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Abstract. The paper compares two UML Profiles adopted by OMG for annotat-
ing non-functional requirements of software systems: the UML Profile for Schedu-
lability, Performance and Time (SPT) formally adopted in 2003 and the recently
emerging UML Profile for Modeling Quality of Service and Fault Tolerance Char-
acteristics and Mechanisms (QoS). The SPT Profile was the first attempt to ex-
tend UML with basic timing and concurrency concepts, and to express require-
ments and properties needed for conducting schedulability and performance anal-
ysis. While the SPT Profile is focused on these two types of analysis, the more
recent QoS Profile has a broader scope, aiming to allow the user to define a wider
variety of QoS requirements and properties. In order to compare the two pro-
files, we will focus on performability and timing aspects of software systems, by
exemplifying the concepts through an example of embedded automation system.
The comparative analysis shows that new concepts are needed in both profiles
to express time intervals between two arbitrary events. Also, the two profiles will
need to reach a common agreement on the specification of complex timing values,
especially of those with stochastic characteristics. Another open problem is the
parameterization of models, as in many cases fixed values for model parameters
are not enough. The SPT Profile goes a step further by supporting symbolic vari-
ables and expressions, but the QoS Profile does not have such a capability yet. In
general, both Profiles struggle with the balance between flexibility (i.e., allow the
user to introduce its own definitions) and simplicity/convenience of expression.
The challenge when defining a UML profile is to find convenient yet powerful
mechanisms of expression for complex concepts, yet to remain within the limits
of the UML standard extension mechanisms, which is necessary to insure that the
annotated models could be understood by standard UML tools.

1 Introduction

The paper compares two UML Profiles adopted by OMG for annotating non-functional
requirements of software systems: the UML Profile for Schedulability, Performance
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and Time (SPT) [12] formally adopted in 2003 and the recently emerging UML Profile
for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms
(QoS)[13].

The SPT Profile was the first attempt to extend UML with basic timing and con-
currency concepts, and to express requirements and properties needed for conducting
schedulability and performance analysis. The OMG timeline for the SPT Profile started
with a Request for Proposals (RFP) in 1999, followed by a first Response to RFP in Au-
gust 2000, a revised submission in June 2001, the OMG adoption in March 2002 and the
formal OMG adoption in September 2003. Now OMG is in the process of issuing a new
RFP for SPT-Version2, to bring it in line with UML 2.0 and to harmonize it with the
emerging QoS Profile. The SPT Profile was implemented in at least two UML tools [6,
7] and was used for schedulability and performance analysis by different groups (e.g.,
[1, 3, 14, 15]). While the SPT Profile is focused on two types of analysis, schedulability
and performance, the more recent QoS Profile has a broader scope, aiming to allow the
user to define a wider variety of QoS requirements and properties [5]. The QoS profile
was adopted by OMG in June 2004, and now is being improved by the Finalization
Task Force, which precedes the formal adoption.

In order to compare the two profiles, we will focus in this paper on performabil-
ity and timing aspects of software systems, by exemplifying the concepts through an
example of embedded automation system. We chose the performability domain due to
the fact that it is close enough to the performance domain, and thus it can be covered
by the STP Profile (although the profile’s limits are stretched). At the same time, the
expression of performability aspects with the QoS Profile exercises its flexibility and
power of expression.

The motivation for the paper is to provide a useful comparison of the two Pro-
files at an appropriate moment in time, when one is in the process of being formally
adopted and the other will be upgraded. The two Profiles were defined separately, yet
they are supposed to complement each other. While the SPT Profile has been applied
by a number of research groups, we are not aware of any complete published examples
for the application of the QoS Profile. The paper contributions are as follows: a) show
how to use the new QoS Profile through an example of automation system character-
ized by different type of non-functional requirements, b) emphasize the main advan-
tages/drawbacks of the two annotation approaches, and c) identify new concepts that
should be introduced in the two Profiles.

The paper is organized as follows: in Section 2 the example of an embedded au-
tomation system is presented, Section 3 and Section 4 apply the QoS annotation and
the SPT annotation concepts, respectively, on running example. Section 5 is devoted to
the comparison between the approaches of the two Profiles. Conclusions are given in
Section 6.

2 Example of an embedded automation system

In this section we introduce a revised version of the embedded automation system ex-
ample presented in [2]. The logical view of the system is represented by the Class
Diagram of Figure 1. The left part of the diagram represents the basic structure of the
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automation system residing on a given automation site: the automation system controls
through its components the components of the plant.
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Fig. 1. Logical view of the automation site

There are three types of automation components dealing with communication (Com-
munication), elaboration (Elaboration) and memory (Memory) and three correspond-
ing types of automation functions (Automation Communication Function, Automation
Elaboration Function, and Automation Memory Function).

From the behavioral point of view, the system is a distributed cyclic application that
activates two concurrent processes: each process reads a sample input from a set of plant
components, elaborates the future state, saves the new state in memory and produces
the new output for the plant components.

As emphasized in the right part of Figure 1, the automation components can be af-
fected by physical faults that may cause errors in the automation functions: unrecovered
errors lead to system failure. To increase the dependability of the automation system a
fault-tolerance strategy has been devised consisting of fault masking, error detection,
diagnosis and recovery, and reconfiguration from system failure. Fault masking is car-
ried out during the elaboration of the future state by means of spatial redundancy of the
computation execution and voting on the results coming from the replicas. Depending
on the voting technique adopted and on the spatial redundancy, a limited number of
faults may be masked; in this case, the software mechanism responsible for the voting
(represented by the Voter class in Figure 1) implements a majority voting algorithm and
a minimum of 3 computations are concurrently executed, so that at least one fault can
be made transparent during the elaboration of the future state of the system. If majority
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is not reached within a given deadline, then the voter notifies an exception to a recovery
mechanism that provides to remove the faulty elaboration units and to reconfigure the
system.

