
An Analysis Tool for UML Models

with SPT Annotations

John H̊akansson, Leonid Mokrushin, Paul Pettersson, and Wang Yi

Uppsala University
Department of Information Technology

P.O. Box 337, SE-751 05 Uppsala, Sweden
Email: {johnh,leom,paupet,yi}@it.uu.se

Abstract. In this paper, we describe a plug-in for the Rhapsody tool,
which demonstrates how UML models with SPT annotations can be
analysed using the Times tool — a tool for modelling, schedulability
analysis, and code generation for timed systems. The plug-in takes as
input an UML model consisting of an assembly of components whose
behaviours are specified by statecharts. Operations may be annotated
with SPT timing parameters for their execution time, deadline, priority
etc. The output is a network of timed automata extended with tasks that
can be analysed using the Times tool. In particular, the Times tool will
show whether the operations invoked from the UML model are guaran-
teed to meet their deadlines or not. We describe how this has been done
in a case study where an SPT annotated UML model of an adaptive
cruise controller is studied.

1 UML with SPT Annotations

We use a subset of UML with SPT annotations (the UML profile for Scheduling,
Performance and Time [11]) as an input language for our tool. The models that
can be analysed are hierarchical static structure diagrams containing objects
representing components or assemblies of components. The behaviour of each
component is described by an associated statechart, each executing in its own
thread of control. Figure 1 shows an example which can be analysed with the
tool presented in this paper. Component A is composed of subcomponents B
and C whose corresponding statecharts are shown to the right of the structure
diagram.

The operations of components represent tasks being scheduled for execution.
We apply the SPT stereotype SAAction for operations to annotate them with
parameters such as priority, computation time, deadline, etc. Parameters of the
operation foo of C are shown in Figure 1. Operations are triggered by statecharts,
and operations triggered by the same statechart are executed synchronously.

Components can have ports that can be connected with directed links al-
lowing for interaction between them. There are two types of ports, namely data
ports and trigger ports. Data ports are defined using DataPort interface which
has two methods get and set. Links between data ports are one place buffers that

h

B

trigger[IS_PORT(f) && get_d()->get() == 0]

trigger[IS_PORT(f) && get_d()->get() != 0]/
get_g()->GEN(trigger);

trigger[IS_PORT(f) && get_d()->get() == 0]

trigger[IS_PORT(f) && get_d()->get() != 0]/
get_g()->GEN(trigger);

C

tm(20)/
get_i()->GEN(trigger);

trigger[IS_PORT(g)]/
foo();

tm(20)/
get_i()->GEN(trigger);

trigger[IS_PORT(g)]/

void foo() {
 m = get_e()->get();
 m = (m < 0 ? 0 : m);
 get_h()->set(m);
}

SAPriority = 1

SARelDeadline = 40

SAWorstCase = 25

A
1

B
1

C
1

d

DataPort

g TriggerPort

f TriggerPort

g TriggerPort

e

DataPort i

TriggerPort

h

DataPort

f TriggerPort

i TriggerPort

e

DataPort

d

DataPort

DataPort

+ foo() : void

Fig. 1. An example UML model with SPT annotations

can have one sender and many receivers. A data item in a one place buffer is
observable by receivers until overwritten by the sender. Trigger ports are defined
using TriggerPort interface. Untyped events can be sent over the link using the
GEN method. Events are stored in a buffer of a predefined size until consumed
by the receiver.

Every component can be associated with a statechart. Transitions of stat-
echarts are enabled by triggers and/or guards; the associated actions will be
executed when the transition is fired. A trigger can be a timeout or the recep-
tion of an event from a trigger port. For example in the statechart of component
C the left transition has timeout trigger tm(20), and the right transition has
event trigger[IS PORT(g)]. The timeout expires 20 ms after state C is reached.
Guards are logical conjuncts of integer expression comparisons. Actions can up-
date variables, synchronously execute corresponding operations, generate events
on trigger ports, and set the values on data ports.

