

UML'2003 -SVERTS

1

A Proposed Extension to UML: A Hierarchical Architecture of Temporal-

Assertion-Components

A. Teitelbaum1, R. Gallant1, H.G. Mendelbaum1,2, G. Vidal-Naquet3

1Jerusalem College of Technology - POB 16031 - Jerusalem 91160, Israel
2Université Paris V (René Descartes), IUT- 143, av. de Versailles, Paris 75016, France

3Ecole Supérieure d'Electricité, rue Joliot Curie, Plateau du Moulon, 91192 Gif-s/Yvette Cedex, France

E-mails : a_hay@jct.ac.il, rgallant@alum.mit.edu, mendel@jct.ac.il, vidalnaq@supelec.fr

Abstract
This paper proposes a double extension to the UML 2.0

new notation, for Real-Time Applications, using the

Temporal-Assertion Components of the Arts'Codes

method (Applicative Real-Time Systems based on

Component Design) [9] , by adding :

��Real-Time Components for an architectural design,

��and Temporal-assertions (temporal extended-OCL [2-

5, 25]) for an a priori validation of the design and for

the verification at the run-time.

The Arts'Codes components describe the expected

properties at run time (Assertion-Guards) and at the

completion of an application (Goals to fulfill). They are

executed in parallel and can communicate.

These Arts'Codes Components are proposed as

synchronous parallel subsystems [1,9,10], which are

described in the form of a hierarchical homothetic

diagram. They can be viewed as an extension of the UML

active objects, by:

��adding Temporal-assertions that define the Goals of

the component (a priori rules defining the properties

it has to fulfill at the end of its work),

��adding Temporal-assertions that define the Assertion-

Guards (Exception rules defining the verifications to

test during its work, and what to do in case of ill-

functioning),

��adding interface mechanisms which allow

communication with other parallel components,

��using the already existing OO UML data-attributes,

function-methods and a 'run' manager-function

(active-behavior method) .

The hierarchy of components facilitates the validation of

the whole system : each component has its own assertion-

properties to fulfill (goals and run-time-guards), and the

property of the main component (the applicative system)

is a composition of the properties of all the

subcomponents (so allowing the validation of the whole

designed system).

This extension is described using a case study[24].

Keywords: Component design, Temporal Logic, Real-

Time Systems, UML extensions.

I. Introduction
 Many graphic notations for software

development have been proposed. Each one represents

another view (another approach of the description of a

system). The following list is by no means exhaustive,

but is indicative of the wide variety of notations in use:

Petri-nets [14] for the control view; statecharts, an

economical finite state machine representation [15] for

the dynamic behavior view, DARTS [12] for the viewing

of static data flow between tasks, object-oriented

diagrams [16] such as in ROOM [13] to show the

architecture of a system as linked parallel objects, etc…

The Unified Modeling Language (UML), [11,13] adopts

a pluralistic attitude toward the multiplicity of notations,

in two respects:

1. Several diagrams and notations are incorporated

within UML, addressing various aspects of

system development. UML is not a method,

and thus does not address the way these

diagrams are to be used. On the contrary, there

are several diagrams, each one with its own

distinct syntax and semantics, which can be

used interchangeably to convey different views

of the same information (e.g., Statecharts and

Activity Diagrams, Sequence Diagrams and

Collaboration Diagrams).

2. UML provides several extension mechanisms,

which, in effect, enable authors of non-UML

notations to use UML as a meta-language to

describe non-UML notations.

UML’s versatility, notwithstanding, and, in part, because

of this versatility, UML has two fundamental limitations.

1. As stated above, UML is not a method, and thus

does not address or constrain the way the various

diagrams are to be used. This freedom from

constraint is intentional, as it widens the user

base and frees the user to select a process

appropriate to business, technical and cultural

circumstances. On the other hand, this freedom

from constraint, leaves the user as to whether a

given model meets critical requirements. We

UML'2003 -SVERTS

2

will elaborate on this point in our survey of

existing approaches to the modeling of

components (see section II, below).

2. The authors of UML emphasize the

orthogonality of different aspects (e.g., static

versus dynamic views). Thus, UML

intentionally adopted different diagrams to

express orthogonal aspects, in keeping with

Parnas’ “separation of concerns” doctrine.

Philosophically this makes sense, but

operationally, this results in a formidable

cognitive overhead of drawing and navigating

among the various diagrams. Undoubtedly,

frequent context switching among different

views and notations poses a cognitive burden

that discourages model-based engineering: the

official taxonomy of UML 2.0 references not

less that 13 kinds of diagram and notations (see

figure A-5 p.546 of [19]):

�� for the structures: class diagram,

component diagram, object diagram,

composite structure diagram, deployment

diagram and package diagram, and activity

diagram,

�� for the behaviors: use case diagram,

state machine diagram, sequence diagram,

collaboration diagram, interaction overview

diagram and timing diagram.

