
A Semantics of
Communicating Reactive Objects with Timing?

Jozef Hooman and Mark van der Zwaag

Department of Computing Science
University of Nijmegen, The Netherlands

hooman@cs.kun.nl, mbz@cs.kun.nl

Abstract. The aim of this work is to provide a formal foundation for
the unambiguous description of real-time, reactive, embedded systems
in UML. For this application domain, we define the meaning of basic
class diagrams where the behavior of objects is described by timed state
machines. These reactive objects may communicate by means of asyn-
chronous signals and synchronous operation calls. The notion of a thread
of control is captured by a so-called activity group, which is a set of ob-
jects which contains exactly one active object and where at most one
object may be executing. We define a formal semantics for this ker-
nel language, based on the run-to-completion paradigm. We show that
this combination of communication primitives and execution mechanism
gives rise to a large number of questions and list the decisions taken in
the proposed semantics. The resulting semantics is defined in the typed
logic of the interactive theorem prover PVS.

1 Introduction

We present a formal semantics for a system consisting of concurrent reactive
objects, specified by a UML class diagram with timed state machines. This work
is carried out in the context of the EU project Omega (Correct Development
of Real-Time Embedded systems). This project aims to improve the quality of
software for embedded systems by the use of formal techniques. In particular,
the focus of the project is on real-time aspects of systems. In this paper we
concentrate on the modelling of reactive systems [HP85] using class diagrams
and flat state machines.

We shall refer to the set of UML notations that our semantics covers, as
our kernel language. It turned out that in defining a formal semantics for this
(rather small) language, a large number of questions arose; these concerned for
example the passing of control, the dispatching of signals, synchronization of op-
eration calls, etc. In this paper, we identify these issues, and present the decisions
taken to resolve them. The resulting semantics is defined as a labelled transi-
tion system in the typed higher-order logic of the interactive theorem prover
? This work has been supported by EU-project IST 33522 OMEGA “Correct Devel-

opment of Real-Time Embedded Systems”. (See http://www-omega.imag.fr/)

2 Jozef Hooman and Mark van der Zwaag

PVS [ORS92,PVS], which led to the identification of a number of further sub-
tleties.

The Omega project addresses techniques such as model-checking of timed and
untimed models, interactive theorem proving to support compositional reason-
ing, refinement rules relating different levels of abstraction, and synthesis from
specifications. The developed formal tools are connected to commercial UML
tools via the XMI representation.1 The aim is further to propose a methodology
for the software development process. For all of this work, the formal semantics
forms the unifying basis.

Representing the semantics in PVS proved to be a useful means to both
a further and rigorous formalization, and in many ways to a higher level of
abstraction. Next to that, the PVS representation of the semantics plays an
important role in the set of tools that is developed in the Omega project, since
it enables formal reasoning and mechanized proof checking on concrete UML
models. Current work includes the verification of case studies and the automatic
translation of the XMI representation to PVS.

Strongly related to our work is the formalization of active classes and associ-
ated state machines [RACH00] by Reggio et al. They define a labelled transition
system using the algebraic specification language CASL, also leading to a num-
ber of related questions about the meaning of UML models. Their decision is
usually to consider the most general case; for instance, an active object may cor-
respond to an arbitrary number of threads and the event “queue” is a multiset
of events. Our decisions are mainly based on feedback from industrial users, cur-
rent UML-based CASE tools for real-time systems and the aim to enable formal
verification of embedded systems. This leads to more specific choices, such as a
single thread of control per object and a simple FIFO event queue.

Our kernel language is close to the core UML language described in [HG97].
The meaning of event generation, operation invocation, and composition is based
on the Rhapsody tool and basically the same as our informal meaning. The
basic outline of our semantic model is similar to that of [HK00] which uses an
abstract request mechanism and no distinction between asynchronous events
and synchronous communication. The focus of that paper is more on behavioral
conformity for inheritance and various types of refinement.

In Section 2 we discuss the main characteristics of our semantics, and in
Section 3 we present the kernel language in which the UML model must be
represented. In the subsequent sections we present the semantics. For some key
parts we have included the PVS declarations. The complete listing of the PVS
theories can be found at http://www.cs.kun.nl/~mbz/sempvs.html.