2 Extracting Timed Models for Analysis

We have developed a tool to extract timed models from UML models with SPT
annotations. The extracted model is a network of timed automata [1] extended
with tasks [6] and integer variables. Figure 2 shows the timed model extracted
from the UML model in Figure 1. The statecharts are converted into timed au-
tomata, while the links of the structural diagrams are translated into shared

C
tm<=20

port_g>0
go?
port_g:=port_g-1,
REF_foo := 1

TASK_foo
foo

REF_foo == 0
go?
tm:=0

tm==20
port_i:=port_i+1,
tm:=0

B

port_f>0, port_d!=0
go?
port_f:=port_f-1,
port_g:=port_g+1

port_f>0, port_d==0
go?
port_f:=port_f-1

Task name Priority Com pu ta tio n
 T ime

Dea dl ine

foo 1 25 40

I n ter face

m:=p ort_e,
m:=(m< 0?0:m),
port_h:=m,
REF_foo:=0

Fig. 2. Timed model extracted from example in Figure 1

data for asynchronous communication between automata. Operations with the
stereotype SAAction become tasks whose computation time, deadline and pri-
ority are given according to the SPT annotations SAWorstCase, SARelDeadline,
and SAPriority, respectively.

The ports are represented as shared integer variables that are aliased accord-
ing to how the links connect them. A variable connecting data ports represent
the data item currently residing in the one place buffer. For trigger ports the
variable is used to count the number of events queued at the port. The get op-
eration on a data port corresponds to accessing the current value of the variable
associated with that port, while the set operation corresponds to updating the
variable with a new value. The GEN operation on a trigger port corresponds
to increasing the event counter variable, the counter is then decreased when a
transition is fired due to an event received at this port.

A transition in a statechart is translated into edges in an automaton, with
intermediate locations when needed. An event trigger becomes a guard that
is true for non-zero queue lengths of the triggered port. A timeout tm(T) in a
statechart i is converted to a guard tmi = T , an invariant tmi ≤ T on the source
location, and a reset operation on the clock tmi for each transition reaching
the source location. A call to an SAAction operation becomes an intermediate
location where the corresponding task is released for asynchronous execution,
the automaton will remain in this location until the task completes.

3 Tool Overview

The tool is a plug-in for analysis of Rhapsody [9] UML models with SPT anno-
tations [11] using the Times [2] tool. The plug-in can be added to the Rhapsody
Tool menu, and uses the Rhapsody COM API to access the UML model. The
extracted model is generated as Java objects directly into a running instance of
the Times tool.

Times is a design and analysis tool for real-time embedded systems, based
on timed automata [1] extended with tasks [6]. Tasks are temporal abstractions
of executable programs represented as their execution time, deadline, priority,
etc. Releases of task instances are triggered by timed automata for asynchronous
execution according to a given scheduling strategy. The Times tool is developed
for automated schedulability analysis of the extended models.

4 Case Study

The tools described in this paper have been applied to analyse an adaptive cruise
controller (ACC) model. An ACC is an extension of an ordinary cruise controller,
with the purpose to control the velocity of a vehicle, while maintaining a minimal
distance to any vehicle in front. A radar is used, with an object recognition
component, to detect the speed and distance of any vehicle in front.

The ACC model is defined within SaveCCM [8], a component model devel-
oped as a part of the SAVE project. The purpose of the project is to develop a
component technology for safety-critical vehicle systems. The concepts of data
ports and trigger ports in our modelling language comes from SaveCCM. In
SaveCCM there are three types of entities, separated using stereotypes: Save-
COMP is used to denote components, Assembly denotes component assemblies,
and Switch denotes a special construct for switching triggering events. State-
charts model the triggering of components by first receiving from all input trig-
ger ports, then perform its calculations, and finally generate events on all output
trigger ports. Switches differ in that they can generate events on selected output
trigger ports.

The ACC assembly of our model is shown in Figure 3. The calculations of each
component is modelled by an operation execute, with SPT parameters according
to Table 1. The ACC is assembled from three components and a sub-assembly.
The component ModeLogics calculates the current operating mode of the ACC.
ObjectRecognition applies an algorithm to radar input, in order to determine the
velocity and distance of any vehicle in front. HMI outputs determines the output
to be sent to the driver panel. AccControllers is an assembly consisting of two
PID controller components and a switch. The switch determines what controllers
are active depending on the current operating mode of the ACC. In standard
cruise controller mode only the SpeedController is active, but in ACC mode both
the SpeedController and DistanceController are active and coupled in a cascaded
control loop.

When the model is exported from Rhapsody into Times, the resulting Times

model is schedulable. The response times reported by Times are presented in
Table 1. The schedulability analysis was performed in less then one second and
consumes 3.3 Mb of memory, using an Intel Celeron 1.7GHz computer.