Arts'Codes proposes a definition of components, and a

methodology [9], contributing to specification, realization

and validation, endeavored to capture the structural and

behavioral design of R-T systems in a unique kind of

diagram with minimal notation.

Arts'Codes is not unique in the endeavor to

reduce the cognitive dissonance associated with multi-

notation models. For instance, Dori’s Object Process

Methodology (OPM) [17] as its name suggests, proposes

a single diagram organized around process hierarchy.

Arts'Codes, on the other hand, organizes the application

around component hierarchies. For distributed or

embedded real-time applications, we believe that

components provide more natural and effective view of

the system architecture, than processes. Furthermore, the

architecture we propose supports a robust and verifiable

implementation.

 So, in this paper, we propose an extension of

UML in order to include the concept of hierarchical R-T

components.

II. The concept of R-T Components

Various definitions of the term Component have

been proposed. The degree of rigor in each definition is

indicative of the prominence of the concept Component

in the lexicon of the authoring body.

II.1 The UML component definition
UML 2.0 [19 section 4] defines the term component (or

more precisely the Basic Component) as follows:

”A modular part of a system that encapsulates its

contents and whose manifestation is replaceable within

its environment. A component defines its behavior in

terms of provided and required interfaces. As such, a

component serves as a type, whose conformance is

defined by these provided and required interfaces

(encompassing both their static as well as dynamic

semantics).”

II.1.1 The UML component Structure definition

Regarding conceptual representation of the external

interfaces and internal structure of a Component UML

2.0 leverages “the general improvements in

CompositeStructures (around Parts, Ports and

Connectors).” [19, section 8.3.1, p. 143].

Regarding graphical representation of the external

interfaces and internal structure of a Component UML

2.0 exemplifies various representations within the

Structure Diagram, each example appropriate to a

different level of detail (19, figures provide various

options within the Structure Diagram notation [19,

section 8.3.1, figures 85-88, pp. 140-141].

Since UML 2.0 uses the classifier box for

representation of both Classes and Components, the

stereotype mechanism must be used to denote a particular

box as a component. The “component” stereotype (either

iconic or textual or both) performs this denotation. The

“subsystem” stereotype denotes large-scale components.

In addition to stereotypes, there are, of course, features

that distinguish Components from other Classifiers.

 For features such as parts, ports, connectors,

required interfaces, provided interfaces, using

realizations and implementing artifacts UML 2.0

recommends the use of additional, stereotyped

compartments in the classifier box.

Parts of components have a very general definition; it

can be every kind of instances contained in the

component: internal classes, subcomponents etc. [19,

section 8.3.1, p. 136].

Let us give an example of UML 2.0 component

structure (based on [21] and [26] examples), in figure 0

we show a class Toaster which contains two parts: class

UML'2003 -SVERTS

3

Thermostat and class Color control, connected through

ports to various interfaces: temperature sensor, start

button, color selector, color sensor, Heater and ejector.

figure 0: a main toaster class:

In this diagram, we see the structure of the system,

but the behavior of the various classes is not described.

II.1.2 The UML component behavior definition

UML 2.0 defines component behavior in two

respects:

1. Any realization of a component must conform

to its behavior specification “in terms of provided and

required interfaces. As such, a component serves as a

type, whose conformance is defined by these provided

and required interfaces (encompassing both their static as

well as dynamic semantics).

2. With respect to entities external to the

component, there is a formal behavioral contract: “of the

services that it provides to its clients and those that it

requires from other components or services in the system

in terms of its provided and required interfaces.” [ibid., p.

137]

UML 2.0 provides ample means to specify component

behavior, either implicitly or explicitly. Behavior may be

specified implicitly “by means of its publicly visible

properties and operations.” For more precise and explicit

definition “a behavior such as a protocol state machine

may be attached to an interface, port and to the

component itself…. behaviors may also be associated

with interfaces or connectors to define the ‘contract’

between participants in a collaboration e.g. in terms of

use case, activity or interaction specifications.” [ibid., p.

138].

What is missing in UML 2.0 is an explicit link

between architecture and behavior. It is all well and good

to view behavior at the various levels as a series of

contracts between collaborating elements. But there is no

requirement, or guidance in UML 2.0 regarding

concordance between architecture and behavior goals.

The justification for this is that UML is just a notation

standard and not a development methodology.

Nevertheless, it is legitimate to ask (and to answer) what

notation is required to support construction and

verification of architectures that comply with behavioral

goals. The developer of reliable components needs an

answer to this question.

In addition to the technical issue, there is the

aforementioned cognitive issue. For any system of non-

trivial complexity, it is difficult, if not impossible to to

perform a complete mental integration the static view, as

expressed in structure diagrams with the dynamic view,

that may be expressed in statecharts, activity diagrams

and/or interaction diagrams.

 It is precisely these two issues that Arts’Codes is

intended to fill.

