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Abstract. Moving from code-centric to model-centric development seems to be 
a promising way to cope with the increasing complexity of real-time embedded 
systems (RT/ES). These systems have various critical requirements that must 
be validated. Validation is then one of the key-point of their development. Re-
lating to this goal, schedulability analysis methods are usually used to validate 
the system’s real-time requirements. Most of these methods rely on the knowl-
edge of the Worst-Case Execution Time (WCET) of every task of the system. 
This paper presents an approach to derive WCET estimates for an application’s 
UML model. 

1 Introduction 

The Object Management Group (OMG) has been recently promoting the Model 
Driven Architecture (MDA) [1], an approach to cope with the increasing complexity 
of real-time embedded systems. The main idea is to move from code-centric to 
model-centric development. It relies mainly on UML [2] model refinement and trans-
formation as the basic step of an iterative design process leading to automatic synthe-
sis of the application. 

For RT/E systems, validation is one of the key point of their development. And re-
lating to this goal, schedulability analysis methods are usually used to validate the 
fulfilment of those real-time requirements of an application (e.g. deadline, ready 
time…). Most of these methods rely on the knowledge of the Worst-Case Execution 
Time (WCET) of every task of the system [3, 4]. This WCET is the execution time of 
a given task before scheduling, thus this WCET estimate does not take into account 
possible pre-emption of this task. The scheduler will then use WCET estimates to 
schedule tasks of the system. 

The proposition made in this paper is then to give a practical solution to its reader. 
This solution is based on a method on the one hand, but also supported by tools on 
the other hand, to quantify WCET. 

The paper is organized around four main parts. The first one describes related 
works considering WCET analysis. The following section outlines the UML model 
on which it is possible to apply the ideas this paper is presenting. The third section 



consists then in describing our approach for WCET analysis for UML behavioral 
models. Before concluding some experimental results of our approach are presented. 

2 Related works 

Real-time systems and especially hard real-time systems have to meet strict real-time 
constraints. Missing such constraints can have disastrous consequences. Therefore, a 
large community aims to supply validation techniques of real-time systems. 

Most schedulability and performance analysis methods used to validate real-time 
behavior of applications rely on the knowledge of WCET. Execution time of a pro-
gram may depend on various factors, for example on the different values that input 
data of the program may have. Depending on the various values of the input data, a 
program execution follows different paths. Execution time of the different paths may 
vary of course depending of the actions to perform. The highest value among all these 
execution times is called the worst-case execution time. As stated in [5], there are two 
main families of methods for WCET analysis: static and dynamic methods. 

2.1 Static methods 

Static methods are independent of input data values and consist in analyzing a pro-
gram statically without running it. Usually this kind of techniques is divided in two 
steps: high-level analysis determines all execution paths of a program; and low-level 
analysis estimates execution time of these paths. Static methods give an upper bound 
of WCET. The main difficulty that static methods have to overcome is to not overes-
timate WCET in order to avoid overscaled hardware design of the system. 

Despite significant research advances in static analysis methods, some difficulties 
to deal with modern microprocessors architectures and mechanisms [6] (e.g. branch 
prediction, out of order executions…) remain. Generally static analysis tools rely on 
simulators of microprocessors rather than on the microprocessor itself to perform 
WCET analysis. This raises the problem to use a valid and accurate simulator [7]. 

2.2 Dynamic methods 

Dynamic methods rely on time measurement through testing techniques. These meth-
ods are data-centric and consist in measuring a program execution time on a real 
system or with a simulator, and this for all possible input data values, which is of 
course not possible for infinite domains. To determine WCET with a dynamic method 
we need both following points: (1) a technique to measure execution time of the ap-
plication; (2) and a way to find the input data set having the largest execution time. 

If we measure the application execution time on a real system we can exploit inter-
nal counters provided in some microprocessors (e.g. Time Stamp Counter (TSC) 
register on Pentium microprocessor). If we do not have the real system hardware 
target platform, we can execute the application on a simulator modeling the hardware 



of the targeted platform on the one hand and providing a facility to calculate execu-
tion time on the other hand. In order to have reliable results in the latter case, the 
main difficulty is to have an accurate and valid simulator [7]. 

