, and this for all possible input data values, which is of
course not possible for infinite domains. To determine WCET with a dynamic method
we need both following points: (1) a technique to measure execution time of the ap-
plication; (2) and a way to find the input data set having the largest execution time.

If we measure the application execution time on a real system we can exploit inter-
nal counters provided in some microprocessors (e.g. Time Stamp Counter (TSC)
register on Pentium microprocessor). If we do not have the real system hardware
target platform, we can execute the application on a simulator modeling the hardware

of the targeted platform on the one hand and providing a facility to calculate execu-
tion time on the other hand. In order to have reliable results in the latter case, the
main difficulty is to have an accurate and valid simulator [7].

After determining the technique of measurement, we need to find the input data set
triggering the behavior we want to evaluate. Test approaches can be used to this end.
Measuring execution time for all possible values is possible for very simple systems
having limited possible input values but not possible for large systems. This set of test
cases can also be automatically generated. Even if we cannot cover all test cases and
then we have not found the test case having the longest execution time, this technique
gives a lower bound of WCET.

To determine the test case having the longest execution time, we can use symbolic
execution of the system that could propagate an evaluation of the calculus complex-
ity. The idea is to have tests covering all possible execution paths of our system. This
technique is part of our methodology for calculating WCET, it will then be detailed in
the following sections.

3 RT/E Applications modeled in UML

Application models are built according to the Accord/UML methodology [8, 9]. The
purpose of this paper is not to describe in minute details the approach. We focus here
on the behavioral part of the methodology. This is indeed the main model used for
performing schedulability and performance analysis [10].

Unlike other UML-based approaches for RT/ES development, as depicted in
Figure 1, Accord/UML implements separation of behavioral concerns around both
control and algorithmic aspects [11]. In this way, the reusability and maintainability
of the developed applications are considerably improved. The control aspect depicts
the purely logical behavior of a class (also called the object life cycle). This is mod-
eled by a specialized UML state machine, the protocol state machine.

The second aspect of the global behavior modeling of a class is its algorithmic di-
mension. The description of this dimension is fully postponed to the operation level
of the class model. The algorithmic aspect is modeled using an action language [12]
mapping the UML action semantics standard.

Actually, when dealing with real-time applications, it is very useful, for simulation
or prototyping for example, to be able to model executable models with enough mod-
elling details. For that purpose UML offers a particular package that defines in min-
ute details how to model all actions of an application and obtain also a complete ex-
ecutable model.

The higher-level entity of this package that is also the link with other model ele-
ments of the UML is the Procedure concept: “A procedure is a group of actions
caused to execute as a unit.” Procedure is used either to specify a method body in a
specific programming language, or within the context of state machine, to specify
effects whenever a state is entered, exited, within a do-activity, or when a transition is
fired.

The Actions package consists in several sub-packages defining: the basics for Ac-
tion and Procedure. A Procedure consists of actions that exchange dataflow via In-

putPins and OutputPins; the recursive structures from which it is possible to define
more complex actions from more primitive ones; read and write actions that define
how to create/delete objects and consult/modify their features, i.e. attributes, variables
or links; computation actions that define how to transform data. Computation actions
are used to model essentially mathematical functions; high-level actions that ensure a
sub-action to be applied on a set of elements; messaging actions that define synchro-
nous calls, asynchronous calls, broadcasting, etc; jump actions that define how to quit
a main flow of control in order to continue in the context of a different flow of con-
trol.

However, the standard focuses on defining the abstract syntax and the semantics of
the UML action language. It does not provide any concrete language mapping with
this proposed semantics! If one wants to build executable UML models it is then
necessary to choose/create a notation (textual and/or graphical) and to define its map-
ping with elements of the abstract syntax defined in the various Action sub-packages
outlined previously. Currently, there are few proposals offering this possibility [13-
15].

In order to be able to have executable models, we have defined the Accord/UML
action language notation [12] which is given in two formalisms: a textual one that can
be edited directly in the model and a graphical one based on UML activity diagrams
that can be drawn in a UML modeler. Both views are equivalent. Indeed, for some
usage, a textual definition of an operation is easier to use. In other cases, the graphical
view is more easily understandable. All actions necessary to model applications are
specified in [12] and also in an Accord/UML profile for action language that has been
defined and implemented to clearly specify UML semantic variation points [16].