The error detection is performed by a standard watchdog mechanism (WatchDog
class) while error diagnosis and error recovery are implemented by the recovery mech-
anism. The watchdog is initialized by the automation system, its timer is enabled during
the reading and saving operations and it is paused during the elaboration of the future
state of the system. At the end of each cycle, the automation system sends an “Iamalive”
message to the watchdog in order to reset its timer. In case of time-out expiration, the
watchdog notifies an exception to the recovery mechanism, that provides to terminate
the watchdog and to check the status of the automation system introducing a delay in
the current activity of the system: if no error is present then it is a false alarm, and the
watchdog is simply reinitialized. If instead an error is present then a backward recovery
action is carried out.
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Fig. 2. A fault scenario.

A possible fault scenario is represented by the UML2.0 Communication Diagram
of Figure 2: a physical fault in a memory component, AC MEM2, causes an error in
the execution of the memory function AMF2 (reading operation) during the second
automation cycle. The error is not recovered in due time and causes an halting failure in
the system. The exception is notified by the watchdog to the recovery mechanism that,
after the error diagnosis, recovers the system to the previous safe state corresponding to
the beginning of the second cycle.
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Fig. 3. Physical allocation of the system hw/sw components

The deployment Diagram of Figure 3 shows the physical allocation of the hard-
ware and software components involved in the fault scenario represented in Figure 2.
Times required for elaboration and for read/copy operations range uniformly in the
interval �0�5�1�4� (milliseconds) while communication time is assumed exponentially
distributed with mean 1 (millisecond). The rate of occurrence of the physical fault af-
fecting a memory component and its duration are assumed exponentially distributed
with different means (1 hour and 1 second, respectively). The time-out for the voter to
wait for the reception of the outcomes from the automation system is set to 1 second
from the reception of the first outcome. The voting operation on the available outcomes
requires a negligible amount of time. The time spent by the recovery mechanism to di-
agnose the status of the automation system after the reception of an exception is at least
of 2 milliseconds while the time required to carry out a backward recovery has to be at
most of 3 minutes.

The automation system is characterized by the following dependability and timeli-
ness requirements:

1. the level of availability of the automation system has to reach at least 98% and
2. the cycle time of the automation system, i.e., the time required for reading the input

samples, elaborating the future state and producing the output, has to be at most of
15 milliseconds.

5



Performability issue. We are interested in minimizing the frequency of false alarms
raised by the watchdog (i.e., time-out expiration without the presence of an error) and
the time overhead introduced by the fault masking actions such that the timing con-
straints and the dependability requirements are satisfied.

3 QoS Profile annotations

The annotation process proposed by the Quality of Service (QoS) Profile consists in
three main steps: the first step consists in defining the QoS characteristics of interest for
the analysis to be carried out on a specific system domain. In the second step a “Quality
Model” is defined for the specific embedded automation system illustrated previously
in which the parameters of the QoS characteristic template classes specified in the first
step are all resolved. Finally, in the third step, the UML models of the embedded au-
tomation system are annotated with QoS constraints and QoS values according to the
QoS characteristics defined in the “Quality Model” and to the QoS characteristics of
interest.

Definition of QoS characteristics We have reused some QoS characteristics of the QoS
Profile catalog and defined new ones (see Figure 4) that will be used for the QoS an-
notation of the embedded automation system described previously. It is worth to note
that the set of QoS characteristics of interest should be defined by a group of experts of
the application domain in order to provide the analysts with a QoS catalog that can be
used, as a pattern, for a specific type of analysis of a specific application domain.

In our context, we do not claim to provide an exhaustive QoS catalog for the per-
formability analysis of embedded automation systems but, rather, we aim to illustrate
an example of “customization” of the QoS characteristics defined in the general catalog.
We have defined the following new QoS characteristics:

– resource-service-time: a new QoS characteristic introduced in the Efficiency QoS
category. It is a template class that allows to specify the service time (attribute S) of
the basic resources, in our example memory, elaboration and communication units,
in a stochastic manner.

– alarm-latency: as a specialization of the latency QoS characteristic defined in the
Latency QoS category. It is a template class that allows to specify the timer duration
(attribute timer-duration) of some type of alarm-based software mechanisms, such
as the watchdog and the voter mechanisms of the example.

– physical-fault: as a specialization of the fault QoS characteristic defined in the De-
pendability QoS category. It is a template class that allows to specify the quantita-
tive aspects of a physical fault, i.e., its rate of occurrence and its duration (attributes
fault rate and duration, respectively), in stochastic terms.

– overhead: as a specialization of the fault-tolerance QoS characteristic defined in
the Dependability QoS category and of the turn-around QoS characteristic defined
in the Latency QoS category. It is a template class that allows to specify the over-
head introduced in the system by the fault-tolerance strategy adopted in a quan-
titative manner, i.e., in terms of frequency of false alarms (method false-alarm-
frequency-value) and of time (method time-overhead-value).

6



Latency category

<<QoSCharacteristic>>
turn-around

<<QoSDimension>>
+ instant-of-request: real
{unit(requestUnit)}
<<QoSDimension>>
+ instant-of-result: real
{unit(resultUnit)}

<<QoSDimension>>
+ turn-around-value()
{unit(Unit),
direction(decreasing)}

<<QoSCharacteristic>>

latency

<<QoSCharacteristic>>
resource-service-time

<<QoSDimension>>
+ S: real
{direction(decreasing),
  statisticalQualifier(distribution)}

ExpoUnit:string,UnifUnit:string

<<QoSDimension>>
+ EXPO(mean: real)
{unit(ExpoUnit),
  statisticalQualifier(distribution)}

<<QoSDimension>>
+ UNIF(a: real,b: real)
{unit(UnifUnit),
  statisticalQualifier(distribution)}