After determining the technique of measurement, we need to find the input data set 
triggering the behavior we want to evaluate. Test approaches can be used to this end. 
Measuring execution time for all possible values is possible for very simple systems 
having limited possible input values but not possible for large systems. This set of test 
cases can also be automatically generated. Even if we cannot cover all test cases and 
then we have not found the test case having the longest execution time, this technique 
gives a lower bound of WCET. 

To determine the test case having the longest execution time, we can use symbolic 
execution of the system that could propagate an evaluation of the calculus complex-
ity. The idea is to have tests covering all possible execution paths of our system. This 
technique is part of our methodology for calculating WCET, it will then be detailed in 
the following sections. 

3 RT/E Applications modeled in UML 

Application models are built according to the Accord/UML methodology [8, 9]. The 
purpose of this paper is not to describe in minute details the approach. We focus here 
on the behavioral part of the methodology. This is indeed the main model used for 
performing schedulability and performance analysis [10]. 

Unlike other UML-based approaches for RT/ES development, as depicted in 
Figure 1, Accord/UML implements separation of behavioral concerns around both 
control and algorithmic aspects [11]. In this way, the reusability and maintainability 
of the developed applications are considerably improved. The control aspect depicts 
the purely logical behavior of a class (also called the object life cycle). This is mod-
eled by a specialized UML state machine, the protocol state machine. 

The second aspect of the global behavior modeling of a class is its algorithmic di-
mension. The description of this dimension is fully postponed to the operation level 
of the class model. The algorithmic aspect is modeled using an action language [12] 
mapping the UML action semantics standard. 

Actually, when dealing with real-time applications, it is very useful, for simulation 
or prototyping for example, to be able to model executable models with enough mod-
elling details. For that purpose UML offers a particular package that defines in min-
ute details how to model all actions of an application and obtain also a complete ex-
ecutable model. 

The higher-level entity of this package that is also the link with other model ele-
ments of the UML is the Procedure concept: “A procedure is a group of actions 
caused to execute as a unit.” Procedure is used either to specify a method body in a 
specific programming language, or within the context of state machine, to specify 
effects whenever a state is entered, exited, within a do-activity, or when a transition is 
fired. 

The Actions package consists in several sub-packages defining: the basics for Ac-
tion and Procedure. A Procedure consists of actions that exchange dataflow via In-



putPins and OutputPins; the recursive structures from which it is possible to define 
more complex actions from more primitive ones; read and write actions that define 
how to create/delete objects and consult/modify their features, i.e. attributes, variables 
or links; computation actions that define how to transform data. Computation actions 
are used to model essentially mathematical functions; high-level actions that ensure a 
sub-action to be applied on a set of elements; messaging actions that define synchro-
nous calls, asynchronous calls, broadcasting, etc; jump actions that define how to quit 
a main flow of control in order to continue in the context of a different flow of con-
trol. 

However, the standard focuses on defining the abstract syntax and the semantics of 
the UML action language. It does not provide any concrete language mapping with 
this proposed semantics! If one wants to build executable UML models it is then 
necessary to choose/create a notation (textual and/or graphical) and to define its map-
ping with elements of the abstract syntax defined in the various Action sub-packages 
outlined previously. Currently, there are few proposals offering this possibility [13-
15]. 

In order to be able to have executable models, we have defined the Accord/UML 
action language notation [12] which is given in two formalisms: a textual one that can 
be edited directly in the model and a graphical one based on UML activity diagrams 
that can be drawn in a UML modeler. Both views are equivalent. Indeed, for some 
usage, a textual definition of an operation is easier to use. In other cases, the graphical 
view is more easily understandable. All actions necessary to model applications are 
specified in [12] and also in an Accord/UML profile for action language that has been 
defined and implemented to clearly specify UML semantic variation points [16]. 
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Figure 1: Accord/UML behavioral model 

The Accord/UML action language is made of conditional actions, loop actions, 
group actions, messaging actions, etc. All elementary actions required for real-time 
systems modeling with Accord/UML are defined. Figure 2, depicts examples of con-
ditional actions. The first one is an “if-then-else” elementary action and the second 
one is a “switch”. This action language allows us to have a complete executable 
model independent of any given programming language. Specific programming lan-
guage code like, C, C++ or java can then be generated from these behavioral models. 
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Action 0 ; 

if (condition true) 

 Action 1; 
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 Action 2; 

Endif 
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[variable == value2] [else]

Action 3

Action 0 ; 

switch (variable) 

   case value1 : 

        Action1; 

   case value2 : 

        Action2; 

   default :  

        Action 3; 

endswitch 

Action 4; 

Figure 2: Examples of conditional actions in the ACCORD/UML action language 

In this study we will focus on WCET analysis of the algorithmic aspect described 
previously. 