Class

m1()

S1

S2

m1()

m1()

Class
(Structural aspect)

Class behavior
(Control aspect)

Operation behavior
(Algorithmic aspect)

Figure 1: Accord/UML behavioral model

The Accord/UML action language is made of conditional actions, loop actions,
group actions, messaging actions, etc. All elementary actions required for real-time
systems modeling with Accord/UML are defined. Figure 2, depicts examples of con-
ditional actions. The first one is an “if-then-else” elementary action and the second
one is a “switch”. This action language allows us to have a complete executable
model independent of any given programming language. Specific programming lan-
guage code like, C, C++ or java can then be generated from these behavioral models.

Graphical view Textual view

Action 0

Action 1 Action 2

[condition true] [condition false]

Action 0 ;

if (condition true)

 Action 1;

else

 Action 2;

Endif

Action 0

Action 1

[variable == value1] [else]

Action 2

Action 4

[variable == value2] [else]

Action 3

Action 0 ;

switch (variable)

 case value1 :

 Action1;

 case value2 :

 Action2;

 default :

 Action 3;

endswitch

Action 4;

Figure 2: Examples of conditional actions in the ACCORD/UML action language

In this study we will focus on WCET analysis of the algorithmic aspect described
previously.

4 WCET analysis of modeled algorithms

This section describes our methods for WCET analysis of Accord/UML behavioral
models. We will focus this study on the algorithmic aspect of the behavioral model
and then determine WCET for each operation of classes of the application. We are
going to present two approaches for WCET analysis of our models: a static approach
and a dynamic approach.

If we have accurate platform information and especially WCET of elementary ac-
tions of the action language, WCET can then be determined statically. Our static
analysis approach consists in statically analyzing the behavioral model. This approach
relies on the knowledge of values of WCET for each elementary action of the action
language [12], and symbolic execution of our UML behavioral model. Information
relating to WCET of each elementary action of the Accord/UML action language is
added to the initial UML model. To perform this static analysis we use the Agatha
toolset [17], which calculates all symbolic execution paths of our model.

Otherwise, to overcome the lack of information on platform architecture and diffi-
culties of static approaches to take into account complex mechanisms of modern
architectures, we will present a dynamic WCET analysis. The dynamic analysis ap-
proach consists in analyzing the behavioral model at runtime. This approach relies on

testing all execution paths of an operation of the model, and then by measuring the
execution time on a particular platform for each path, we determine an estimation of
WCET for the given operation on a given execution platform. The Agatha toolset is
used to determine all execution paths and give test cases for each path.

First, we will present the automatic test case generator we are using to statically
analyze WCET in a static approach and compute the various execution paths to evalu-
ate for a dynamic approach of execution time evaluation.

4.1 The Agatha toolset

The toolset translates UML models to its input formalism and computes all symbolic
behavior of the system by symbolic calculus [17].

The tool originally generates test sets to allow for determining whether the soft-
ware implementation is conformant to its specification. As it always generates a sym-
bolic execution tree, Agatha permits deep investigation into the system’s behaviors.
To produce these results, Agatha has to deal with combinatorial explosion in combin-
ing different techniques such as symbolic calculus, detection of interleaving, con-
straint solving, rewriting procedures, polyhedral calculus.

For WCET analysis, the first step is to translate the UML model into the input lan-
guage called STGA (Symbolic Input Transition Graph with Assignment). The result-
ing translation algorithm is implemented in Objecteering UML modeling tool. Trans-
lation details of UML models into the Agatha formalism is beyond the scope of this
paper, so we briefly present the Agatha formalism, then reader should refer to [18] for
further details.

State1

State2

?input(x)
 [x>0]
 !ok
 a:=a+x;

TRANS
FROM State1
TO State2
WHEN input(x)
PROVIDED x>0
OUTPUT ok
BEGIN
a:=a+x
END;

Figure 3: Example of an STGA transition

The tool uses symbolic execution as defined by [19]. In fact the major drawback of
numeric techniques is the combinatorial explosion due to variable domains. These
domains can be huge, sometimes even infinite. Symbolic calculus allows the handling
of such domains because computing all the behaviors is not equivalent to trying all
the possible values for inputs. Instead of giving values for inputs, they keep their
status of symbol all execution long.