2 Concepts and Decisions

Starting point of the definition of a precise meaning of the Omega kernel language
is an early deliverable of the Omega project [DJVP03]. We mention the main
1 See http://www.omg.org/technology/documents/modeling_spec_catalog.htm

for the latest UML-related specifications.

A Semantics of Communicating Reactive Objects with Timing 3

characteristics and discuss a number of questions that had to be answered to
make the semantics more precise and to improve it.

2.1 Kernel Language

Conventional class diagrams are used, with value attributes and reference at-
tributes (which refer to an object), and operations. Associations between classes
are represented by reference attributes. Other relations include inheritance and
composition (strong aggregation).

The behavior of reactive classes may be specified by hierarchical state ma-
chines, which can be flattened as shown in [DJVP03]. Here we assume, for unifor-
mity, that all classes have a flat state machine (possibly empty). A state machine
consists of a number of transitions between locations (states). A transitions may
have a boolean guard (assumed to be free of side-effects) and can be triggered
by a signal or an operation call. There is an action part, here a nonempty list of
actions, which is executed when the transition is taken.

2.2 Time

First of all, the time domain is the set of nonnegative real numbers. As in timed
automata [AD94], timing constraints are expressed in state machines using local
clocks: an object may reset its clocks, and express conditions on clock values in
the guard of a state machine transition. Moreover, as in Uppaal,2 invariants
may be imposed on locations, so that, for example, it can be expressed that an
object must leave some location within a certain time. Thus we provide general,
low-level constructions for the expression of timing constraints. More high-level
syntax for UML with real-time, as developed in the Omega project, can be found
in [GO03].

The passing of time is modelled by a global delay action that increases the
global time and adjusts all local clocks accordingly. Then, when we define exe-
cution traces of the system, we exclude traces that visit states that violate the
invariant. We also exclude so-called Zeno traces, that is, traces in which the
progress of time is limited to a certain bound.

If a state machine transition is taken by some object, then no time passes
between the triggering of the transition (a synchronization with the caller in case
of a call event, or the acceptance of a signal in case of a signal event), and the
evaluation of the guard, both of which do not take time. With the triggering, the
state machine location of the executing object changes from the source to the
target location. The execution of an action is an atomic step of the system that
does not take time. Passing of time and interleaving with other system activity
is allowed before and in between the execution of the actions of the transition.
During the execution of the actions the object remains in the target location.

We added the modelling of timing as an orthogonal feature to the untimed
semantics: the untimed semantics is restored simply by forbidding the delay
actions.
2 See http://www.uppaal.com.

4 Jozef Hooman and Mark van der Zwaag

2.3 Activity Groups

A class can be active or passive, leading to active or passive objects at run-time.
Each passive object has exactly one corresponding active object.

The main idea is that objects are running asynchronously, which is modelled
by interleaving the transitions of all objects. A dynamic assignment of control to
objects restricts the concurrency of the system; only an object that has control
is allowed to execute a state machine transition. The set of objects that are
currently alive is partitioned into activity groups, that are centered around active
objects. Every object has exactly one active parent, and an active object is its
own active parent. At any point in time, in every activity group exactly one
object has the control; we refer to this object as the group’s control object. During
execution the control within a group may shift from one object to another.
Control changes when performing a call inside the same group, otherwise an
object may only loose control if it is stable.

This notion of activity groups is comparable to that of threads of control : an
active object corresponds to a thread of control and at most one thread is active
in each object. To avoid confusion with, e.g., Java-like threads, we decided to
avoid the term thread and use the term activity group instead.

2.4 Run To Completion

We define a run-to-completion semantics, as already defined by the ROOM
methodology [SGW94]. That is, the execution following a signal or operation
call is continued until a stable state is reached. An object is stable if it is ready
to execute (i.e., not suspended) and no untriggered transition can be taken, that
is, further execution is only possible after receiving a signal or operation call.