Efficiency category

requestUnit:string, resultUnit: string, Unit:string

<<QoSCharacteristic>>
alarm-latency

<<QoSDimension>>
+ timer-duration: real
{unit(TimerUnit)}

TimerUnit: string

<<QoSCharacteristic>>

fault

<<QoSCharacteristic>>
physical-fault

<<QoSDimension>>
+ fault_rate: real
{direction(decreasing),
  statisticalQualifier(distribution)}

ExpoUnit:string

<<QoSDimension>>
+ duration: real
{direction(decreasing),
  statisticalQualifier(distribution)}

MinLatUnit:string, MaxLatUnit: string, JitterUnit:string

<<QoSDimension>>
+ EXPO(mean: real)
{unit(ExpoUnit),
  statisticalQualifier(distribution)}

<<QoSCharacteristic>>

reliability

<<QoSCharacteristic>>
availability

<<QoSDimension>>
+ time-to-repair: real
{direction(decreasing),
  statisticalQualifier(mean)}
<<QoSDimension>>
+ time-between-failures: real
{direction(increasing),
  statisticalQualifier(mean)}

<<QoSDimension>>
+ availability-value():
{direction(increasing),
  statisticalQualifier(mean)}

<<QoSCharacteristic>>
fault-tolerance

<<QoSDimension>>
+max-number-of-faults:
integer
{direction(increasing),
statisticalQualifier(max),}
<<QoSDimension>>
+error-processing:
error-processings
{direction(increasing)}
<<QoSDimension>>
+fault-treatment: 
fault-treatments
{direction(increasing)}

<<QoSDimension>>
+n_false_alarm: integer
{direction(decreasing),
  statisticalQualifier(FA_stat)}
<<QoSDimension>>
+observation-interval: real
{unit(IntUnit)}
<<QoSDimension>>
+base-time: real
{Unit(TimeUnit)}

<<QoSCharacteristic>>
overhead

FA_stat: string, IntUnit:string, TimeUnit: string

<<QoSDimension>>
+false-alarm-frequency-value()
{unit(1/IntUnit)
  direction(decreasing),
  statisticalQualifier(FA_stat)}
<<QoSDimension>>
+time-overhead-value()
{direction(decreasing)}

                         <<description>>
context turn-around::turn-around-value
post resultOK: result = 
self.instant-of-result - self.instant-of-request

                         <<description>>
context availability::availability-value
post resultOK: result = 
self.time-betweent-failure /
 (self.time-betweent-failure + self.time-to-repair)

                         <<description>>
context overhead::time-overhead-value()
post resultOK: result = 
(self.OclAsType(turn-around).turn-around-value() - self.base-time)/self.base-time

Dependability category

<<QoSCharacteristic>>
recoverability

<<QoSDimension>>
+recovery: real
{unit(second),
direction(decreasing)}
<<QoSDimension>>
+restartability: real 
{unit(second),
direction(decreasing)}

                         <<description>>
context overhead::false-alarm-frequency-value 
post  resultOK: result =
self.n_false_alarm / self.observation-interval

Fig. 4. QoS characteristics for performability analysis of embedded automation systems.
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Figure 4 includes also several QoS characteristics of the general QoS catalog (e.g.,
availability, turn-around) that will be explicitly re-used for the specification of the
non-functional requirements of the embedded automation system under study.

A natural way to customize the QoS characteristics of the general catalog is through
specialization, as carried out in the example for all the new QoS characteristics intro-
duced but resource-service-time. In particular, note that we have used multiple inher-
itance to define the overhead QoS characteristic since it includes both performance-
timeliness properties and dependability- fault tolerance aspects.

Observe that most of the QoS characteristics of Figure 4 are template classes: the
QoS Profile does not give any restriction on what to parameterize although it shows only
examples of metric unit parameters. In our example, we have defined also a parameter
for the type of statistical value (i.e., the FA stat parameter defined in the QoS character-
istic overhead for the statistical qualifier property of the attribute n false alarm and of
the method false-alarm-frequency-value).

The system models used for performability analysis are usually stochastic. Accord-
ing to the QoS Profile, to each attribute/method of a QoS characteristic is associated the
StatisticalQualifier property that allows to specify the type of statistical qualifier when
the value of the attribute/method represents a statistical value such as a probability dis-
tribution. However, this property does not allow to declare the type of distribution and
the QoS Profile does not provide support to describe stochastic timing concepts.

The solution we have proposed in this paper is a tradeoff between simplicity and
flexibility, and is similar to that adopted in the SPT Profile. A stochastic aspect of the
example concerns the service times of the basic resources that are random variables
distributed according to different distributions depending on the type of resource. The
service time is then defined as a QoS characteristics (i.e., resource-service-time) and
it is characterized by an attribute S representing the service time (real) variable, and by
two methods EXPO(mean: real) and UNIF(a: real, b: real) that return, each one, a value
in the state space of a random variable distributed according to a specific distribution
(i.e., an exponential distribution with mean equal to mean and a uniform distribution
over the interval �a�b�, respectively).

As we will illustrate in the third step of the QoS annotation process, the specification
of the service time of a given resource is carried out by assigning to the attribute S the
return value of the proper method in which actual values are set for the input parameters
of the method. A similar approach is followed for the annotation of the other stochastic
timing requirements of the embedded automation system.

Definition of the Quality Model To use the QoS characteristics defined in the first step
for the annotation of the system UML models, it is necessary to assign actual values
to the parameters of the QoS characteristic template classes: this is carried out through
the definition of QoS characteristic bound classes and of template bindings. The UML
model containing the binding information and the bound classes is called Quality Model
that is specifically designed for the system under study. The Quality Model for the
running example is depicted in Figure 5.