II.2 The Interface "Façade" definition : Prior to the

promotion of the component to a first-class entity, the

object-oriented community sufficed with a definition of a

component as "an object + an interface". Object-oriented

practitioners have used the "façade design pattern" [20],

to distinguish between the external interface and the

underlying implementation. Component users interact

with the public operations of a façade class, which

delegates the implementation of these operations to

hidden constituent classes of the component. This pattern

facilitates implementation of component-oriented

applications in classical object-oriented languages.

II.3 The ITEA's Interface definition : The group

"Information Technology for European Advancement"

[21] has given a much more elaborate definition of

components. In addition to the “syntactic interface

level”, it defines a “semantic interface level” as well as a

“synchronization interface specification level.” These

latter two characteristics clearly encompass behavioral

aspects. However, the ITEA’s proposed use of UML to

represent components is restricted to structural aspects.

Accordingly, when using the UML Class notation to

represent component blueprints, ITEA specifies two

specific list compartments: provided interfaces and

required interfaces. Similarly, for component instances,

ITEA uses the UML component notation, in conjunction

with the UML interface notation, modified to distinguish

between provided and required interfaces.

class Toaster

part 1

class Thermostat

part2

class Color Control

Temperature

 start

color selector

color sensor

On Heater

eject

UML2 notation : port connector

 interface

UML'2003 -SVERTS

4

II.4 The Meyers' Behavioral-contract definition :
 In keeping with the capabilities and emphasis of Eiffel,

Bertrand Meyers [22] stresses the behavioral aspects of

component definition as a contract definition. Such

concepts as pre and post conditions are directly

represented in Eiffel, and Meyers demands no less of a

rigorous definition of components behavior.

II.5 Arts’codes summary-definition:
 Arts’codes is concerned with the Real-Time

Components for embedded systems. Consequently, this

definition is based on the concepts of the active-Object

Oriented Programming i.e.: parallel execution of entities

which encapsulate a data structure (attributes) and

functions (operations) specific to the processing of these

data.

However the Arts’codes definition of R-T

Component extends the basic definition of active objects

as follows:

a/ R-T Component oriented programming can fit the

active-Objects to the operation of a physical

device or a subsystem, thus allowing design

methods oriented towards device/subsystem

architectures and not only towards abstract-data-

type management;

b/ a R-T system can be composed hierarchically

(homothetic view) in components containing

subcomponents, and/or can be composed in a

network of components and allow communication

between them;

c/ R-T components can add some specific interfaces

and mechanisms to communicate with other

parallel components;

d/ R-T components can have an explicit description

of their behavior (implemented in what we call

"manager") which coordinates the functions it has

to perform depending on conditions, states, events

and communication with other components; and

subcomponent activation.

e/ R-T components can add some features to the

active-Objects, such as Assertions defining a

priori the Goals that the Component has to fulfill,

or verifying on-line the good-working during the

execution. These assertions are related to the

behavioral functioning of the components-

managers. The hierarchy of components allows the

validation of the system : each component has its

own properties to fulfill (goals and run-time-

guards), and the property of the main component

(the applicative system) is a composition of the

properties of all the subcomponents (so facilitating

the validation of the whole designed system).

III Presentation of the Arts'Codes'

Temporal-Assertion Components

Arts'Codes follows Meyers [22] in the prominence

given to dynamic behavioral aspects of components, and

provides specific notation to support this emphasis. But

Arts'Codes also proposes a static architectural view of

the composition of components (hierarchically or in

network).

The remainder of this paper describes Arts'Codes and

suggests how it can be integrated in UML : by expressing

its notation using UML extension-mechanism, by adding

to UML a new kind of component--diagram, and by

expressing the coherence between its component--

diagram with the other UML diagrams.

III.1 Component Design :
In order to describe an ArtsCodes' component, the

engineer will first specify different aspects of each

embedded component of the system to be built (software

and/or hardware) using 6 types of specification :

COMPONENT X

{ ATTRIBUTES : ...

 SUBCOMPONENTS: ...

 METHODS :

 GOALS : ...

 MANAGER : ...

 GUARDS : ...

}

In ITEA parlance[21], these specifications

constitute a Component blueprint. In UML, this blueprint

can be represented by the Class symbol, with a different

class list compartment for each specification type.

However, for any complex application, the inclusion of

all 6 list compartments would be unwieldy. UML

diagrammatic notation permits the hiding of list

compartments. Given that Arts'Codes method proposes 6

such compartments, such hiding would be encouraged, in

accordance with the purpose of a given diagrammatic

view. For example, for a view representing system

functionality, only the METHODS compartment would be

exposed. For a view emphasizing control structure, the

MANAGER and GUARDS compartment would be

exposed. For a view related to system validation, the

GOALS compartment would be exposed.