2.5 Operation Calls

Operation calls are executed synchronously (i.e. the call action may be per-
formed only if the callee is ready to accept it, and the caller is blocked until
the call returns), whereas signal-based communication is asynchronous (the sig-
nal is placed in a queue at the receiver; the sender may continue). We consider
two types of operations: triggered operations, which may occur as a trigger on a
transition and are implemented as a part of the callee’s state machine (so that
it leads to the execution of other actions, possibly including operation calls, and
a return action); and primitive operations, or methods, which are implemented
by a piece of code and cannot be used as a trigger. For simplicity, we assume
the code does not include operation calls.

In the case of triggered operations, we separate the triggering of a transition
from its execution, so that a call action of a triggered operation by the caller
synchronizes with the triggering of a transition in the callee’s state machine.
This is then taken to be one step of the system.

Concerning triggered operations we now face questions about the flow of
control and about when to pass the result back and when to change control;

A Semantics of Communicating Reactive Objects with Timing 5

when the callee becomes stable or immediately when the result is available? We
decided the following: a successful operation synchronization requires that the
caller has control and

– if the callee belongs to the same activity group, then it needs to be ready to
accept the call, and the control changes from caller to callee;

– if the callee is in another group, then it needs to be in control and it must
be ready to accept the call. The caller maintains the control in its group.
The callee must either already have or take the control in its group.

With the call, the caller becomes suspended.
Execution of a return action returns a value (changing an attribute at the

caller) and has the effect that the caller is no longer suspended, but it need
not lead to a control change: if callee and caller are in the same activity group,
control returns to the caller when the callee becomes stable.

We do not allow re-entrance of objects for triggered operations, i.e., when
executing a triggered operation it is not possible to accept new calls to triggered
operations.

Next consider primitive operations; a primitive operation has a method,
which is an expression that can be evaluated in a local state of the callee; for
simplicity, the resulting value is returned instantaneously at the moment of in-
vocation.

Question is when primitive operations can be executed, e.g. like triggered
operations only in stable states of non-suspended objects? Observe that it is
quite common that an object may want to call its own primitive operations. But
when performing the call the object becomes suspended. Hence it is desirable to
be able to call primitive operations of suspended objects. To generalize this, we
allow the acceptance of primitive operations in any state, i.e., the callee may be
unstable or suspended.

A similar problem has been described in [TS03], discussing recursive calls
and callbacks. They do not distinguish triggered and primitive operations, but
introduce two kinds of state diagrams. The main idea behind our solution is that
it is not desirable to model all behavior by state machines; they are only used
to model the main reactive behavior, i.e. the interaction between objects, and
other operations are more conveniently expressed in some action language (or
specified more abstractly using OCL).

2.6 Object Creation

An object can create a new object to which it will be able to refer. We take
a highly simplified view: the initial attribute values of the new object are com-
pletely determined by its class—not by its creator; we do not model entry scripts,
and there is no recursion (as may be used to model aggregation).

6 Jozef Hooman and Mark van der Zwaag

2.7 Generalization

The usual questions about inheritance apply here (see, for instance [HK00]).
The main point is to which extent behavior of a super-class is inherited by a
subclass. Conforming to the current use of inheritance in industrial applications,
we allow that a subclass redefines the behavior of an inherited operation. Then
the question remains whether the definition of a triggered operation is inherited
by a subclass when it does not (re)define it. We take the following decision: If a
child class has a state machine, then it overrides the state machine of the parent
completely; otherwise it inherits the state machine of the super-class.

In our formal semantics, we assume that all information about inherited
attributes, operations and state machines has been included in each class itself
by some simple preprocessing. We also record for each object the corresponding
class, thus obtaining conventional polymorphism.

3 Kernel Language

First, the types Attribute, Class, Clock, Location, Method, Operation, Reference,
SignalName, and Value are parameters of the PVS theories for the kernel lan-
guage and the semantics: the UML model under study is required to supply
instantiations for these (abstract) types.

The data expressions used in the action language and in method bodies, and
the guards of state machine transitions are modelled as mapping from valuations
to an interpretation, see Figure 1.

A valuation offers an interpretation for expressions: it consists of a mapping
of attributes to data values, a mapping of clocks to time elements, and a mapping
of references to objects. A valuation represents a local state of an object.

Let Object (object identifiers) be an uninterpreted type, and let the type
Time be the set of nonnegative real numbers.