ACC_system

<<Assembly>>

1

ModeLogics

<<SaveComp>>

1

HMI_outputs

<<SaveComp>>

1

AccControllers

<<Assembly>>

1

ObjectRecognition

<<SaveComp>>

1

trig_out

TriggerPort

mode_info
DataPortInt

object_info
DataPortInt

HMI_in
DataPortInt

select

DataPortInt
sensor

DataPortInt

trigger
TriggerPort

mode_info

DataPortInt

HMI_in
DataPortInt

trigger
TriggerPort

HMI_input

DataPortInt

sensor

DataPortInt

trigger2
TriggerPort

object_info

DataPortInt

select

DataPortInt

trigger1
TriggerPort

trig_out
TriggerPort

actuator
DataPortInt

sensor
DataPortInt

object_info
DataPortInt

trig_out
TriggerPort

radar
DataPortInt

trigger
TriggerPort

actuator
DataPortInt

clock_50hz TriggerPort

sensor

DataPortInt

clock_10hz TriggerPort

HMI_input

DataPortInt

radar

DataPortInt actuator
DataPortInt

Fig. 3. The ACC subsystem assembly

Component Name SAWorstCase SARelDeadline SAPriority Worst Case
Response Time

SpeedController 5 20 5 5
ObjectRecognition 30 100 4 40
ModeLogics 1 100 3 6
HMI outputs 2 100 2 2
DistanceController 20 100 1 25

Table 1. The properties of the execute operation for the components.

5 Conclusions

In this ongoing work we demonstrate how UML with the SPT profile can be
used to model schedulability problems in a way that is analyzable by the Times

tool. Some work remains to be done. The case study model should be extended
with more details, for a more reliable validation of the work. To handle a richer
class of UML models and data structures, we plan to study and extend the tool
with predicate abstraction [13, 4, 3].

Related work: Extracting timed models from UML has been done in [7,
5]. There is a tool [12] by OFFIS for analysis of untimed Rhapsody models.
Tri-Pacific has a tool [10] for schedulability analysis of periodic task sets ex-
tracted from Rhapsody models. In our work we propose a more generic model

where tasks are triggered not only periodically but also by external events. The
exact task release pattern is defined by means of UML statecharts.

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183–235, 1994.
2. Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi.

Times: a tool for schedulability analysis and code generation of real-time systems.
In Proc. of 1st International Workshop on Formal Modeling and Analysis of Timed

Systems, Lecture Notes in Computer Science. Springer–Verlag, 2003.
3. Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani.

Automatic predicate abstraction of C programs. In SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages 203–213, 2001.
4. E. M. Clarke, O. Grümberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. In Proc. of the 12th Int. Conf. on Computer Aided Verifi-

cation, pages 154–169, 2000.
5. Alexandre David, Oliver Möller, and Wang Yi. Formal verification of uml stat-

echarts with real-time extensions. In Ralf-Detler Kutsche and Herbert Weber,
editors, Proceedings of FASE 2002, number 2306 in Lecture Notes in Computer
Science, pages 218–232. Springer–Verlag, 2002.

6. Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata with asyn-
chronous processes: Schedulability and decidability. In J.-P. Katoen and P. Stevens,
editors, Proc. of the 8th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, number 2280 in Lecture Notes in Computer
Science, pages 67–82. Springer–Verlag, 2002.

7. Susanne Graf, Ileana Ober, and Iulian Ober. Model checking of UML models via a
mapping to communicating extended timed automata. In S. Graf and L. Mounier,
editors, Proc. of the 11th International SPIN Workshop, number 2989 in Lecture
Notes in Computer Science, pages 127 – 145. Springer–Verlag, 2004.

8. Hans Hansson, Mikael Åkerholm, Ivica Crnkovic, and Martin Törngren. SaveCCM
- a component model for safety-critical real-time systems. In Proc. of Euromicro

Workshop on Component Models for Dependable Systems. IEEE Computer Society
Press, 2004.

9. David Harel and Eran Gery. Executable object modeling with statecharts. Com-

puter, 30(7):31–42, 1997.
10. Paulo Martins. Integrating Real-Time UML Models with Schedulability Analysis.

Tri-Pacific Software Inc., 2004.
11. Object Management Group Inc. UML Profile for Schedulability, Performance, and

Time Specification, 2002.
12. OFFIS. The Rhapsody UML Verification Environment – Installation-Guide and

Tutorial, 2004.
13. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In

O. Grümberg, editor, Proc. of the 9th Int. Conf. on Computer Aided Verification,
volume 1254, pages 72–83. Springer–Verlag, 1997.