4 WCET analysis of modeled algorithms 

This section describes our methods for WCET analysis of Accord/UML behavioral 
models. We will focus this study on the algorithmic aspect of the behavioral model 
and then determine WCET for each operation of classes of the application. We are 
going to present two approaches for WCET analysis of our models: a static approach 
and a dynamic approach. 

If we have accurate platform information and especially WCET of elementary ac-
tions of the action language, WCET can then be determined statically. Our static 
analysis approach consists in statically analyzing the behavioral model. This approach 
relies on the knowledge of values of WCET for each elementary action of the action 
language [12], and symbolic execution of our UML behavioral model. Information 
relating to WCET of each elementary action of the Accord/UML action language is 
added to the initial UML model. To perform this static analysis we use the Agatha 
toolset [17], which calculates all symbolic execution paths of our model. 

Otherwise, to overcome the lack of information on platform architecture and diffi-
culties of static approaches to take into account complex mechanisms of modern 
architectures, we will present a dynamic WCET analysis. The dynamic analysis ap-
proach consists in analyzing the behavioral model at runtime. This approach relies on 



testing all execution paths of an operation of the model, and then by measuring the 
execution time on a particular platform for each path, we determine an estimation of 
WCET for the given operation on a given execution platform. The Agatha toolset is 
used to determine all execution paths and give test cases for each path. 

First, we will present the automatic test case generator we are using to statically 
analyze WCET in a static approach and compute the various execution paths to evalu-
ate for a dynamic approach of execution time evaluation. 

4.1 The Agatha toolset 

The toolset translates UML models to its input formalism and computes all symbolic 
behavior of the system by symbolic calculus [17]. 

The tool originally generates test sets to allow for determining whether the soft-
ware implementation is conformant to its specification. As it always generates a sym-
bolic execution tree, Agatha permits deep investigation into the system’s behaviors. 
To produce these results, Agatha has to deal with combinatorial explosion in combin-
ing different techniques such as symbolic calculus, detection of interleaving, con-
straint solving, rewriting procedures, polyhedral calculus. 

For WCET analysis, the first step is to translate the UML model into the input lan-
guage called STGA (Symbolic Input Transition Graph with Assignment). The result-
ing translation algorithm is implemented in Objecteering UML modeling tool. Trans-
lation details of UML models into the Agatha formalism is beyond the scope of this 
paper, so we briefly present the Agatha formalism, then reader should refer to [18] for 
further details. 

State1 

State2 

?input(x) 
   [x>0] 
        !ok 
               a:=a+x; 

TRANS 
FROM State1 
TO State2 
WHEN input(x) 
PROVIDED x>0 
OUTPUT ok 
BEGIN 
a:=a+x 
END; 

 
Figure 3: Example of an STGA transition 

The tool uses symbolic execution as defined by [19]. In fact the major drawback of 
numeric techniques is the combinatorial explosion due to variable domains. These 
domains can be huge, sometimes even infinite. Symbolic calculus allows the handling 
of such domains because computing all the behaviors is not equivalent to trying all 
the possible values for inputs. Instead of giving values for inputs, they keep their 
status of symbol all execution long. 

Currently Agatha handles only expressions of the first-order logic. Although this 
limitation does not concern a large part of embedded real-time application’s algo-



rithms of the industry, we are working on Agatha enhancement to be able to deal with 
more complex expressions. 

Now let us set out static and dynamic WCET analysis using this toolset. 

4.2 A static WCET analysis approach 

Our static analysis approach consists in statically analyzing the UML behavior model 
describing the algorithms of an application. This approach relies on the knowledge of 
WCET values for each elementary action of the action language [12] on a given plat-
form of execution. This set of WCET values for a given platform can be obtained by 
several ways like using a runtime measurement tool or a static analysis for instance. 