AttributeValuation: TYPE+ = [Attribute -> Value]

ReferenceValuation: TYPE+ = [Reference -> Object]

ClockValuation: TYPE+ = [Clock -> Time]

Valuation: TYPE+ = [# aval: AttributeValuation,

rval: ReferenceValuation,

cval: ClockValuation #]

Expression: TYPE+ = [Valuation -> Value]

Guard: TYPE+ = [Valuation -> bool]

Fig. 1. Valuations and Expressions

A Semantics of Communicating Reactive Objects with Timing 7

3.1 State Machine Transitions

For state machine actions we distinguish the following forms.

– call(a, ref, op, exp): A call of the operation op, with as parameter the value
of the data expression exp, to the object referred to by ref. When a return
value is received, it is assigned to the attribute a.

– return(result): Return the value of the result expression.
– emitSignal(ref, signame, exp): The emitting of a signal named signame, with

as parameter the value of the data expression exp, to the object referred to
by ref.

– assign(a, exp): A local assignment action assigns a the value of the data
expression exp to the attribute a.

– methodCall(a, ref, meth): A call to the object referred to by ref of the method
meth. The result is assigned to the attribute a.

– create(ref, c): Create an object of class c, and use ref as a reference to this
new object.

– skip: Do nothing.
– reset(x): Reset the clock x to zero.

A trigger event is of one of the following forms:

– callEvent(op, a): For the triggering by a call of the operation op. The pa-
rameter of the call is assigned to the attribute a.

– signalEvent(signame, a): For the triggering by a signal signame. The param-
eter of the signal is assigned to the attribute a.

The value none is used to model untriggered transitions.
A state machine transition is defined as a record with fields for its source

and target location, guard, trigger, and actions. Also, a transition has a field for
(the state machine of) the class that it belongs to. The actions field contains a
nonempty list of state machine actions.

3.2 Input From The Model

Besides the instantiations for the basic types, the UML model under study is
required to provide the following input to the semantics.

– A function method of type Method × Class → Expression that gives the
method body of primitive operations as a data expression (recall that we
do not allow operation calls in method bodies; the return value must be
computed locally by the callee).

– A set transitions ⊆ Transition containing all transitions of the state machines
for the classes of the model. A transition is linked to its state machine by its
class field.

– A predicate active on classes that defines which classes are active.
– The root class rootClass, which must be active.

8 Jozef Hooman and Mark van der Zwaag

– A function initialLocation of type Class → Location that assigns an initial
state machine location to classes (exactly one for each class).

– A function initialAttrVal of type Class → AttributeValuation that assigns
initial values to attributes.

– An invariant inv ⊆ Class× Location×Valuation.

4 States

First, we distinguish four values for the status of an object.

– An object is dormant until it is created.
– An object is free if it is not processing a triggered operation call.
– The object status is processingCall(caller, a) if the object has accepted a

call from the object caller, for which it has not returned the result yet. The
result value must be assigned to the attribute a of the caller.

– Finally, the status is completingCall(caller) if the caller is from the same
activity group and the object has, having executed the return action, to
complete the call, i.e., run to completion/become stable, before it returns
control to the caller.

An object state contains all relevant local informant concerning an object; it
is a record with the following fields.

– A valuation val that interprets expressions, see Section 3.
– The class that the object belongs to.
– The status of the object.
– A list alist of state machine actions that are to be executed by the object.
– A boolean suspended indicating whether the object is suspended.
– The object’s current state machine location loc.
– The object’s signal queue sq.
– The active object aobj that is the leader of the object’s activity group.
– The object identity control of the control object of the object’s activity

group. This value is used only if the object is active.

A (global) state is a record with the following two fields (that are sometimes
called system variables): a mapping F of type Object→ ObjectState that provides
the current state of objects, and the global time time.

We assume that all system behavior starts in the initial state, in which there
is a single nondormant root object, see the definition of runs in Section 6.