Currently Agatha handles only expressions of the first-order logic. Although this
limitation does not concern a large part of embedded real-time application’s algo-

rithms of the industry, we are working on Agatha enhancement to be able to deal with
more complex expressions.

Now let us set out static and dynamic WCET analysis using this toolset.

4.2 A static WCET analysis approach

Our static analysis approach consists in statically analyzing the UML behavior model
describing the algorithms of an application. This approach relies on the knowledge of
WCET values for each elementary action of the action language [12] on a given plat-
form of execution. This set of WCET values for a given platform can be obtained by
several ways like using a runtime measurement tool or a static analysis for instance.

A symbolic value is attached to each elementary action. For instance, AssignAction
corresponds to an assignment action; AddAction corresponds to an addition action;
TestAction represents a test action which result is a boolean; AsynchronousCallAction
represents an asynchronous call action; and so on. We can note that WCET of this
latter corresponds to the time necessary to put arguments on the stack and make the
call; contrary to a synchronous operation call, the WCET of the called operation is
not taken into account for an asynchronous one.

In the next section, we present an overview of static WCET analysis with the
Agatha toolset and illustrate this approach with a simple example.

4.2.1 Process overview
The first phase of static WCET analysis is platform independent and consists in com-
puting all possible symbolic expressions of WCET for a given operation. This is done
by symbolic execution of the operation using the Agatha toolset. To achieve this goal,
as illustrated in Figure 5, a WCET variable is added to the operation model of Figure
4. This variable can be assigned only by symbolic expressions of WCET of
elementary actions. The annotated UML behavioral model is then translated into the
Agatha internal language (STGA). The symbolic execution is then provided by the
Agatha tool. We finally obtain a set of all possible symbolic values for WCET.

The WCET for a given platform is then determined by replacing symbolic expres-
sion of each elementary action by its given numerical values on the targeted platform.

4.2.2 Illustration through an example
To illustrate the static WCET analysis process proposed previously, let us consider
the very simple example depicted in Figure 4. For readability reasons, this figure
represents only a part of an operation. After a variable assignment a test is done on
the value of the variable x and depending on its value, two branches are possible.

x := a

x := x+a x := b

[x <= 10] [x > 10]

Figure 4: Example of a part of an operation

As depicted on Figure 5, this model is automatically annotated with a WCET vari-
able initialized to 0 and incremented by the WCET of the elementary action executed.

x := a

x := x + a x := b

WCET := 0

WCET := WCET + WCET_AssignAction

WCET := WCET + WCET_TestAction

WCET := WCET_AddAction + WCET_AssignAction

WCET := WCET + WCET_AssignAction

WCET := WCET + WCET_TestAction

[x<=10] [x>10]

Figure 5: UML operation model with WCET variable

This model is then automatically translated into the Agatha formalism (STGA) and
results into two paths of execution corresponding to both branches x≤10 and x>10.
We obtain then two possible WCET expressions:
1. W1 - WCET = 2*WCET_AssignAction + WCET_TestAction +

WCET_AddAction (for x≤10 branch)
2. W2 - WCET = 2*WCET_AssignAction + WCET_TestAction (for x>10 branch).

In this simple case, WCET corresponds to the x≤10 branch. If a relation order be-
tween WCET of elementary actions is specified, Agatha may be able to give us di-
rectly the symbolic WCET.

4.2.3 Discussion
This WCET static analysis technique may lead to an overestimated WCET for some
kinds of platforms. This is due to the fact that our approach does not take into account
some architectural mechanisms like instruction level parallelism, caches, branch pre-
dictions or out-of-order execution. The WCET given by this approach for these kinds
of platforms may then lead to an over sizing of the hardware part of the system.