A symbolic value is attached to each elementary action. For instance, AssignAction 
corresponds to an assignment action; AddAction corresponds to an addition action; 
TestAction represents a test action which result is a boolean; AsynchronousCallAction 
represents an asynchronous call action; and so on. We can note that WCET of this 
latter corresponds to the time necessary to put arguments on the stack and make the 
call; contrary to a synchronous operation call, the WCET of the called operation is 
not taken into account for an asynchronous one. 

In the next section, we present an overview of static WCET analysis with the 
Agatha toolset and illustrate this approach with a simple example. 

4.2.1 Process overview 
The first phase of static WCET analysis is platform independent and consists in com-
puting all possible symbolic expressions of WCET for a given operation. This is done 
by symbolic execution of the operation using the Agatha toolset. To achieve this goal, 
as illustrated in Figure 5, a WCET variable is added to the operation model of Figure 
4. This variable can be assigned only by symbolic expressions of WCET of 
elementary actions. The annotated UML behavioral model is then translated into the 
Agatha internal language (STGA). The symbolic execution is then provided by the 
Agatha tool. We finally obtain a set of all possible symbolic values for WCET. 

The WCET for a given platform is then determined by replacing symbolic expres-
sion of each elementary action by its given numerical values on the targeted platform. 

4.2.2 Illustration through an example 
To illustrate the static WCET analysis process proposed previously, let us consider 
the very simple example depicted in Figure 4. For readability reasons, this figure 
represents only a part of an operation. After a variable assignment a test is done on 
the value of the variable x and depending on its value, two branches are possible. 



  

x := a

x := x+a x := b

[x <= 10] [x > 10]

 
Figure 4: Example of a part of an operation 

As depicted on Figure 5, this model is automatically annotated with a WCET vari-
able initialized to 0 and incremented by the WCET of the elementary action executed. 

 

x := a

x := x + a x := b

WCET := 0

WCET := WCET + WCET_AssignAction

WCET := WCET + WCET_TestAction

WCET := WCET_AddAction + WCET_AssignAction

WCET := WCET + WCET_AssignAction

WCET := WCET + WCET_TestAction

[x<=10] [x>10]

 
Figure 5: UML operation model with WCET variable 

This model is then automatically translated into the Agatha formalism (STGA) and 
results into two paths of execution corresponding to both branches x≤10 and x>10. 
We obtain then two possible WCET expressions: 
1. W1 - WCET = 2*WCET_AssignAction + WCET_TestAction + 

WCET_AddAction  (for x≤10 branch) 
2. W2 - WCET = 2*WCET_AssignAction + WCET_TestAction (for x>10 branch). 



In this simple case, WCET corresponds to the x≤10 branch. If a relation order be-
tween WCET of elementary actions is specified, Agatha may be able to give us di-
rectly the symbolic WCET. 

4.2.3 Discussion 
This WCET static analysis technique may lead to an overestimated WCET for some 
kinds of platforms. This is due to the fact that our approach does not take into account 
some architectural mechanisms like instruction level parallelism, caches, branch pre-
dictions or out-of-order execution. The WCET given by this approach for these kinds 
of platforms may then lead to an over sizing of the hardware part of the system. 

By the way, this WCET analysis approach provides a safe and not overestimated 
WCET for microprocessors that do not have the architecture mechanisms cited above. 
On top of that for critical real-time systems, time execution predictability is a funda-
mental point. The modern architecture mechanisms seen above introduce execution 
time unpredictability [6]. Architectures ensuring execution time predictability are 
preferable for critical real-time systems. Our WCET analysis approach provides a 
safe WCET, which can be used for schedulability or performance analysis of critical 
real-time applications. 

Another point is that our WCET analysis approach is integrated in a model-based 
tool chain providing then an automatic estimation of the WCET from the UML 
model. The symbolic WCET is platform independent; a simple replacement of ele-
mentary actions symbolic values by numeric values is necessary to give the WCET 
on another platform, this makes WCET analysis easily retargetable. 