5 Labelled Transition System

We define a labelled transition system (LTS) for the input model. The states of
this LTS are as defined above. In Figure 2 we give the definition of the global

A Semantics of Communicating Reactive Objects with Timing 9

transition relation steps. At this abstract level the definition can be presented in
a single rule:

condition(s, l)

s
l→ effect(s, l)

The condition (boolean) and effect (yielding a state) functions are defined by case
distinction on the label l of the step. A label is the visible part of the execution
of either (1) a state machine action, or (2) the triggering of a transition (either
untriggered, signal-triggered, or call-triggered), or (3) a global time delay. If at
some point it is desirable that certain information is not visible in the label, then
we can abstract from that information (by renaming).

Note. Only the passing of time is not linked to a certain executing object.

5.1 Preliminaries

Some auxiliary definitions concerning stability and control.

– An object is alive, if it is not dormant.
– An object is ready, if it is alive, has an empty action list, and is not suspended.
– An object is executing, if it is alive, has a nonempty action list, and is not

suspended.
– The control object of object p in state s, notation co(s, p) is the value of the

control field of its active parent in state s.
– An object is in control (in some state), if it is equal to its control object.
– A transition is locally enabled for an object in some state, if it belongs to the

objects state machine, its source is also the object’s current location, and
the boolean guard is true.

– An object is stable in some state, if it is ready, it is not currently processing
a call, and all locally enabled transitions have a trigger (other than none).

– Two objects belong to the same activity group if they have the same active
parent.

Passing of Control The passing of control within an activity group is modelled
as a side-effect of the other steps that the system may perform: note that there
is no label defined for it.

If an object is to start executing, then it must either have or be able to obtain
the control within its activity group. Defined in Figure 3 are the condition and
effect functions for the passing of control to an object p in global state s. It
may be that the object p already has control, in which case the resulting state
is equal to s; except in the particular case that p has reached a stable of after
completing a call for a group member. In this case the control may be returned
to the caller. However, if the caller happens to be stable, then the control may
be passed back to (or, effectively remain with) p.

If an other object is in control, then that object must be stable. If the control
object has just finished a call, then either p is the caller, or another (third) object
is the caller, which then must be stable as well.

10 Jozef Hooman and Mark van der Zwaag

Label: DATATYPE

BEGIN

action(action: Action, actor: Object): action?

localTriggering(t: (transitions), actor: Object): localTriggering?

acceptSignal(t: (transitions), n: nat, actor: Object): acceptSignal?

acceptCall(t: (transitions), caller, actor: Object): acceptCall?

delay(dt: DelayTime): delay?

END Label

l: VAR Label

condition(s, l): bool =

CASES l

OF

action(act, p): actionCondition(act, s, p),

localTriggering(t, p): localTriggeringCondition(t, s, p),

acceptCall(t, caller, p): acceptCallCondition(t, caller, s, p),

acceptSignal(t, n, p): acceptSignalCondition(t, n, s, p),

delay(dt): true

ENDCASES

effect(s, l): State =

CASES l

OF

action(act, p): actionEffect(act, s, p),

localTriggering(t, p): localTriggeringEffect(t, s, p),

acceptCall(t, caller, p): acceptCallEffect(t, caller, s, p),

acceptSignal(t, n, p): acceptSignalEffect(t, n, s, p),

delay(dt): delayEffect(dt, s)

ENDCASES

Step: TYPE+ = [# current, next: State, label : Label #]

steps: setof[Step] = LAMBDA (step: Step):

condition(step‘current, step‘label) AND

step‘next = effect(step‘current, step‘label)

Fig. 2. The global transition relation

A Semantics of Communicating Reactive Objects with Timing 11

s: VAR State; p: VAR Object

takeControlCondition(s, p): bool =

IF inControl?(s, p)

THEN (stable?(s‘F(p)) AND completingCall?(s‘F(p)‘status))

IMPLIES stable?(s‘F(caller(s‘F(p)‘status)))

ELSE LET co = co(s, p) IN

(stable?(s‘F(co))

AND

(completingCall?(s‘F(co)‘status) IMPLIES

(p = caller(s‘F(co)‘status)

OR

stable?(s‘F(caller(s‘F(co)‘status))))))

ENDIF

takeControlEffect(s, p): State =

IF inControl?(s, p)

THEN

(IF stable?(s‘F(p)) AND completingCall?(s‘F(p)‘status)

THEN s WITH [(F)(caller(s‘F(p)‘status))(suspended):= FALSE]