By the way, this WCET analysis approach provides a safe and not overestimated
WCET for microprocessors that do not have the architecture mechanisms cited above.
On top of that for critical real-time systems, time execution predictability is a funda-
mental point. The modern architecture mechanisms seen above introduce execution
time unpredictability [6]. Architectures ensuring execution time predictability are
preferable for critical real-time systems. Our WCET analysis approach provides a
safe WCET, which can be used for schedulability or performance analysis of critical
real-time applications.

Another point is that our WCET analysis approach is integrated in a model-based
tool chain providing then an automatic estimation of the WCET from the UML
model. The symbolic WCET is platform independent; a simple replacement of ele-
mentary actions symbolic values by numeric values is necessary to give the WCET
on another platform, this makes WCET analysis easily retargetable.

4.3 The dynamic WCET analysis approach

This section presents the dynamic WCET approach. In a first part we present the
dynamic analysis process overview. In a second part we present in more details the
last phase of this process, which is the measurement of execution time.

4.3.1 Process overview
As depicted in Figure 6, the dynamic WCET analysis process is divided in two main
steps. First step is platform independent. The UML model is automatically translated
into Agatha (STGA) formalism [18]. The Agatha toolset is then used to automatically
generate a set of test cases covering all execution paths of the application. Each path
is characterized by a Path Condition (PC) which is a set of constraints on parameters
of the operation. Actually, each PC of each operation corresponds to an equivalence
class of test cases values for the operation. It is important to note that the constraint
solver used by Agatha gives us a single value for each variable of the path condition
[20]. It is also impossible to ensure that another value for that path condition will not
result in a greater execution time. For this reason, the dynamic approach may supply a
lower bound of WCET than the static WCET analysis described in the previous sec-
tion.

The second step is platform dependant. It consists firstly in code generation from
the UML model, then its compilation and finally execution time measurement of the

operation using all test cases generated within the first step. The WCET is then de-
duced from these tests executing each test case and measuring execution time on the
targeted platform.

But how can we measure the execution time with sufficient accuracy and disturb-
ing as little as possible the measured process?

Cla
m 1()

S 1
S 2

m 1()

m 1()
UML2AGATHA

Accord/UML
Model

STGA

AGATHA
a>b and b<0
a<b and b>2
…

TEST CASES

EXECUTION and
MEASURE

CODE
GENERATION

COMPILER

CODE OF THE
APPLICATION

APPLICATION
 BINARY WCET

Figure 6: Dynamic WCET analysis process overview

4.3.2 Measurement of execution time
Once all test cases of an operation are available, one needs to execute all of them in
order to measure their execution time and determine the WCET of the operation. This
step depends on the platform of execution. Elements of the platform that affect execu-
tion time are software resources such as the programming language generated from
the model, the pattern of code generation used, the compiler and the chosen option to
compile the code itself, the operating system, and of course hardware resources like
the microprocessor and the memory configuration.

We have seen that taking into account all these architectural information and
mechanisms is very difficult. To cope with these problems, we use the test approach.
In order to be able to measure execution time of different test cases, the code gener-
ated from the models in the purpose of WCET analysis must contain routines for
capturing time elapsed during the execution. These pieces of code added during the
automatic code generation, depend firstly on the programming language generated,
secondly on the underlying operating system and finally on the type of microproces-
sor.

Even if routines for time capturing differ from a platform to another, the principle
of measuring execution time of an operation remains the same for all platforms: we
capture time before and after the operation call and then the execution time is the
difference between both times (Table 1).

Table 1: Protocol for execution time measure

T1 = get_time_routine;

OperationCall;

T2 = get_time_routine;

Execution_Time = T2 –T1

The main difficulty here is to have enough accuracy in timing units to have signifi-
cant measures. Real-time operating systems offer usually time data structures at the
nanosecond precision. On the real-time operating system VxWorks, we can use
POSIX function clock_gettime(). On Linux operating system, which is not a real-time
operating system, the microprocessor clock cycle counter (TSC register for the Pen-
tium microprocessor for instance) can be used to ensure enough accuracy. The result
of the measures is divided by the cycle clock frequency to obtain execution time of
actions.

Another way to cope with the accuracy problem of timing facilities is to execute
enough times the operation, for which we want to measure execution time. A priori
this can lead to cache influence on execution time. Actually a loop of instructions is
generally optimized by the instruction and data caches. Consequently, execution time
of a loop of size ten for an operation could not correspond to the addition of ten times
execution time of a one call to the same operation. Thanks to routines that invalidate
caches, we can minimize this phenomenon and have a cold start for each iteration of
the loop.