Note that we have created two different bound classes from the alarm-latency QoS
characteristics, PA4ASalarm-latency-voter and PA4ASalarm-latency-wd, through the
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<<QoSCharacteristic>>
resource-service-time

ExpoUnit:string, UnifUnit:string

<<QoSCharacteristic>>

PA4ASresource-service-time

<<bind>>
{TemplateParameters(ExpoUnit->ms,
UnifUnit->ms)}

<<QoSCharacteristic>>
alarm-latency

TimerUnit: string

<<QoSCharacteristic>>

PA4ASalarm-latency-voter

<<bind>>
{TemplateParameters(MinLatUnit->ms,
MaxLatUnit->ms,JitterUnit->ms, TimerUnit->s)}

<<QoSCharacteristic>>
turn-around

requestUnit: string, resultUnit: string, Unit: string

<<QoSCharacteristic>>

PA4ASturn-around

<<bind>>
{TemplateParameters(requestUnit->ms,
   resultUnit-> ms, Unit-> ms)}

<<QoSCharacteristic>>
physical-fault

ExpoUnit:string

<<QoSCharacteristic>>

PA4ASphysical-fault

<<bind>>
{TemplateParameters(ExpoUnit->sec)}

<<QoSCharacteristic>>
overhead

FA_stat:string, IntUnit: string, TimeUnit:string

<<QoSCharacteristic>>

PA4ASoverhead

<<bind>>
{TemplateParameters(FA_stat->min,
IntUnit->ms,TimeUnit->ms)}

<<bind>>
{TemplateParameters(MinLatUnit->ms,
MaxLatUnit->ms,JitterUnit->ms,TimerUnit->ms)}

<<QoSCharacteristic>>

PA4ASalarm-latency-wd

Fig. 5. Definition of the Quality Model for the embedded automation system.

binding of the TimerUnit parameter to two different metric units (seconds and millisec-
onds, respectively). Indeed, such classes will be used to specify, in the third step, the
duration of the timer associated to the voter (of order of seconds) and the duration of
the timer associated to the watchdog (of order of milliseconds). The other template pa-
rameters that appear in the two binding expressions are parameters originally defined in
the super-class of alarm-latency template class (i.e., the latency QoS characteristic):
although those parameters are associated to properties that will not be actually used in
the annotation of the system model of the running example, we have to associate to
them specific metric units.

Note that, due to this step, it is not possible to annotate the system models with
input parameters and, hence, we cannot derive parametric performance models from
UML system models annotated according to the QoS Profile. This is an important issue
that will have to be taken care of in the future.

QoS annotation of the system model Figure 6 shows the Communication diagram of
the embedded automation system of Figure 2 enriched with the QoS annotation.

The timing and performability specifications of the embedded automation system
are annotated using QoS constraints. The QoS annotation has been carried out by adopt-
ing all the three possible approaches described in the QoS Profile, that is:

1. through a note symbol attached to the constrained model element and including
the constraint(s) written in OCL, as the note symbol stating the constraints (QoSre-
quired) on the availability and on the cycle time and connected to the automation
system.
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AS:Automation System

AMF2:Automation  
Memory Function

AEF:Automation 
Elaboration Function

AMF1:Automation  
Memory Function

PC:Plant
Component

ACF1:Automation  
Communication Function

synchronous: true

ACF2:Automation  
Communication Function

synchronous: false

WD:WatchDog

REC:Recovery
Mechanism

FAIL:
HaltingFailure

ER_MEM2:
Error

FT_MEM2:
Fault

V:Voter

1:init 1.1:transf

1.1.1:start

2a:read_sample 2b:read_sample

2a.1:read 2b.1:read

2a.1.1:input
2b.1.1:input

3:disab 3.1:transf

3.1.1:pause

4:compute_new_state

4.1:compute
5*:send_outcome 5.1:transf

5.1.1:outcome

7:enable 7.1:transf

7.1.1:restart

8a:save 8b:save

8a.1:copy 8b.1:copy

8a.1.1:output
8b.1.1:output

9:Iamalive 9.1:transf

9.1.1:kick

10a:read_sample 10b:read_sample

10a.1:read 10b.1:read

11:affect

10a.1.1:input

12:effect

12.2:effect12.1:affect

12.2.1:affect

13:notify_exception

14:backward_recovery

6:result

6.1:transf

6.1.1:vote_result

<<QoSValue>>
pf:PA4ASphysical-fault

fault_rate = EXPO(3600)
duration = EXPO(1)

13.1:diagnose

<<GRMresource>>
AC_ELAB:
Elaboration 

<<GRMresource>>
AC_MEM1:

Memory

<<GRMresource>>
AC_MEM2:

Memory

<<GRMresouce>>
AC_COM:

Communication

<<QoSValue>>

mem-elab:
PA4ASresource-service-time

S = UNIF(0.5,1.4)

<<QoSValue>>

com:
PA4ASresource-service-time

S = EXPO(1)

<<QoSOffered>>

<<QoSOffered>>

<<QoSOffered>>

<<QoSOffered>>

<<QoSContract>>
{context  PA4ASalarm-latency-voter inv:
  timer-duration = 1
}

<<QoSoffered>>
{AllowedValues = toV1,toV2,toV3
  logicalOperator = or
}

<<QoSValue>>

toV1:PA4ASalarm-latency-wd

timer-duration = 4

<<QoSValue>>

toV2:PA4ASalarm-latency-wd

timer-duration = 4.5

<<QoSValue>>

toV3:PA4ASalarm-latency-wd

timer-duration = 5

<<QoSOffered>>
{context  PA4ASturn-around inv:
  turn-around-value() >= 2
}

<<QoSRequired>>
{context  recoverability inv:
  recovery <= 180
}

<<QoSRequired>>
{context  availability inv:
  availability-value() >= 0.98
}
{context  PA4ASturn-around inv:
  turn-around-value() <= 15
}

<<QoSContract>>

sd: FaultMemoryScenario

<<QoSRequired>>
<<description>>

  false-alarm-frequency-value is a
metric to be computed

<<QoSRequired>>
<<description>>

  time-overhead-value is a
metric to be computed

Fig. 6. QoS annotation of the Communication diagram.

