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Abstract

The Unified Modeling Language (UML) receives in-
creasing attention by designers of real-time systems. Sev-
eral approaches already extend the UML notation for mod-
eling real-time applications. In this context, it is essential to
be able to specify time-bounded temporal constraints as a
prerequisite to validate a model for correct system behavior.

But currently, UML and corresponding extensions only
provide limited means to express temporal constraints over
the dynamic behavior of objects. Furthermore, the Ob-
ject Constraint Language (OCL) which was developed to
express restrictions over (parts of) UML models currently
lacks of means to specify temporal constraints.

We think that an appropriate notation to specify temporal
constraints about the dynamic behavior of objects should
preferably base upon already existing UML concepts. We
therefore propose an extension of OCL that complies to ex-
isting concepts and is suitable to express temporal state-
oriented, time-bounded constraints.

1. Introduction

Domain-specific approaches frequently make use of
UML Profiles and extension mechanisms like stereotypes
to introduce new model elements for their particular needs
[19, Sections 2.6 and 3.16]. One of the most popular ap-
proaches to apply UML in the domain of real-time systems
is the UML-RT profile based on the ROOM methodology
[27]. Nevertheless, several other real-time extensions of
UML exist that also enable designers to adequately model
the structure or architecture of real-time systems.

These approaches have partially influenced the UML
2.0 infrastructure and superstructure proposals that have re-
cently been adopted by the OMG [20, 21]. In the UML 2.0
superstructure proposal, three new kinds of diagrams (com-
ponent diagrams, composite structure diagrams, and timing
diagrams) and several new model elements (e.g., protocol
state machines for ports and interfaces) have been intro-
duced.

Besides modeling of a system, other important aspects
of system development are analysis, validation, test, and –
especially in safety-critical application domains – formal
verification. In this context, an additional specification of
desired properties that the system under consideration has
to satisfy is employed. Properties that need closer attention
primarily concern dynamic behavior, i.e., they are temporal
constraints, sometimes even with specific time-bounds. A
given model has then to be investigated, i.e., analyzed, val-
idated, tested, and/or verified, w.r.t. these (time-bounded)
temporal constraints.

In this article, we review those UML model elements
that are used to express temporal constraints with a focus
on time-bounded constraints. We first consider existing
UML documents, i.e., the UML 1.5 and UML 2.0 speci-
fications, the UML Profile for Schedulability, Performance,
and Time, and the latest OCL 2.0 proposal (Section 2). In
Section 3, we then outline extensions of UML/OCL that in-
troduce means for temporal constraints. Finally, Section 4
concludes with our expectations on the future of UML/OCL
extensions for specification of temporal constraints.

2. Time-Related Concepts in UML

The current UML 1.5 standard provides two ways to
specify behavioral time-related properties, i.e.,

• timing expressions in Sequence Diagrams that in-
dicate times of sending and receiving messages to
formulate constraints like {reply().receiveTime-

request().sendTime < 1 sec} [19, Section 3.60]
and

• elapsed-time events in Statecharts to trigger state tran-
sitions after a specific time has passed without a state
change, e.g., after(5 sec) [19, Section 3.77].

For advanced modeling of real-time behavior, extensions
on behavioral UML diagrams can be applied. For exam-
ple, time bounds for state durations can be modeled using a
stereotype on the metaclass State, semantically based on
Harel’s definition of Statecharts [12].



But generally, the UML standard does not have a no-
tion of time. Therefore, different extensions of UML have
been developed by means of UML profiles, the most pop-
ular being RT-UML [7] and UML-RT based on the ROOM
methodology [27].

More recently, the UML Profile for Schedulability,
Performance, and Time has been adopted by the OMG
in September 2002 [18]. Though that profile provides a
common framework of time-related concepts (e.g., clocks,
timers, timed actions, and timed events), it also has only
limited means concerning the specification of temporal ob-
ject behavior.

In the UML 2.0 superstructure proposal [21], Se-
quence Diagrams are now equipped with improved model-
ing elements for time bounds. Arcs that represent messages
that are sent between objects can now be annotated by ex-
pressions that refer to

• duration observations (e.g., “Code d = duration”),

• duration constraints (e.g., “{d..3*d}”),

• time observations (e.g., “t=now”), and

• time constraints (e.g., “{t..t+3}”).

Timing diagrams are one of the new kinds of diagrams
in UML 2.0 [21, Section 14.4]. Timing diagrams model
changes of object states over time along a linear time axis.
Basically, modelers can specify conditions that imply ob-
ject state changes as part of object lifelines. The behavior of
objects as well as interactions among objects can thus be re-
stricted. Though some examples are provided and a guide-
line for the basic graphical notation is given in the UML 2.0
superstructure proposal, the semantics description of timing
diagram is still incomplete, e.g., the semantics of tick mark
values and timing rulers is unclear.

The Object Constraint Language (OCL) is an integral
part of UML [19, Chapter 6]. It is a declarative expression
language that enables modelers to formulate constraints in
the context of a given UML model. OCL is used to spec-
ify invariants attached to classes, pre- and postconditions of
operations, and conditions on state transitions.