UML'2003 -SVERTS

5

a) ATTRIBUTES: here the signals, variables, clocks, and

the interface of the component with other components,

are given:

external :{

in|out :

 *variable-type variable-name;

 *flag flag-name;

 *[flagged] signal signal-name;

 *variable-type pipe-name[size];

 *clock clock-name;

 signal Guard_Exception;}

local: {variable-list }

b) SUBCOMPONENTS:

subcomponents:

{* component-type subcomponent-instance

 (external variable-list) } // links definitions

c) METHODS: Description of the actions and functions

to perform in the component (hardware or software).

They are described (in any executable language : C++,

Java etc.) as functions activated by the behavioral

Manager when some conditions are fulfilled;

d) GOALS : This describes the Aims of the component,

meaning the properties that the component must fulfill at

the end of its work, here specified in our extended OCL

to Engineering Temporal notation [4,5,25] (see

Appendix) :

if (signal|condition: name) then

{ property: *flag-name; signal: *signal-name;}

This corresponds in mathematical PTL (propositional

Temporal Logic notation [2,3] to

"Condition \/ signals ==> Property /\ signals" (Condition

or signals true) imply that (Property and signals are true).

e) MANAGER : This is the component behavioral

manager, which describes the ordering of its operations

and the activation of different subcomponents; it

describes the logical controller properties. They can be

specified in our Engineering OCL Temporal notation

[4,5,25]: if (signal|condition: name) then

{ action: *action-name; signal: *signal-name;}

This corresponds in mathematical PTL (propositional

Temporal Logic notation [2,3]) to

" Condition \/ signals ==> Actions /\ signals " (Condition

or signals true) imply that (Actions and signals become

true).

In fact, they can be expressed in any language for

execution (C++, Java etc.). But for the

validation/verification process, the execution of the

manager is supposed to be compatible with the

"synchrony hypothesis " [1].

f) GUARDS : This is he watch-dog of the Component

which ensure the correct-working properties (also

specified in our Engineering OCL temporal-extension)

that the component must satisfy during all its execution,

and the reactions it has to do in case of ill-functioning

(Exception).

if (signal|condition: Guard_Exception name) then

{action: *repair-action-name; signal: exit-signal;}

This corresponds in mathematical Temporal Logic [2,3]

to

 (Exception_Condition \/ signal ==> repair_Actions)

\/ (Exception_Condition \/ signals ==> exit_signal)

\/(Exception_Condition \/ signals ==>repair_ Actions /\

exit_signal)

NOTE1 : for specification purpose and mathematical

proving of the consistency of the components[3-5], we

propose that the Goals, the Behavioral manager and the

exception-Guards can be specified in an engineering OCL

temporal-extension which is sufficiently close to the

automation engineer vernacular specification.

For instance <> can be replaced by “later” or

"henceforth", [] can be replaced by “always”, () can be

replaced by “next”, (-) can be replaced by “before”, etc.

“A Until C” means that action A is performed until the

first clock-cycle ("synchrony hypothesis " [1]) when C

becomes true (which is the usual interpretation of the

English word “Until”), etc.

example of engineering Temporal OCL notation:

if(Switch_gatedown and beginning and (until

clock(x)=3)) then (OKdown and later let_in)

or in mathematical Temporal logic

[](Switch_gatedown /\ beginning /\ (U clock(x)=3))

 ==> (OKdown /\ <>let_in)

(straightforward translation)

NOTE2 : for specification and execution purpose [7-9],

the Goals, the Behavioral manager and the exception-

Guards can be described as parallel automata.

example

/Switch_gatedown/ /clock(x) >= 3/ /state 1 /

� / let_in/ /state 3 /

which are similar to statecharts specification and can be

executed by an automata-based operating system [9], but

can also be expressed any executable language (C++,

Java etc.).

UML'2003 -SVERTS

6

III.2 Components composition
The Arts'Codes model enables the interleaving of the

static architectural structure (structural model) and the

dynamic behavior (behavioral model), and facilitates

human cognition by providing clear correspondence

between different graphical views, and an homothetic

view (with the same notation) at all the levels :

components and subcomponents.

 III.2.1 Static Architecture
The system to design can be composed into a hierarchy

of Arts'Codes components and subcomponents, or into a

network of communicating Arts'Codes components

(using the interfaces through the external ATTRIBUTES)

Strict adherence to a hierarchical structure and fixed

control mechanisms (which we elaborate in the remainder

of this paper), ensures that the system’s structure does

not change often, and hence, it is relatively stable.

 III.2.� Dynamic behavior
It allows to draw inside the manager: It describes the

dynamic management rules of the components. It

defines the system reactions for internal and external

inputs, by transmission of internal and external outputs.

The subcomponents are activated in the states of the

hierarchic automaton.

So the system’s behavior described in the Manager of the

component, may have to be changed (or adapted) many

times.

IV Introducing Temporal-Assertion

components Diagram for UML
In UML, from a static architectural point of view, we

have the concepts of package and objects, and therefore

we have the class diagram to describe them graphically.