ELSE s ENDIF)

ELSE LET co = co(s, p) IN

(IF stable?(s‘F(co)) AND completingCall?(s‘F(co)‘status)

THEN s WITH [(F)(caller(s‘F(co)‘status))(suspended):= FALSE,

(F)(co)(status):= free]

ELSE s ENDIF) WITH [(F)(s‘F(p)‘aobj)(control):= p]

ENDIF

Fig. 3. Passing of Control

12 Jozef Hooman and Mark van der Zwaag

5.2 Semantics of Action Execution

We describe how the execution of a state machine action changes a state. The
action is required to be the first element of the executing object’s action list; it
is removed from that list after execution.

return(exp) An executing object that is processing a call for some caller may
execute a return action with result expression exp. It is required that the
caller is alive. The result is that the caller becomes un-suspended, that the
value of the result expression is assigned to the designated attribute for the
caller. If the caller belong to the same group, then the callee becomes free,
otherwise its status becomes completingCall : it must then run to completion
(become stable), after which it returns the control to the caller.

assign(a, exp) The executing object assigns the current value of the expression
exp to its attribute a.

emitSignal(ref, sn, exp) A new signal with signal name sn and the value of the
expression exp is inserted in the signal queue of the receiving object.

methodCall(a, ref, meth) The result of a call of a method (primitive operation)
is returned instantaneously as the value of the operation’s method in the
local state of the callee (the object that is referred to by ref). The result
is assigned to the attribute a at the caller. The callee must be alive (non-
dormant).

skip Nothing changes.
create(ref, c) The executing object can create a new object of class c, for which

it will have the reference ref, by initializing an (arbitrary) dormant object.
The new object is initialized as follows: its class is c; it is free and not sus-
pended; its signal queue and action list are empty; it has the initial valuation
and state machine location and valuation associated with its class; it is its
own active parent if c is an active class, and otherwise it inherits its creator’s
active parent.

reset(x) Resetting a clock x means changing the value of x to zero for the
executing object (like a local assignment).

Note. The semantics of the call action is given below; it is part of the syn-
chronization with the callee object.

5.3 Triggering of a State Machine Transition

The semantics of the triggering of a state machine transition for an object p
depends on the kind of its trigger.

Untriggered A transition can be triggered locally for an object, if it is untrig-
gered. It is required that the object is ready (i.e., is alive, has an empty action
list, and is not suspended) and can take control, and that the untriggered tran-
sition is locally enabled. The result is that the transition is taken (the target
location becomes the current location of the object, and the action list of the
transition is copied in the object’s action list field) and that the object obtains
control.

A Semantics of Communicating Reactive Objects with Timing 13

Call Event The triggering of a transition with a call event trigger involves a
synchronization with the caller of the operation: it is required that there is a
caller object that is executing and whose first action is a call to the object p that
matches the trigger event on the transition.

acceptCallCondition(t, caller, s, p): bool =

stable?(s‘F(p)) AND executing?(s‘F(caller))

AND

((NOT samegroup?(s‘F(p), s‘F(caller)))

IMPLIES takeControlCondition(s, p))

AND

LET action = car(s‘F(caller)‘alist) IN

call?(action)

AND

callTriggersTransition?(action, t, s, caller, p)

acceptCallEffect(t, caller, s, p): State =

IF executing?(s‘F(caller)) AND

call?(car(s‘F(caller)‘alist)) AND

callEvent?(t‘trigger)

THEN

LET action = car(s‘F(caller)‘alist) IN

takeControlEffect(basicTriggeringEffect(t, s, p), p)

WITH

[(F)(p)(status):= processingCall(caller, a(action)),

(F)(p)(val)(aval)(a(t‘trigger)):= exp(action)(s‘F(caller)‘val),

(F)(caller)(alist):= cdr(s‘F(caller)‘alist),

(F)(caller)(suspended):= TRUE]

ELSE s ENDIF

Fig. 4. Acceptance of a call.

Furthermore, p is required to be stable, and if the caller belongs to another
group, then p must be able to take control. Finally, the transition must be locally
enabled for p (after the assignment of the value of the parameter of the call to
the attribute specified in the trigger expression). See the definition in Figure 4.