4.3.3 Illustration through an example
This section illustrates our dynamic WCET analysis approach through an example.
After presenting the example and the characteristics of the platform of execution, the
protocol of measurement is described and finally the results themselves.

4.3.3.1 Example
Let us consider the simple operation model of Figure 7. This operation, myOperation,
has two input parameters: a and b.

myOperation (a, b :integer)

x := 0

x := x + a x := x + b

x := a*b-2*a x := a x := 5*(a+2*b)-3a*a x := a + b

[a>b] [a<=b]

[x>10] [x<=10][x>10] [x<=10]

Figure 7: Example of an operation model

The platform of execution is an Intel 1,2 GHz Pentium III mobile running on
Linux operating system with 256 Mo of memory. Generated code is compiled with
GCC 3.2 compiler without any optimization option.

Following the first step of the dynamic approach, the operation model is firstly
translated into Agatha internal language and symbolic execution is performed for the
model. In our example, it computes four execution paths with their associated path
conditions. Table 2 consists of the path conditions and possible examples of numeric
test cases values for both parameters a and b satisfying the PC.

Table 2: Path conditions and numeric test values

Path Condition a numeric value b numeric value

(a>b) and (a>10) 20 5

(a>b) and (a≤10) 9 5

(a≤b) and (b>10) 10 20

(a≤b) and (b≤10) 5 9

The second step consists in executing the operation on the target platform and its
execution time measurement for each test case described in the Table 2.

4.3.3.2 Measurement of execution time
As it is well known that timing routines of general purpose operating systems has a
low resolution, we have measured execution time using the microprocessor clock
cycles internal counter (TSC register) for this example.

We have noticed that measuring execution time of a single simple operation call is
not accurate at all, and then results of measurements that are not relevant. Then, to
cope with this problem, we have measured execution time of several calls of the op-
eration. In order to prevent the cache influence for our usage of loops of call, we have
used cache invalidation instruction; we have then a cold start for each loop iteration.
Figure 11 shows results of the measurement of execution time on the four path condi-
tions of the application. Execution time grows linearly with the number of iterations.
This chart shows clearly that the third test (a=10 and b=20 on Table 2) has the longest
execution time.

0

50

100

150

200

1000 2000 3000 4000 5000 6000 7000

Number of iterations

Ex
ec

ut
io

n
tim

e
in

 m
s

PC1 PC2 PC3 PC4

Figure 8: Measure of execution time of the four path conditions found by Agatha

Worst-Case Execution Time of this operation corresponds then to the gradient of
this chart. Then WCET of the operation of Figure 7 is 27 µs.

4.3.4 Discussion
As in the static approach presented in the previous section, in this dynamic WCET
analysis all possible execution paths are first derived using symbolic execution over
variables. To obtain the execution time for a particular execution path it is repeatedly
measured on the target platform. Although all test cases are covered, this technique
may lead to a lower bound of the WCET, thus the provided WCET may be unsafe.
Contrary to the static approach, this dynamic approach does not target critical real-
time systems but it can easily fulfill soft real-time systems requirements.

Our approach is integrated in a tool chain and it is largely automated. Handling of
architectural mechanisms of modern microprocessors is better in this dynamic ap-
proach rather than the static one. This is due to the fact that the measurements are
made on the target platform itself. It is important to note that the measurement part of
this dynamic WCET analysis approach is platform specific. The platform description
model includes all platform components going from hardware ones like the micro-
processor to software ones like compiler optimization flags that are used.

5 Conclusions and future work

Market constraints and embedded real-time systems complexity are drastically in-
creasing, thus forcing engineers to apply new principles/techniques. Among others,
model driven development offers very promising solutions to these issues. The
knowledge of WCET is fundamental for the design of embedded real-time systems.
The WCET is indeed used for schedulability analysis or performance analysis of
these systems. However in our knowledge, currently there is no existing framework
of WCET analysis for UML models.