We propose to add the component-design diagram. A

package can group a hierarchy of components and each

component can contain subcomponents or objects.

In addition, a component has a behavioral manager

described as a statechart extended to the control of

subcomponents/assertions and entry/exit gates. As is

evident from the case study (see figure 2, below), these

gates are visually similar to, but semantically different

from UML 2.0 entry/exit points [19, section 15.3.8, p.

471]. Entry/exit points define transitions to and from

states of stateCharts for a given component. In

Arts’Codes, the state machine of a component is

encapsulated in its manager, which can induce state

transitions in the manager of a subcomponent (or of an

upper-component) through the entry/exit gates, which

work as control links. So, the state-machines of the

various managers are independent and parallel. And the

manager's extended statechart describes the own

component behavior and the activation of the

subcomponents. A key feature of Arts'Codes is the

absolute control exercised by the statechart of the

Manager over its subcomponents. The manager, does not

merely transmit events to subcomponent statecharts. If

this were the case, the subcomponent would discard the

received event, if at the instant of receipt, it was in a state

for which no reaction to that event were defined. In

Arts'Codes the manager can always activate or deactivate

the subcomponent statechart, and force it into a particular

state (using entry/exit gates), regardless of the

subcomponent’s current state. This insures system

reliability, and verifiability. This requires that each

subcomponent statechart support the “State Pattern,” [23]

in which there is a top level state, from which there are

transitions to each of the other lower level states, each

triggered by a different event . At the last level, the last

component manager of the hierarchy is similar to an

UML object with its statechart describing its own

behavior without activating other components.

IV.1 Example (informal description):
Let us give the example of a toaster control [24] based on

the color of the bread-slices and not only on the timing

and temperature. The user chooses the bread-slices color

that he wants using a button called "color-selector,"

introduces the bread-slices and pushes the button "start".

The toaster stops in three cases: either when the color is

attained, or when it does not work correctly (temperature

too high) and after a certain time (a maximum time-out

condition is raised).

IV.2 Graphic representation
Component structure:

In figure 1, we see the main package of the

toaster-controller, which contains the main component

(double-border box), its manager (triple-border box), and

its subcomponents (double-border boxes: thermostat and

color-control). We see also the connectors (arrows)

between these components and with the I/O virtual

devices (half- round-boxes) through data ports and

interfaces. By convention, in Arts'Codes, the UML

package notation is used to denote the overall system

boundary (main component). The half-round-boxes

representation of I/O virtual devices is not standard-

UML, but is a permitted extension (iconic stereotype).

Similarly, the double border of subcomponents, and the

triple border for the Manager component are iconic

stereotypes. Iconic, rather than textual stereotypes have

been chosen to articulate, the Arts'Codes metaphor of

UML'2003 -SVERTS

7

plug-replaceable components, whose socket pins connect

to external hardware devices. Insofar as the virtual I/O

devices support communication protocols, it serves an

implementation of UML 2.0 interfaces. The ports allow

support of data exchanges between the various elements

(components, managers, virtual I/O devices).

Regarding data and signal flow, Arts'Codes overloads the

association name to indicate the connectors (e.g.,

Temperature labeling the association connecting the

Temperature Sensor with the Thermostat). This is

consistent with UML 2.0 [19 section 17.2.2] which

allows attachment of information items to associations.

Figure 1 : main toaster component Structure
���Arts'Codes static architecture diagram)

Manager's statecharts extensions:
In figure 2, we see the extended statechart of the main-

component's manager.

In this extended statechart , the control of the entrance

and the exit from a manager are represented by "Gates"

(double-bordered small circles). For instance in Figure 2,

the manager begins by its "Init I-Gate", sending the

"e_eject" event and resetting the "HeaterOn" flag, in

order to be sure that the toaster begins empty and cold,

then it enters the "Idle state". When the toaster is started

(receiving the "e-start" event), it checks if the

colorRequired is not 0 then it enters the "Toasting state".

This statechart is extended to allow the parallel activation

of subcomponents (double-bordered rectangles :

thermostat and color-control) in the "Toasting state."

Figure � : main toaster component Manager
 (Arts'Codes dynamical behavior diagram)

Another extension is the presence in the

"Toasting state" of single-bordered rectangles for the

assertions to test during the execution of this state (see

"TooHot " or "TimeOut" at the bottom of Figure 1).

Assertions can be tested when entering the state (pre-

condition), during the execution of this state (run-

condition), or when exiting the state (post-condition). If

the assertion becomes true, it means a malfunctioning of

the component, so an exception guard must be raised: the

context will be saved and the manager will exit by the

"Exception E-Gate" (see Figure 2), in order to enter the

"Guards-chart" (see Figure 8).

Example of Assertion (if) and Guard (then):
(see Formulae 1) If the Guard detects that everything is

OK or if it repaired the problem, then it will come back to

the manager execution, coming back through the "History

Resume R-Gate". If the problem is not repairable, it will

come back through the "Initialize I-Gate" to reset the

application (here, doing "e_eject" and coming back to the

"Idle state").