Result of the synchronization is that the callee is triggered (gets control,
changes location to the target of transition, and copies the action list of the
transition); the caller becomes suspended (and it looses control if the callee
belongs to the same activity group); the status of the callee becomes processing-
Call(caller, a), where a is the attribute the result must be assigned to; and the
value of the parameter of the call is assigned to the designated attribute.

14 Jozef Hooman and Mark van der Zwaag

Signal Event In Figure 5 we define how a transition t is triggered for object
p by a signal. Let n be the position of the triggering signal in p’s signal queue.
It is required that this signal is the first element of the queue that triggers a
transition. We further require that the object is stable and that it can take
control.

The result is that the transition is triggered, and that the signal queue is
cleaned up: we remove the triggering signal and all the preceding signals that
are not deferrable in the current location.

t: VAR (transitions); n: VAR nat; s: VAR State; p: VAR Object

acceptSignalCondition(t, n, s, p): bool = LET os = s‘F(p) IN

stable?(os) AND takeControlCondition(s, p)

AND

nonempty?(os‘sq)

AND n < length(os‘sq)

AND

signalTriggersTransition?(nth(os‘sq, n), t, os)

AND

FORALL (m: below[n]): NOT EXISTS (t1: (transitions)):

signalTriggersTransition?(nth(os‘sq, m), t1, os)

acceptSignalEffect(t, n, s, p): State =

IF nonempty?(s‘F(p)‘sq) AND signalEvent?(t‘trigger)

THEN takeControlEffect(basicTriggeringEffect(t, s, p), p)

WITH [(F)(p)(sq):=

cleanUp(s‘F(p)‘sq, n, s‘F(p)‘class, s‘F(p)‘loc)]

ELSE s ENDIF

Fig. 5. Acceptance of a signal.

5.4 Passing of Time

Delaying with time dt (with dt > 0) means that the delay time is added to the
global time and that all local clocks are delayed accordingly. PVS definition in
Figure 6.

6 Execution Traces

Above we defined a labelled transition system for the input model. For verifica-
tion purposes, we define the behavior of a system as a set of infinite sequences

A Semantics of Communicating Reactive Objects with Timing 15

u: VAR Time; dt: VAR DelayTime

delayClocks(val: Valuation, u): Valuation =

val WITH [(cval):= LAMBDA (x: Clock): val‘cval(x) + u]

delayEffect(dt, s): State =

s WITH [(time):= s‘time + dt,

(F):= LAMBDA p:

s‘F(p) WITH [(val):= delayClocks(s‘F(p)‘val, dt)]]

Fig. 6. Passing of time.

of steps that satisfy some further requirements. Such sequences

s0
l0−→ s1

l1−→ · · ·

of steps are called execution traces, or runs, of the system. Correctness properties
of systems can be expressed in terms of these runs.

First, we define a run as any sequence of steps, see Figure 7. Then, we define
the runs of the system as a set of these runs by imposing a number of restrictions.

– A run is non-Zeno if for every state of the run, and for every delay time u,
it is possible to proceed to a state taking more than u time.

– The invariant inv is satisfied for some run if it holds for all its states, but
also for all intermediate states that are reached by the passing of time (the
delay time of non-delay actions is defined as zero).
The invariant inv is satisfied for some global state s and some delay time u,
if the invariant holds for all objects that are ready in s, but only after a time
delay of u.

– The first state of a run must be the initial state: in this state the global time
is 0, and the object root is the only object alive. This root object belongs to
the root class, is free, not suspended, in control, and in the initial location
of its state machine; its signal queue and actions list are empty; and it has
the initial valuation associated with its class.

The set runs is defined as the set of runs that satisfy these criteria; see
Figure 7.

Note. Execution traces that lead to a time deadlock (a state where no further
actions, including delay, can be performed without violating the invariant) are
excluded from the set of runs. However, we may be interested in such finite
behavior. A trick to define infinite runs for finite executions, is to extend the
steps relation as follows: in the case of time deadlock an escape action may be
performed, to an empty state, that is, a state where all objects are dormant.