So far, OCL does not have means to formulate tempo-
ral constraints. But the latest OCL 2.0 proposal [14] intro-
duces a language concept that enables modelers to reason
about messages that must have been sent (so called OCL
messages). In a broad sense, OCL messages establish a
temporal notion to OCL, as the set of messages sent dur-
ing operation execution is regarded. Apart from OCL mes-
sages, there is no other concept in OCL to specify temporal
constraints.

Nevertheless, different approaches have taken OCL as a
basis and developed temporal extensions to enable modelers
to specify temporal constraints. An overview is given in the
next section.

3. Temporal Extensions of OCL

In recent years, a number of OCL extensions have inde-
pendently been proposed to enable modelers to specify tem-
poral constraints. We first review work on temporal OCL
extensions by other authors, then outline our approach, and
finally provide a comparison of these approaches w.r.t. syn-
tax, semantics, and support of explicit timing specification.

3.1. Related Work

Ramakrishnan et al. [23]extend OCL by additional rules
with unary and binary temporal operators, e.g., always and
never to specify safety and liveness properties. A very sim-
ilar approach in the area of business modeling that also con-
siders past temporal operators is published by Conrad and
Turowski [5]. However, the resulting syntax of these works
does not combine well with standard OCL, as temporal ex-
pressions appear to be similar to temporal logics formulae.

Kleppe and Warmer [16] introduced a so-called action
clause to OCL. Basically, action clauses enable modelers to
specify required (synchronous or asynchronous) executions
of operations or dispatching of events. This work has in-
fluenced the previously mentioned message concept in the
OCL 2.0 proposal.

Distefano et al. [6] define BOTL (Object-Based Tempo-
ral Logic) in order to facilitate the specification of static and
dynamic properties. BOTL is not directly an extension of
OCL; it rather maps a subset of OCL into object-oriented
Computation Tree Logic (CTL). Syntactically, BOTL looks
very similar to temporal logics formulae in common CTL.

Bradfield et al. [2] extend OCL by useful causality-based
templates for dynamic constraints. Basically, a template
consists of clauses, the cause and the consequence. The
cause clause starts with the keyword after, followed by a
boolean expression, while the consequence is one of even-
tually, immediately, infinitely etc., followed by an OCL ex-
pression. The templates are formally defined by a mapping
into observational µ-calculus, a two-level temporal logic,
using OCL as the lower level logic.

Ziemann and Gogolla [29] present an OCL extension,
in which future-oriented temporal development of attribute
values and existence of objects and links can be restricted.
Similar to other approaches, temporal operators like al-

ways, next, and sometime are introduced. For defining
a formal semantics, they build upon the set-theoretic OCL
semantics developed by M. Richters [24] and define traces,
i.e., sequences of system states. Such a trace employs a
high-level notion of the development of a running system
with only that information which is necessary to evaluate
OCL expressions.

Note that none of the approaches mentioned so far con-
siders real-time constraints. Besides the rudimentary and



Table 1. Temporal OCL Extensions and Real-Time Specification

Approach Syntax Formal Semantics Real-Time

Ramakrishnan et al. [23] OCL + temporal operators – no

Conrad/Turowski [5] OCL + temporal operators – no

Kleppe/Warmer [16] OCL + action clause – no

Distefano et al. [6] CTL + OCL subset BOTL no

Bradfield et al. [2] OCL + template clauses Observational µ-calculus no

Ziemann/Gogolla [29] OCL + temporal operators Trace semantics no

Roubtsova et al. [25, 26] Stereotyped classes TCTL yes

Sendall/Strohmeier [28] OCL consistent – yes

Cengarle/Knapp [3] OCL + temporal operators Trace semantics yes

Flake/Mueller [9, 11] OCL consistent Clocked CTL yes

mostly informal UML modeling elements described in Sec-
tion 2, we know of the following approaches.

The work presented by Roubtsova et al. [25, 26] defines
a UML profile with stereotyped classes for dense time as
well as parameterized specification templates for deadlines,
counters, and state sequences. Each of these templates has
a structural-equivalent dense-time temporal logics formula
in TCTL (Timed Computation Tree Logic).

Sendall and Strohmeier [28] introduce timing constraints
on state transitions in the context of a restricted form of
UML protocol state machines called SIP (System Interface
Protocol). A SIP defines the temporal ordering between op-
erations. Five time-based attributes on state transitions are
proposed, e.g., (absolute) completion time, duration time or
frequency of state transitions. Using these attributes, one
can then relate actions to timing constraint failures in an
extended form of transition condition (or, in UML terms:
transition guard).

Cengarle and Knapp [3] present OCL/RT, a temporal ex-
tension of OCL with modal operators always and some-

time over event occurrences. These can be used for spec-
ifying deadlines and timeouts of operations and reactions
on received signals. On the metamodel level, events are
equipped with time stamps by introducing a metaclass Time
with attribute now to refer to the time unit at which an event
occurs. In turn, each instance can access the set of current
associated events at each point of time, i.e., at each system
state.