UML2 notation

 port

 connector

 interface const TempReq: 150;

ColorReq,MaxTemp : integer;

Timer : clock;

Temperat

sensor

Color

 Sensor

Temperature

Color

Ejector

Heater

On

e_eject

Start
button

e_start

Thermostat

Color

control

Manager

TempReq

ColorReq

Color

selector

ColorReq

�Heater

const TempReq: 150, max_try=5;

ColorReq, MaxTemp, count : integer;

Timer : clock;

Temperat

sensor

Color

 Sensor

Temperature

Color

Ejector

Heater

On

e_eject

Start

button
e_start

Thermostat

Color
control

Manager

TempReq

ColorReq

Color

selector

ColorReq

Assertion

Goals

Assertion

Guards

�Heater

Thermostat

 Color control T

e_start

[colorReq !=0]

 I Init

 Gate

/e_eject

 Toasting

 Idle

/ e_eject,

HeaterOn = 0, count=0,

MaxTemp = TempReq *1.2

Terminate

Gate

Exception

Gate

 E

Assertion

TooHot

Assertion

TimeOut

History

Resume Gate

R

UML'2003 -SVERTS

8

Formulae 1: Assertion/Guards of "Toaster Manager"

"TimeOut Exception ":
if (time > timeOut)

 then (reset(HeaterOn) and Critical_Gate);

"TooHot Exception ":
 if (Temperature > MaxTemp)

 then (reset(HeaterOn) and incr(count) and

 state=cooling);

 if (state=cooling and count>max_try)

 then (Critical_gate); //ending the application

 if (state=cooling and Temperature < TempReq)

 then (Resume_gate);

NOTE :

UML 2.0 supports four types of behavioral constraints:

DurationConstraint, IntervalConstraint, TimeConstraint

and InteractionConstraint, as well as pre and post-

conditions. Richer support for real-time constraints and

specification may be found in the emerging OMG

standard for Schedulability [19].

Finally, if the toaster worked well, the "Toaster

manager" will finish normally by receiving an

acknowledgment from the "Terminate T-Gate" from the

subcomponent "Color control", and it will exit the

"Toasting state" to go back to the "Idle state" while

sending the "e_eject" event.

The Toaster-Behavior represented by the Toaster

manager statechart (in Figure 2) can be translated easily

in our engineering Temporal OCL notation (for

validation purpose) :

 Formulae 2: Behavior of the "Toaster Manager"

"Toaster-Behavior":

if (init_Gate)

 then (state=Idle and e_eject and not HeaterOn and

 count=0 and MaxTemp=TempReq*1.2);

if (state=Idle and e_start and colorReq)

 then (state=Toasting and

 Thermostat.Init_Gate and Color_control.Init.Gate);

if (state=Toasting and
 Color_control.Terminate_Gate)

 then (state=Idle and e_eject);

Going down in the hierarchy of the components, we

can draw the thermostat subcomponent static architecture

(see figure 3a) and its manager (see figure 3b).

Figure 3a : thermostat subcomponent architecture

In figure 3a, we see the I/O links of the thermostat

component with the "Temperature sensor" and with the

"Heater" device, and with the upper level component

"Toaster".

figure 3b: the manager of the thermostat

In figure 3b, we see the thermostat manager, which is a

classical statechart with no activation of further

subcomponents.

Finally while designing the "color control"

subcomponent, we shall have the figure 4a giving its

static architecture:

the figure 4a shows that it receives data from the "Color

sensor" device and from the upper level component

"Toaster", but does not deliver outside any data, it will

only use the dynamic "Terminate" gate to finish its work

in the Behavioral description of its manager (see figure

4b and 2).

Heating

noHeating
I

[Temperature <

TempReq]

/HeaterOn =1

[Temperature >=

TempReq]

/HeaterOn =0

P
/ HeaterOn =0

Init

Gate

 Pause Gate

History

Resume Gate

R

Temperat
sensor

Temperature

 Manager

TempReq
Toaster

Heater

On

�Heater

Color

sensor

Color

 Manager

ColorReq
Toaster

UML'2003 -SVERTS

9

Figure 4b: the manager of the color control

subcomponent

IV.4 Discussion on the Gates extension:
In the Arts'Codes extended statecharts of the managers,

we have seen, in the example, an important feature: the

gates which allow to make the communication between

components, by exchanging data or by sending/receiving

signals.

The gates may be viewed as a non-standard adornment of

the UML statechart. They are motivated by the

Arts'Codes concern with reliability. In the standard use

of statecharts, communicating components send events to

other components. The sender has way of assuring that

the receiver will react to the event in the way the sender

intended, or, for that matter, that the receiver will react at

all. For reliable control, it augments the controlling

abilities of the manager. We must guarantee that

manager will, initiate, terminate, or continue the

operation of a subcomponent. The appearance of a gate

in the statechart of a manager, is, in effect, a constraint on

the behavior and design of the statechart of the

subcomponent. The subcomponent statechart must

provide hooks (in the form of specific transitions and

triggering events) that allow the manager to exercise

control according to its gates.