16 Jozef Hooman and Mark van der Zwaag

Run: TYPE = sequence[(steps)]

i, j: VAR nat; u: VAR Time; s: VAR State; r: VAR Run; l: VAR Label

nonZeno(r): bool = FORALL i, u: EXISTS j:

r(i+j)‘current‘time > r(i)‘current‘time + u

delayTime(l): Time =

CASES label OF delay(u): u ELSE 0 ENDCASES

invOK(s, u): bool =

FORALL p: ready?(s‘F(p)) IMPLIES

inv(s‘F(p)‘class, s‘F(p)‘loc, delayClocks(s‘F(p)‘val, u))

invOK(r): bool =

FORALL i, u: u <= delayTime(r(i)‘label)

IMPLIES

invOK(r(i)‘current, u)

runs: setof[Run] = LAMBDA r: (FORALL i: r(i)‘next = r(i+1)‘current)

AND

r(0)‘current = initialState AND nonZeno(r) AND invOK(r)

Fig. 7. Definition of runs.

A Semantics of Communicating Reactive Objects with Timing 17

From such a state the only further activity is the passing of time, while the
invariant is always (trivially) satisfied. Thus an empty state models a delayable
deadlock.

7 Concluding Remarks

We have presented a formal operational semantics for a core UML language
for modelling real-time reactive systems, with a focus on the communication
between reactive objects whose behavior is described by state machines. Objects
belong to an activity group and may communicate by means of asynchronous
signals or synchronous operations. Although the main ideas about the intended
semantics were rather clear, it turned out to be far from trivial to make this
precise, and a large number of issues about inheritance, control, primitive and
triggered operations, and signals had to be resolved.

Moreover, by representing the semantics in the specification language of the
tool PVS, we detected a number of errors in earlier versions of the semantics
that were described on paper only. E.g., already the type-checking capabilities
of PVS revealed a number of inconsistencies.

In current work we are experimenting with the interactive theorem proving
capabilities of PVS to verify reactive systems. We are also developing a first pro-
totype of a tool that translates XMI output of UML-based CASE tools to PVS.
To enable compositional verification, we also intend to define an equivalent deno-
tational, and hence compositional, semantics. Other work concerns the extension
of the current semantics with signal priorities, exceptions, and interrupts.

Acknowledgments We would like to thank the members of the Omega project
for extensive discussions on the semantics issues presented here.

References

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994.

[DJVP03] W. Damm, B. Josko, A. Votintseva, and A. Pnueli. A formal semantics for
a UML kernel language. Available via http://www-omega.imag.fr/ Part I
of IST/33522/WP1.1/D1.1.2, Omega Deliverable, 2003.

[GO03] S. Graf and I. Ober. A real-time profile for UML and how to adapt it to
SDL. In Proceedings of SDL 2003 Forum, LNCS, 2003.

[HG97] D. Harel and E. Gery. Executable object modeling with statecharts. IEEE
Computer, pages 31–42, 1997.

[HK00] D. Harel and O. Kupfermann. On the behavioral inheritance of state-based
objects. In Proceedings, 34th Int. Conf. on Component and Object Technol-
ogy. IEEE Computer Society, 2000.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In
Logics and Models of Concurrent Systems, pages 477–498. NATO, ASI-13,
Springer-Verlag, 1985.

18 Jozef Hooman and Mark van der Zwaag

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system.
In 11th Conference on Automated Deduction, volume 607 of Lecture Notes
in Artificial Intelligence, pages 748–752. Springer-Verlag, 1992.

[PVS] PVS. Information, documentation, download. Available from SRI Computer
Science Laboratory, http://pvs.csl.sri.com/.

[RACH00] G. Reggio, E. Astesiano, C. Choppy, and H. Husmann. Analysing UML
active classes and associated statecharts - a lightweight formal approach. In
Proceedings FASE 2000 - Fundamental Approaches to Software Engineering,
LNCS 1783, pages 127–146, 2000.

[SGW94] B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Modeling.
John Wiley & Sons, 1994.

[TS03] J. Tenzer and P. Stevens. Modelling recursive calls with UML state dia-
grams. In Proc. FASE 2003 - Fundamental Approaches to Software Engi-
neering, pages 135–149. LNCS 2621, Springer-Verlag, 2003.