2. By connecting the constrained element with a class instance stereotyped as QoS-
Value. The timing assumptions for the physical fault affecting the memory unit have
been specified following this approach: the type of dependency is a constraint of
type QoSContract stating that the fault occurrence rate and its duration are assumed
values.

3. By stereotyping the constrained element with a QoS constraint and by using the
AllowedValue and the logicalOperator properties to reference a set of QoS values
and to specify the logical relationship between the referenced QoS values. This ap-
proach has been followed for the specification of the timer duration of the watchdog
mechanism that is an input parameter of the model (so that the watchdog instance is
stereotyped as QoSOffered) and that can assume one of the referenced QoS values
(i.e., either 4 or 4�5 or 5 milliseconds).

The frequency of false alarms raised by the watchdog and the time overhead caused by
the fault masking solution are two metrics to be computed. Unfortunately, as already
mentioned in the previous step, the QoS Profile does not support means to specify them
as (output) parameters in the system model and, since we have not found a simple OCL
expression to specify them, the required metrics have been annotated as QoS constraint
in a descriptive manner.
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The GRMresource stereotype allows to identify resources and supports the descrip-
tion of QoS provided by or required from resources. In Figure 6 the memory, elabo-
ration and communication units have been stereotyped as GRMresource, being general
resources of the embedded automation system, and annotated with the QoSOffered con-
straint in order to specify the service time they can guarantee. The GRMresource stereo-
type is a concrete concept introduced by the QoS Profile as an extension of the original
concept described in the General Resource Model of the SPT Profile, where no UML
extension are defined for general resources independently from the type of analysis to
be carried out.

Automation Site

<<FTFaultToleranctDomain>>

{FaultDetectorDeploymentPolicy: Watchdog}

<<ActiveWithVotingReplicationStyle>>
Automation Elaboration Function
{MinimumNumberReplicas = 3}

Plant

Plant 
Component

Automation 
System

Communication

control Automation
 Function

performAutomation
Component

Elaboration

Automation 
Memory
 Function

Error

Physical
 Fault

cause

effect

cause

effect

Halting
 Failure

affect

affect

affect

WatchDog

Recovery
Mechanism

notifynotify

address

address

address

address

restart-reconfigure

check-status

Voter

Automation 
Communication

Function
Memory

Fig. 7. QoS annotation of the Class Diagram.

Specification of the fault-tolerance architecture The QoS Profile provides UML ex-
tensions for the description of fault tolerance architecture, in particular, for the spec-
ification of the fault tolerance strategies adopted, for the identification of the groups
of software elements that compose redundant blocks and that offer a common service
and for the specification of the type of replication adopted. We have applied some of
such UML extensions to classes of the Class Diagram of the running example: the re-
sulting annotated Class Diagram is depicted in Figure 7. The automation site has been
stereotyped as FaultToleranceDomain since it includes both the automation system, to-
gether with the controlled plant, and the software mechanisms that implement the fault
tolerance strategy.
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Automation elaboration functions are the replicated software elements of the exam-
ple (stereotyped as ActiveWithVotingReplicationStyle): they are active replications that
execute each elaboration request independently and, finally, a majority voting of re-
sults produced by these functions is performed by the voter mechanism. The minimum
number of concurrent elaborations required is of 3 replicas.

4 SPT Profile annotations

The annotation approach proposed by the Schedulability, Performance and Time (SPT)
Profile is more straightforward but less flexible with respect to the one proposed by
the QoS Profile. Indeed, the SPT Profile provides a set of stereotypes and related tags
(i.e., “attributes” in UML2.0 and from now on) that can be used directly by the modeler
for the annotation of the model elements and for a given type of analysis. There is no
possibility of customizing the stereotypes/ attributes provided by the SPT Profile to the
specific system domain under study nor to the specific analysis to be performed.

The SPT annotation consists in properly stereotyping the model elements that have
to be characterized by quantitative properties and assigning values to the related at-
tributes using the comment-based notation.

AS:Automation System

AMF2:Automation  
Memory Function

AEF:Automation 
Elaboration Function

AMF1:Automation  
Memory Function

PC:Plant
Component

ACF1:Automation  
Communication Function

synchronous: true

ACF2:Automation  
Communication Function

synchronous: false

REC:Recovery
Mechanism

FAIL:
HaltingFailure

ER_MEM2:
Error

FT_MEM2:
Fault

1:init 1.1:transf

1.1.1:start

2a:read_sample 2b:read_sample

2a.1:read 2b.1:read

2a.1.1:input
2b.1.1:input

3:disab 3.1:transf

3.1.1:pause

4:compute_new_state

4.1:compute 5*:send_outcome 5.1:transf
5.1.1:outcome

7:enable 7.1:transf

7.1.1:restart

8a:save 8b:save

8a.1:copy 8b.1:copy

8a.1.1:output
8b.1.1:output

9:Iamalive 9.1:transf

9.1.1:kick

10a:read_sample 10b:read_sample

10a.1:read 10b.1:read

11:affect

10a.1.1:input

12:effect

12.2:effect
12.1:affect

12.2.1:affect

13:notify_exception

14:backward_recovery

6:result

6.1:send

6.1.1:vote_result

13.1:diagnose

<<PAhost>>
AC_ELAB:
Elaboration 

<<PAhost>>
AC_COM:

Communication

sd: FaultMemoryScenario

WD:WatchDog
{RTmaxValue = ($TO,’ms’)}

<<RTtimer>>

V:Voter
{RTmaxValue = (1,’s’)}

<<RTtimer>>

<<PAStep>>
{PArespTime = (’req’,’max’,(3,’s’))}

<<PAStep>>
{PArespTime = (’assm’,’min’,(2,’ms’))} <<PAStep>>

{PAdemand = 
(’assm’,’dist’,(((’exponential’,1),’ms’)))}

<<PAStep>>
{PAdemand = 
(’assm’,’dist’,
(((’uniform’,0.5,1.4),’ms’)))}

<<PAhost>>
AC_MEM2:

Memory

<<PAhost>>
AC_MEM1:

Memory

<<PAStep>>
{PAdemand = 
(’assm’,’dist’,
(((’uniform’,0.5,1.4),’ms’)))}

<<description>>
fault assumption to be specified:
{rate_occurrence = (’assm’,’dist’,(((’exponential’,1),’hr’))),
  duration = (’assm’,’dist’,(((’exponential’,1),’s’)))}

<<description>>
cost of fault masking action
to be computed:
{time-overhead = (’pred’,$OV)}

<<description>>
cost of error detection action
to be computed:
{false-alarm-frequency = 
(’pred’,’mean’,$FA)}

<<description>>
dependability and timing requirements 
to be satisfied:
{mean-avalability = (’req’,’min’,(0.98)),
 cycle-time = (’req’,’max’,(15,’ms’))}

Fig. 8. SPT annotation of the Communication Diagram.
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The type of analysis to be carried out on the embedded automation system example
is performability and the quantitative characterization of the system includes time, per-
formance and dependability aspects. The SPT Profile supports the annotation of only
timing and performance characteristics by means of the General Time Modeling sub-
Profile and the Performance Analysis sub-Profile.

Figure 8 shows the Communication diagram of Figure 2 annotated according to
the SPT Profile. The concrete concept for modeling timer mechanisms (stereotype RT-
timer), introduced in the General Time Modeling sub-Profile, has been used for the
specification of the maximum duration (attribute RTmaxValue) of the timers associated
to the watchdog and to the voter mechanisms. The other stereotypes are instead de-
fined in the Performance Analysis sub-Profile and they have been used to identify the
processing resources of the system (stereotype PAhost) and to specify service times of
resources and response times, either assumed or required, associated to the execution
of diagnosis and recovery activities (stereotype PAstep). Note that, unlike the QoS an-
notation, the service time of a resource has to be specified, in an indirect manner, as
a property of the steps that are hosted by the resource. So that, instead of annotating
directly the resource with the specification of its service time, we have to annotate all
the messages sent to the resource as steps and to associate to them the same value for
the execution demand (attribute PAdemand). This is a good approach when the steps
are characterized by different execution demands but when the execution demand is the
same for all the steps the direct annotation is a better solution: the SPT Profile should
allow the modeler to use also the direct annotation by adding the service time to the list
of properties associated to the resources.

Observe that most of the values assigned to the attributes are strings specifying
complex performance values including information on 1) the origin of the value - e.g.,
either a system requirement (‘req’) or assumed as input to the specification (‘assm’) or
a metric to be computed by a performance tool (‘pred’) - 2) its statistical meaning and
3) the time value (that can be a complex time value such as a probability distribution
function). The Performance Analysis sub-Profile provides a standard syntax for their
specification: the same syntax should be extended to the other sub-profiles, for example,
the duration of the timer mechanisms is implicitly an offered QoS characteristic but it
could be also a system requirement (a required QoS characteristic).

The SPT Profile allows to specify both input and output parameters in the system
model, that are expressed as symbolic variables and prefixed by the dollar ($) symbol:
e.g., the timer duration of the watchdog is specified as a parameter by assigning the
variable $TO to the RTmaxTime attribute.

In Figure 8, we have used the description stereotype to keep track of those require-
ments, properties or metrics to compute that cannot be specified with the concrete con-
cepts provided by the current SPT Profile, for example, the timeless requirement related
to the cycle time of the automation system. Actually, the cycle time is the response time
of a sub-scenario of the Fault Memory Scenario that starts with the sending of the first
message that initializes the watchdog (1: init) and terminates with the sending of the
signal of life to the watchdog (9:Iamalive). The SPT Profile allows to annotate the re-
sponse time only for the whole scenario or for a single step but not for a subset of steps.
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More in general, as already observed in [16], it does not let the user to define a delay
measure between an arbitrary pair of events.

The remaining comments stereotyped as description are related to dependability
aspects of the embedded automation system that cannot be annotated according to the
SPT Profile since the latter does not provide support for dependability analysis.

Dependability is the ability of a system to avoid failures that are more frequent
(or more severe) and failure durations that are longer than is acceptable to the users
[8, 9]. Dependability encompasses three main groups of concepts: threats (or impair-
ments) to dependability, that are undesired events that affect the system dependability
(such as faults, errors and failures); attributes of dependability, that are the properties
characterizing the system dependability (such as availability, reliability, ...); and means
for dependability, that are sets of methods and techniques used either to prevent fault
occurrence (fault prevention) or to guarantee the delivery of correct service despite the
presence of faults (fault tolerance) or to reduce the presence of faults (fault removal)
or to estimate the present number, the future incidence and the consequences of faults
(fault forecasting).

The introduction in the current SPT Profile of a sub-Profile for dependability anal-
ysis that provides concrete dependability concepts for threats, attributes and means
should be taken in consideration and the QoS dependability characteristics defined in
the QoS Profile should be exploited for this purpose.

5 QoS Profile versus SPT Profile

In this section a comparison between the QoS Profile and the SPT Profile is carried out.
We will focus on a list of key-points that have emerged from the application of the two
annotation approaches on the example of embedded automation system presented in the
previous sections.

Type of analysis supported The QoS Profile supports the specification of non-functional
requirements and properties of software systems for different types of analysis (e.g.,
schedulability, performance, dependability). In the Profile, an exemplification of the ap-
plication of QoS extensions is given for the description of real-time models analyzable
with scheduling analysis techniques. In this paper, we have applied the QoS annotation
process on an embedded automation system model: a fault tolerance strategy for the
system is devised in order to increase its dependability level and performability anal-
ysis has to be carried out to assess the timeliness and availability requirements of the
system. The Generic Fault Tolerance framework of the QoS Profile provides concrete
concepts for the specification of fault tolerant software architectures. In particular, a set
of class stereotypes is defined that allow to identify the replicated entities of the system
as well as to specify the replication styles and the fault detection solutions adopted for
the system. A further annotation step, not applied on the running example of Section
2, consists in the specification of the QoS behavior of software components in terms
of their different execution modes, and the associated QoS levels, and of the allowed
transitions from one execution mode to another.