V Validation and Verification using

Arts'Codes component diagrams

 In our proposal, the diagrams can be easily

translated into temporal-assertion formulae. The

components' assertions for the goals validation, the run-

time verifications, the execution behavior and the

exception-guards are written in a unified temporal

notation, which is a minimal extension of OCL [25] (see

our example-formulae 1 to 6, and the Appendix below).

And is also sufficiently close to the mathematical

Temporal notation, so this enables to have the same

notation in the design, the proving and the execution.

Originally, OCL was designed as a constraint

specification notation and not as an execution language.

Here we used an OCL-Temporal extension for this

purpose in the Goals, and the Exception-Guards, but we

use it also to describe the component behaviors in order

to make the proving by comparing the result of the

behaviors' execution to the goals and the guards.

V.1 a priori Validation using Goals-Charts and

global-properties
The Goals can be described graphically with the

same kind of diagram, the difference with the manager

chart is that it can contain Temporal Logic operators

(such as "later"or always or Until etc.) instead of actions
Figure 5: the Goals of the toaster

This can be translated in engineering temporal notation:

Formula 3:

"Toaster-Goals"

if (e_start and ColorReq>0)

 then (later (e_eject and Color >= ColorReq));

In fact the validation of the work of the toaster must be

obtained through the validation of the goals of its

subcomponents. The Arts'Codes hierarchy of components

facilitates the validation of the system : each component

has its own goals assertion-properties to fulfill, and the

property of the main component (the applicative system)

is a composition of the properties of all the

subcomponents (so allowing the validation of the whole

designed system):

 In this example, the validation will be done, if the

following global-property is true:

Formula 4: global-property of the toaster

in mathematical temporal notation :

Thermostat-Goals /\ Color_control-Goals /\ Toaster-Behavior

==> Toaster-Goals

or, in our OCL extended Temporal notation:

if (Thermostat-Goals and Color_control-Goals and Toaster-

Behavior) then (Toaster-Goals);

colorTesting I

[Color >

ColorReq]
Init

Gate

 Terminate

 Gate
 T

idle toasting
e_start and

ColorReq>0

later
(e_eject and

Color >= ColorReq)

Goal

Fulfilled

UML'2003 -SVERTS

10

and so, we need to represent also the goals of the

subcomponents:

Figure 6: The Goals of the Thermostat:

This can be translated in engineering temporal notation:

Formula 5:

"Thermostat-Goals" :
if (init_Gate)

then (later always (Temperature=TempReq)

Until (Pause_Gate));

in the same way, let us represent The Goals of the Color

control in Figure 7:

This can be translated in our engineering OCL-temporal

notation: Formula 6:

"Color_control-Goals" :

if (init_Gate) then (later(Color >= ColorReq));

The global-property of the system (see formula 4) can be

proved by combining all the sub-goals and the main

behavior. For instance, using an automatic prover such as

the STEP prover of Stanford [3,4,5]. But manually and

intuitively, we can see that the global-property can be

fulfilled (i.e. the system is designed properly) : the main

goal wants to obtain e_eject and Color >= ColorReq

when it starts with a certain color requirement (ColorReq

>0);

the main Toaster-Behavior activates the Thermostat and

the Color_control components when it starts, the goal of

the Thermostat-goal shows that it maintains a certain

required Temperature when it starts, and the

Color_control-goal shows that it terminates when the

ColorRequired is reached, finally the main Toaster-

Behavior activates e_eject on termination of the

Color_control component. So the main Goal is fulfilled.

NOTE: The validation of a component is based on the

assumption that its subcomponents have been validated

earlier and that their goals are reliable.

V.3 Run-Time Verification using Exception Guards

Charts
The exception handling of the toaster (see formulae 1)

can be described with the same kind of chart, it is

activated by the manager during the execution, and comes

back to the manager after handling :

Figure 8: The exception guards chart

When the "Toaster Manager" is in the "Toasting

state" (see Figure 2), it will test (Formulae 1), at each

cycle of execution, the two assertions "TooHot" and

"TimeOut". If one of them becomes true, it will raise an

exception i.e : save the context of the manager, and

activate the corresponding guard (i.e. it will enter the

corresponding Exception gate of Figure 8), and execute

the following treatment.

For instance, in case of "TimeOut" Exception, it

will close the Heater and go back to the manager through

its Init gate which will reset the Manager.

In Case of "TooHot" Exception, it will try to

cool the toaster, if there were too many tries (max_try), it

will go back to the manager through its Init gate which

will reset the Manager. If there were not too many tries, it

will wait until the temperature went down to less than

TempReq, then it will go back to the manager through the

Resume Gate and continue the normal work.