3.2. State-oriented Temporal OCL Extension

With current OCL, it is already possible to check the
activated state of an object using the operation oclIn-

State(statename:OclState). For more extensive rea-
soning about states, our temporal OCL extension (called
RT-OCL) has a notion of state sequences based upon a for-

mal definition of active state configurations.1 The syntax
of our OCL extension is consistent with common OCL syn-
tax and builds upon the metamodel of the OCL 2.0 proposal
[9]. Basically, we provide means to specify temporal con-
straints over Statechart states, such as safety and liveness
properties. Beyond that, we have shown in [10] that our
OCL extension has the expressive power to specify all of
those properties that are regarded as being relevant in prac-
tice (based upon the property specification pattern system
by Dwyer et al. [8]). A formal semantics is given by a trace
semantics similar to the approach by Ziemann and Gogolla
in [29]. But additionally, we map state-based temporal OCL
expressions to time-annotated temporal tree logic formulae
(i.e., Clocked CTL) for further application in model check-
ing tools.2

3.3. Comparison

We think that a successful approach to formulate tempo-
ral (time-bounded) constraints in UML and/or OCL should
have the following characteristics:

• Syntax: Temporal constraints should be notated con-
forming to existing concepts of UML. This is impor-
tant w.r.t. the already quite extensive notation of UML
to be adopted and accepted by UML users.

• Semantics: Temporal constraints should be provided
with a formal semantics. Only by a formal semantics
a unique notational meaning is guaranteed and formal
verification techniques can be employed.

1Note that the current notion of active state configurations is only in-
formally defined and has some deficiencies, e.g., it does not consider final
states in active state configurations.

2Note that a mapping of the referred UML model into appropriate
model checking input has additionally to be defined.



• Real-Time: The notation for temporal constraints
should support specification of time bounds and timing
intervals. This is especially important for modeling of
safety-critical systems.

Table 1 lists once more the mentioned approaches and com-
pares them w.r.t. the desired characteristics.

Most of the approaches with a formal semantics have for-
mal verification by model checking in mind. Formal veri-
fication by theorem proving using OCL is investigated in
the KeY project. That approach aims to facilitate the use
of formal verification for software specifications [1]. Here,
OCL is applied without modifications to specify constraints
on design patterns. As standard OCL currently has no for-
mal semantics, this approach translates OCL specifications
to dynamic logic (DL), an extension of Hoare logic. DL is
used as input for formal verification by theorem proving.

4. The Future of OCL

In recent years, many complaints about the concrete
OCL syntax could be observed, e.g., [22, Section 5]. For
UML 2.0, the metamodel approach of the OCL 2.0 proposal
might enable tool developers to overcome this problem in
the future. Basically, tools can employ their own constraint
language in UML 2.0; they only have to provide a mapping
to the OCL metamodel. Thus, a tool does not have to stick
to the concrete OCL syntax provided in the OCL 2.0 pro-
posal. For example, there is already work available on a
graphical OCL variant [15].

However, the semantics of OCL still has some deficien-
cies. In the OCL 2.0 proposal, two semantic descriptions
are provided. On the one hand, a metamodel-based seman-
tics is given that associates the abstract syntax (i.e., the
metamodel) with values on the actual M1 level. On the
other hand, a formal semantics by means of a naive set-
theoretic approach (i.e., object models) is provided that is
based on work by Mark Richters [24]. Unfortunately, the
two semantics are currently neither consistent nor complete,
as (a) the formal semantics does not consider the newly in-
troduced concept of OCL messages and (b) both semantics
lack an integration of Statecharts and a semantic definition
of state-related operations.

And even if these problems were fixed during the final-
ization process of OCL 2.0, there remains the more gen-
eral problem of the level of abstraction used to define the
semantics of OCL. In this context, H. Hussmann argues in
[13] that neither naive set theory nor a metamodel-based ap-
proach is fully adequate for building a conceptual bridge be-
tween the programming artifacts produced from UML/OCL
and the formal semantics currently defined for OCL. Basi-
cally, this is due to the direct mapping of attributes to values
of a particular semantic domain. Further research is there-
fore necessary to overcome this issue.

The evolution, application, and extension of OCL is
comparable to the evolution of UML in general: Modelers,
both in academia and industry, identify deficiencies when
they apply the language in their specific domain and conse-
quently extend the language for their needs. Examples can
be found in the area of business processes, databases, and
real-time systems (cf. [4] for an overview of recent research
efforts on OCL).

We expect that several extensions of OCL will be
developed in different application domains, e.g., at this
year’s UML conference, an OCL extension concerning low-
coupling preserving contracts is presented [17]. Similarly,
there will most likely be further OCL extensions in the do-
main of modeling real-time systems. Semantical issues will
play an important role in this context, and interdependen-
cies with other UML extensions such as the UML Profile
for Schedulability, Performance, and Time have to be stud-
ied more extensively. It is imaginable that OCL extensions
make use of that profile and extend it by appropriate means,
resulting in a notation that enables UML users to specify
time-bounded temporal constraints.
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