The SPT Profile supports the annotation of UML system models either for schedula-
bility or for performance analysis purposes. It should be extended with a Dependability
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Analysis sub-Profile that, as the Performance Analysis sub-Profile, imports concepts
from the General Time and Resource Models.

Specification level In general, the concrete concepts defined in the QoS Profile can be
used for annotating any UML model. Nevertheless, as observed in the exemplification
of the QoS annotation approach for schedulability analysis in the QoS Profile, to derive
an analyzable model (that is a model on which it is possible to apply directly analysis
methods and/or simulation techniques) is necessary to apply the annotation on instance-
level models, such as Communication and Deployment diagrams.

SPT extensions can be applied both to instances and to their descriptors, in the latter
case, with the meaning that a quantitative property associated to a descriptor element
(e.g., a class) is a default value for all its derived instances, which can override it. More-
over, an SPT annotated descriptor-level model has to be interpreted as a special case
where there is precisely one instance created for every descriptor.

Annotation approach The QoS annotation is basically a three-step approach: in the
first step, a set of QoS characteristics, specific for a system domain and/or for the type
of analysis to be performed, is defined through the re-use of some QoS characteristics
included in the general QoS catalog. In the second step, a “Quality Model” is defined
for the specific case of study in which all the parameters of QoS characteristic tem-
plate classes are resolved. In the third step, the UML system models are annotated with
QoS constraints and QoS values, related to the QoS characteristics defined in the previ-
ous steps. The QoS annotation approach is not straightforward from the point of view
of a UML modeler, in particular, the execution of the first step. The set of QoS char-
acteristics defined in the first step should be used for the QoS annotation of different
applications either of the same domain or for which the same type of analysis has to be
carried out. Hence, they should be defined by expert analysts of the application domain
and provided in the QoS Profile to the end-user modelers, as done for the set of QoS
characteristics for schedulability analysis.

The annotation proposed by the SPT Profile is simpler to apply, from the end-user
modeler point of view, since it does not require neither the definition of QoS characteris-
tics that will be used in the annotation of the system model nor the assignment of actual
values to model parameters. On the other hand, unlike the QoS Profile, the SPT Profile
does not allow to define problem specific measures as function of basic measures.

The SPT annotation approach for performance analysis purposes is exclusively
based on scenarios. This scenario-based analysis limits the type of UML models that
can be annotated to Communication and Sequence Diagrams and Activity Graphs. As
suggested in [10] an “object life” based analysis, that assumes the system specified by a
set of StateCharts modeling the behavior of its main components, should be considered
as an alternative approach to scenarios.

Annotation in the system model There are three different possible ways of annotating
system models according to the QoS Profile: in Figure 6 all the three possibilities have
been exemplified. There is no clear criteria to establish which type of annotation is
better than the others for the specification of a given QoS constraint; it depends on the
modeler as well as on the UML tool capability.
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Concerning the SPT annotation, there is a unique way to annotate system models
that consists in applying the stereotypes on the proper model elements and in assigning
values (or parameters) to the related attributes of interest (for complex values, a syntax
for their specification is provided).

Parameterization capabilities The QoS Profile does not allow to annotate system mod-
els with parameters: all the parameters of QoS characteristic template classes must be
resolved in the Quality Model, for the specific system under study, before their usage.
There is the possibility of associating different values to a parameter through the cre-
ation of different binds; unfortunately, this is not sufficient since there are cases in which
the value(s) of a parameter is unknown and can be derived through the analysis of the
system model, as for the performability metrics to be computed (the frequency of false
alarms raised by the watchdog and the time overhead due to the fault masking action)
for the embedded automation system example.

The SPT Profile, instead, supports the specification of both input and output param-
eters: by convention, they are expressed as symbolic variables prefixed by a dollar ($)
symbol.

Discrimination of the type of specification When annotating a model, the different
types of constraints defined in the QoS Profile allow to distinguish between the system
requirements (QoSrequired constraints), the properties that should be guaranteed by
the system or its components (QoSOffered constraints), and the agreements between
requirements and the quality provided (QoSContract constraints). From the analysis
point of view, there is no explicit way of differentiating between metrics to be simply
computed, system requirements and system assumptions.

In the SPT Profile, performance values are characterized instead by a modifying
field that allows one to indicate whether the value represents a) a system requirement,
b) a system assumption, c) a metric computed in the analysis and reported back in the
UML model or d) a measured value.

Specification of stochastic timings and related issues The QoS Profile does not support
the specification of probability distributions. In Section 3, a solution has been proposed
that consists in assigning to a QoS dimension attribute the return value of a predefined
method without the need of introducing, at meta-model level, new properties for the
QoSDimension stereotype in order to specify the type of distribution and that, actually,
are useful only for stochastic-timing specification.

The main drawback of the proposed solution is that in the definition of the QoS
characteristic we have to declare as many methods as the types of distributions that will
be used in the annotation of the system model. Since a QoS characteristic is defined
for an application domain, and not for a specific system or project, an exhaustive list
of standard predefined methods should be included. This may become a problem when
somebody wants to add a new distribution that is not already in the list. In any case,
the analysis tool should be able to support all these methods. An example of an (open)
list of methods that return a sample value from the most commonly used time-based
distributions is given in Table 5.
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Method Description of the related distribution
EXPO(mean: real): real Exponential distribution with mean mean
UNIF(a: real, b: real): real Uniform distribution over the interval [a,b]
NORMAL(mean: real, s: real): real Normal (Gaussian) distribution with mean mean

and standard deviation s
DET(delay: real): real Deterministic distribution with delay equal to delay
GAMMA(k: integer, mean: real): real Gamma distribution with mean mean and integer

parameter k
WEIBULL(a: real, b: real): real Weibull distribution with parameters a and it b
ERLANG(k: integer, l: real): real Erlang distribution with k number of stages and

stage rate equal to l
... ...