4.3 The dynamic WCET analysis approach 

This section presents the dynamic WCET approach. In a first part we present the 
dynamic analysis process overview. In a second part we present in more details the 
last phase of this process, which is the measurement of execution time. 

4.3.1 Process overview 
As depicted in Figure 6, the dynamic WCET analysis process is divided in two main 
steps. First step is platform independent. The UML model is automatically translated 
into Agatha (STGA) formalism [18]. The Agatha toolset is then used to automatically 
generate a set of test cases covering all execution paths of the application. Each path 
is characterized by a Path Condition (PC) which is a set of constraints on parameters 
of the operation. Actually, each PC of each operation corresponds to an equivalence 
class of test cases values for the operation. It is important to note that the constraint 
solver used by Agatha gives us a single value for each variable of the path condition 
[20]. It is also impossible to ensure that another value for that path condition will not 
result in a greater execution time. For this reason, the dynamic approach may supply a 
lower bound of WCET than the static WCET analysis described in the previous sec-
tion. 

The second step is platform dependant. It consists firstly in code generation from 
the UML model, then its compilation and finally execution time measurement of the 



operation using all test cases generated within the first step. The WCET is then de-
duced from these tests executing each test case and measuring execution time on the 
targeted platform. 

But how can we measure the execution time with sufficient accuracy and disturb-
ing as little as possible the measured process? 
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Figure 6: Dynamic WCET analysis process overview 

4.3.2 Measurement of execution time 
Once all test cases of an operation are available, one needs to execute all of them in 
order to measure their execution time and determine the WCET of the operation. This 
step depends on the platform of execution. Elements of the platform that affect execu-
tion time are software resources such as the programming language generated from 
the model, the pattern of code generation used, the compiler and the chosen option to 
compile the code itself, the operating system, and of course hardware resources like 
the microprocessor and the memory configuration. 

We have seen that taking into account all these architectural information and 
mechanisms is very difficult. To cope with these problems, we use the test approach. 
In order to be able to measure execution time of different test cases, the code gener-
ated from the models in the purpose of WCET analysis must contain routines for 
capturing time elapsed during the execution. These pieces of code added during the 
automatic code generation, depend firstly on the programming language generated, 
secondly on the underlying operating system and finally on the type of microproces-
sor. 

Even if routines for time capturing differ from a platform to another, the principle 
of measuring execution time of an operation remains the same for all platforms: we 
capture time before and after the operation call and then the execution time is the 
difference between both times (Table 1). 

 



Table 1: Protocol for execution time measure 

T1 = get_time_routine; 

OperationCall; 

T2 = get_time_routine; 

Execution_Time = T2 –T1 

The main difficulty here is to have enough accuracy in timing units to have signifi-
cant measures. Real-time operating systems offer usually time data structures at the 
nanosecond precision. On the real-time operating system VxWorks, we can use 
POSIX function clock_gettime(). On Linux operating system, which is not a real-time 
operating system, the microprocessor clock cycle counter (TSC register for the Pen-
tium microprocessor for instance) can be used to ensure enough accuracy. The result 
of the measures is divided by the cycle clock frequency to obtain execution time of 
actions. 

Another way to cope with the accuracy problem of timing facilities is to execute 
enough times the operation, for which we want to measure execution time. A priori 
this can lead to cache influence on execution time. Actually a loop of instructions is 
generally optimized by the instruction and data caches. Consequently, execution time 
of a loop of size ten for an operation could not correspond to the addition of ten times 
execution time of a one call to the same operation. Thanks to routines that invalidate 
caches, we can minimize this phenomenon and have a cold start for each iteration of 
the loop. 

4.3.3 Illustration through an example 
This section illustrates our dynamic WCET analysis approach through an example. 
After presenting the example and the characteristics of the platform of execution, the 
protocol of measurement is described and finally the results themselves. 

4.3.3.1 Example 
Let us consider the simple operation model of Figure 7. This operation, myOperation, 
has two input parameters: a and b. 



 

myOperation (a, b :integer)

x := 0

x := x + a x := x + b

x := a*b-2*a x := a x := 5*(a+2*b)-3a*a x := a + b

[a>b] [a<=b]

[x>10] [x<=10][x>10] [x<=10]

 
Figure 7: Example of an operation model 

The platform of execution is an Intel 1,2 GHz Pentium III mobile running on 
Linux operating system with 256 Mo of memory. Generated code is compiled with 
GCC 3.2 compiler without any optimization option. 