In this paper we have presented two approaches of WCET analysis for UML mod-
els. The first one is a static WCET analysis approach relying on a detailed platform
model. Using symbolic execution and WCET of elementary actions, this approach
gives us a safe WCET. It is dedicated to critical as well as soft real-time systems with
hardware architecture without elaborated architectural mechanisms.

The second approach presented is the dynamic WCET analysis. This approach
combines automatic exhaustive test cases generation based on symbolic execution,
code generation, and execution time measurements on the targeted platform. It is
dedicated to soft real-time systems, but contrary to the static approach, this one deals
with modern architecture mechanisms.

These two approaches are integrated in an UML-based development tool chain.
They are largely automated and can be applied on a wide range of current embedded
real-time systems. Our future work will consist in enhancing the static approach in
order to be able to take into account modern architectural mechanisms, and thus pro-
vide a safe WCET for critical real-time systems using hardware with these advanced
architectural mechanisms.

6 References

[1] OMG, MDA Guide Version 1.0.1. 2003, OMG.

[2] OMG, Unified Modeling Language: Superstructure Version 2.0. 2003.

[3] D.C. Petriu and C.M. Woodside, Performance Analysis with UML: Layered Queuing
Models from the Performance Profile, in UML for Real: Design of Embedded Real-Time
Systems. 2003, Kluwer Academic Publishers.

[4] Marco Di Natale and Manas Saksena, Schedulability Analysis with UML, in UML for
Real: Design of Embedded Real-Time Systems. 2003, Kluwer Academic Publishers.

[5] Antoine Colin, et al., Computing worst-case execution times: a state of the art. 2002,
IRISA.

[6] Jakob Engblom. Analysis of the Execution Time Unpredictability caused by Dynamic
Branch Prediction. in 9th IEEE Real-Time Embedded Technology and Applications Sym-
posium (RTAS 2003). 2003. Toronto, Canada.

[7] Jakob Engblom. On Hardware and Hardware Models for Embedded Real-Time Systems.
in Embedded Real-Time Systems Workshop. 2001. London, UK.

[8] A. Lanusse, S. Gérard, and F. Terrier. Real-Time Modeling with UML : The ACCORD
Approach. in "UML98" : Beyond the Notation. 1998. Mulhouse, France: J. Bezivin et P.A.
Muller.

[9] S. Gérard, F. Terrier, and Y. Tanguy. Using the Model Paradigm for Real-Time Systems
Develoment: ACCORD/UML. in OOIS'02-MDSD. 2002. Montpellier: Springer.

[10] Trung Hieu Phan, et al. Scheduling Validation for UML-modeled Real-Time Systems. in
ECRTS 2003. 2003. Porto, Portugal.

[11] Chokri Mraidha, et al. A Two-Aspect Approach for a Clearer Behavior Model. in The 6th
IEEE International Symposium on Object-oriented Real-time distributed Computing
(ISORC'2003). 2003. Hakodate, Hokkaido, Japan: IEEE.

[12] Chokri Mraidha, et al., Action Language Notation for ACCORD/UML. 2003,
DTSI/SLA/03-190/MC/ASG CEA.

[13] ITU-T, Languages for telecommunications applications - SDL combined with UML. 1999,
ITU-T: Geneva, Italy.

[14] Mellor. Advanced Methods and Tools for Precise UML: Vision for the Future. in
OOPSLA workshop pUML. 2000. Denver.

[15] Ian Wilkie, et al., UML ASL Reference Guide. 2001, Kennedy Carter. p. 90.

[16] Chokri Mraidha and Sébastien Gérard, ACCORD/UML Profile for an Action Language.
2003, CEA.

[17] C. Bigot, et al. Automatic test generation with AGATHA. in TACAS. 2003. Warsaw, Po-
land.

[18] D. Lugato, et al., Validation and automatic test generation on UML models : the AGATHA
approach. special issue of the STTT (Software Tools for Technology Transfer), 2004.

[19] Lori A. Clarke, A System to Generate Test Data and Symbolically Execute Programs.
IEEE Trans. Software Eng, 1976: p. 215-222.

[20] University of Maryland,The Omega Library version
1.1.0,http://www.cs.umd.edu/projects/omega.