Table 1. List of methods that return a sample value from the related time-based distributions.

Unlike the QoS Profile, the SPT Profile supports the specification of probability
distribution functions (PdFs). A general format for specifying time value expressions is
described by an extended BNF and includes also a (not exhaustive) list of continuous
and discrete PdFs.

From UML models annotated with stochastic timings, according either to the QoS
Profile or to the SPT Profile, it is possible to derive analysis stochastic models that are
used to carry out V&V activities through the application of analytical methods and/or
simulation techniques.

When a stochastic model is characterized by activities whose duration is specified
by general distributions (i.e., non-exponential distributions) it is necessary to associate
to them memory policies that allow to decide, in case of interruption, whether or not to
take into account the amount of work carried out from the starting of the activity until
its interruption (for example, due to a system resource unavailability). The preemptive
memory policies clearly affect the underlying stochastic process of the model and, in
consequence, the solution techniques that can be applied on the latter.

In the context of Stochastic Petri Net models [11], three types of preemptive mem-
ory policies to be associated to a Petri net timed transition (modeling a system activity)
have been defined in the literature [4]. We report them in the following together with an
informal explanation of their meaning:

preemptive repeat different (prd): the amount of work done during the execution of
the activity is considered lost and when the interrupted activity restarts its execution
a new duration is re-sampled from its distribution;

preemptive resume (prs): the amount of work done is not lost and when the activity
restarts its execution it recovers from the point it was been interrupted.

preemptive repeat identical (pri): the amount of work done during the execution of
the activity is considered lost, as for prd policy, but when the interrupted activity
restarts its execution its duration is equal to the last sampled value.

Moreover, there may be certain cases in which it is necessary to assign different mem-
ory policies to the same activity depending on the type of interrupting event. For exam-
ple, let us consider a timer mechanism, as the watchdog used for error detection in the
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embedded automation system of Section 2, in which the timer duration is equal to a ran-
dom variable distributed according to a deterministic PdF. The timer mechanism can be
paused and restarted: when re-activated from the pausing state, the count-down activity
resumes from the point it was interrupted so that the current value of the timer is equal
to the remaining time to expire. During the count-down activity, the timer mechanism
can also also receive an “Iamalive” message from the controlled application and, in this
case, its timer has to be reset to its initial value. Both the “pause” event and the “heart-
beat” event (the latter, caused by the reception of an “Iamalive” message) interrupt the
count-down activity; however, while in case of a “pause” event a prs policy should be
adopted, in case of an “heartbeat” event a prd policy should be applied.

In the QoS Profile it is quite easy to include such new concepts, since the anno-
tation approach allows to define new QoS characteristic through specialization of the
ones included in the general QoS catalog. An exemplification is shown in Figure 9(a):
the preemptive-memory-policy QoS characteristic allows to specify the type of pre-
emptive memory policy to be associated of a timed activity for a (set of) interrupting
event(s) by means of two attributes policy and interrupt-event, respectively. The us-
age of the newly introduced QoS characteristic is exemplified in Figure 9(b) where a
StateChart, representing the behavior of a timer mechanism, is shown. The count-down
activity is represented by the do-activity in state count; basically two QoS constraints
have been associated to the do-activity: a constraint specifies its duration, distributed
according to a deterministic distribution, and the other allows to specify the preemptive
memory policies adopted as already discussed.

<<QoSCharacteristic>>

resource-policy

<<QoSCharacteristic>>

preemptive-memory-policy

<<QoSDimension>>
+ policy: string
  
<<QoSDimension>>
+ interrupt-event: eventlist
  

(a) (b) 

<<QoSValue>>
mpol2:preemptive-memory-policy

policy= prd
interrupt-event= heartbeat

<<QoSValue>>
mpol1:preemptive-memory-policy

policy= prs
interrupt-event= pause

<<QoSRequired>>
{AllowedValues= mpol1,mpol2
  logicalOperator = and}

heartbeat

unused

count expired
/notify_exception

termination

do/count_down

paused

init

exit/timeout

pausecontinue

<<QoSContract>>

<<QoSValue>>

to:PA4ASalarm-latency-wd

timer-duration = DET(4)

<<description>>
preemption memory policies:
prd= "preemptive repeat different"
prs= "preemptive resume"
pri= "preemptive repeat identical"

<<description>>
interrupt-event: event or list of events
that interrupt the timed-activity(ies) 

Fig. 9. Definition of the memory policy QoScharacteristic (a) and the QoS annotation on the
system model (b).
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Basic common concepts The resource concept is common to both the Profiles: in par-
ticular, the QoS Profile reuses the meta-models of the General Resource Model defined
in the SPT Profile to provide concrete concepts for the specification of the QoS offered
by resources.

6 Conclusions

The paper compares the UML Profile for Schedulability, Performance and Time (SPT)
and the emerging UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms (QoS).

The comparative analysis shows that new concepts are needed in both profiles to
express time intervals between two arbitrary events. Also, the two profiles will need to
reach a common agreement on the specification of complex timing values, especially of
those with stochastic characteristics. Another open problem is the parameterization of
models, as in many cases fixed values for model parameters are not enough. The SPT
Profile goes a step further by supporting symbolic variables and expressions, but the
QoS Profile does not have such a capability yet.

In general, both Profiles struggle with the balance between flexibility (i.e., allow
the user to introduce its own definitions) and simplicity/convenience of expression. The
challenge when defining a UML profile is to find convenient yet powerful mechanisms
of expression for complex concepts, yet to remain within the limits of the UML standard
extension mechanisms, which is necessary to insure that the annotated models could be
understood by standard UML tool.
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Profile.
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