Following the first step of the dynamic approach, the operation model is firstly 
translated into Agatha internal language and symbolic execution is performed for the 
model. In our example, it computes four execution paths with their associated path 
conditions. Table 2 consists of the path conditions and possible examples of numeric 
test cases values for both parameters a and b satisfying the PC. 

Table 2: Path conditions and numeric test values 

Path Condition a numeric value b numeric value 

(a>b) and (a>10) 20 5 

(a>b) and (a≤10) 9 5 

(a≤b) and (b>10) 10 20 

(a≤b) and (b≤10) 5 9 

The second step consists in executing the operation on the target platform and its 
execution time measurement for each test case described in the Table 2. 

4.3.3.2 Measurement of execution time 
As it is well known that timing routines of general purpose operating systems has a 
low resolution, we have measured execution time using the microprocessor clock 
cycles internal counter (TSC register) for this example. 



We have noticed that measuring execution time of a single simple operation call is 
not accurate at all, and then results of measurements that are not relevant. Then, to 
cope with this problem, we have measured execution time of several calls of the op-
eration. In order to prevent the cache influence for our usage of loops of call, we have 
used cache invalidation instruction; we have then a cold start for each loop iteration. 
Figure 11 shows results of the measurement of execution time on the four path condi-
tions of the application. Execution time grows linearly with the number of iterations. 
This chart shows clearly that the third test (a=10 and b=20 on Table 2) has the longest 
execution time. 
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Figure 8: Measure of execution time of the four path conditions found by Agatha 

Worst-Case Execution Time of this operation corresponds then to the gradient of 
this chart. Then WCET of the operation of Figure 7 is 27 µs. 

4.3.4 Discussion 
As in the static approach presented in the previous section, in this dynamic WCET 
analysis all possible execution paths are first derived using symbolic execution over 
variables. To obtain the execution time for a particular execution path it is repeatedly 
measured on the target platform. Although all test cases are covered, this technique 
may lead to a lower bound of the WCET, thus the provided WCET may be unsafe. 
Contrary to the static approach, this dynamic approach does not target critical real-
time systems but it can easily fulfill soft real-time systems requirements. 

Our approach is integrated in a tool chain and it is largely automated. Handling of 
architectural mechanisms of modern microprocessors is better in this dynamic ap-
proach rather than the static one. This is due to the fact that the measurements are 
made on the target platform itself. It is important to note that the measurement part of 
this dynamic WCET analysis approach is platform specific. The platform description 
model includes all platform components going from hardware ones like the micro-
processor to software ones like compiler optimization flags that are used. 



5 Conclusions and future work 

Market constraints and embedded real-time systems complexity are drastically in-
creasing, thus forcing engineers to apply new principles/techniques. Among others, 
model driven development offers very promising solutions to these issues. The 
knowledge of WCET is fundamental for the design of embedded real-time systems. 
The WCET is indeed used for schedulability analysis or performance analysis of 
these systems. However in our knowledge, currently there is no existing framework 
of WCET analysis for UML models. 

In this paper we have presented two approaches of WCET analysis for UML mod-
els. The first one is a static WCET analysis approach relying on a detailed platform 
model. Using symbolic execution and WCET of elementary actions, this approach 
gives us a safe WCET. It is dedicated to critical as well as soft real-time systems with 
hardware architecture without elaborated architectural mechanisms. 

The second approach presented is the dynamic WCET analysis. This approach 
combines automatic exhaustive test cases generation based on symbolic execution, 
code generation, and execution time measurements on the targeted platform. It is 
dedicated to soft real-time systems, but contrary to the static approach, this one deals 
with modern architecture mechanisms. 

These two approaches are integrated in an UML-based development tool chain. 
They are largely automated and can be applied on a wide range of current embedded 
real-time systems. Our future work will consist in enhancing the static approach in 
order to be able to take into account modern architectural mechanisms, and thus pro-
vide a safe WCET for critical real-time systems using hardware with these advanced 
architectural mechanisms. 
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