VI comparison with statecharts, Room and

OPM
The statechart is a visual formalism for complex

systems defined by Harel [15], and was specially adapted

to reactive systems. Reactive systems are characterized

by being event-driven, continuously having to react to

idle
heat-

reguling

init_Gate

 later always
(Temperature=TempReq)

 Until Pause_gate

Goal

Fulfilled

idle testing
init_Gate

later
(Color >= ColorReq) Goal

Fulfilled

 TooHot
 Exception

 Gate

Init

Gate I

/HeaterOn=0; count++ Temperature < TempReq

cooling

History

Resume

Gate R

count > max_try

 TimeOut /HeaterOn=0

 Exception

 Gate

 TooHot

 Exception

 Gate

Init

Gate

 I

/HeaterOn=0; count++ Temperature < TempReq

cooling

 History

 Resume Gate

 R

count > max_try

 /HeaterOn=0

 TimeOut

 Exception

 Gate

UML'2003 -SVERTS

11

external and internal stimuli.

 And he adds [15] " what makes the problem

especially acute is the fact that we need tools fitting

nicely into human being’s frame of mind". This idea is

one of the main goals of this Arts'Codes paper, to fit the

graphic program representation to the visual mental one.

 His approach for program description is based on

State diagrams: Much of the literature seems to agree that

states and events are a priori a rather natural medium for

describing the dynamic behavior of a complex system.

Globally speaking, he added to the known State Diagram

two main ideas: Hierarchy and Concurrency: The two

essential ideas enabling this extension are the provision

for ‘deep’ descriptions and the notion of orthogonality.

The Statecharts [15] describe well the dynamic of

behaviors, but not the components architecture as in

ROOM and in Arts'Codes. For this, we must use the class

diagrams of UML to see the objects; and the message

sequence diagrams to see the interactions between the

objects.

The ROOM (Real-Time Object-Oriented Model)

methodology was developed specifically for dealing with

distributed real-time systems based on the object

paradigm. It was defined by Bran Selic[13] and it uses a

variation of the basic statechart formalism.

One of the reasons of this modification was that "it is

generally unrealistic to apply the concept of broadcast

communications across a lossy wide-area network".

This model is defined in the following way:

Behavior specifies the dynamic aspects of a system, while

structure deals mainly with architectural issues: how is

the system decomposed, what is the relationship between

the components, etc. Inheritance is both a reuse and an

abstraction facility.

The main structural element is the actor: it represents

an active concurrent activity with a specific

responsibility, and it is completely hidden from its

environment and other actors by an encapsulation shell.

 The ROOM method was our principal inspiration for

Arts'Codes, but there are certain key differences between

the two.

1. ROOM considers the behavior role simply as a

regular sub-actor, it doe’s not have a special

rank in its components. In the Arts'Codes

approach the Manager is the Component master,

without it no subcomponent activation is

possible, and it has access to all components

features.

2. The subcomponents activation by the manager's

behavioral states in Arts'Codes increases

significantly the expressiveness of the

subcomponents' parallelism and synchronization,

enabling “what you see is what you get

(WYSIWYG)” and avoiding undesirable side

effects at the execution stage. Moreover, the

subcomponents activation is shown by their

links to the gates, enabling in such a way more

explicit graphical expressiveness.

3. ROOM approaches to the behavior description is

like a flat state diagram, with no distinction

between normal and exception partition. It does

not guide the developer to validate (ab)normal

behavior. Arts'Codes adds Assertions to the

components, in order to track and to manage

with abnormal behavior.

4. The encapsulated ROOM states are not

supported in Arts'Codes. Our approach is that

encapsulation is made by components, and a

state is only the component status, it is not an

independent entity. Although Arts'Codes

supports state hierarchy, it is only for expression

improvement.

5. The interconnections between the ROOM actors

are provided by ports, which abstract the

protocols. The protocols have to be defined in a

Message Sequence Chart separately. In

Arts'Codes each variable is interconnected

automatically and the detailed connection is

provided. This approach meets the

standardization of embedded development

requirements. The ROOM approach is more

suitable for versatile network interconnection.

Arts'Codes enables network or controllers

interconnections through the Virtual Devices.

6. While ROOM adopts the run-to-completion

programming model, Arts'Codes is supported

by an execution platform which adopts the

Synchrony Hypothesis, alleviating in such a way

synchronization and timing efforts.

7. In ROOM the priorities are attached to events, in

Arts'Codes the priority is attached to the

component and inside the component to the

Manager’s state-transitions. This approach

enables determinism, because an event may

enable many transitions and the reaction order

must be fixed.

8. Arts'Codes introduces the “socket” concept in

order to enable Reusability of components. A

component is a type until it is inserted in a

socket, creating in this way a new instance of

this component type.

UML'2003 -SVERTS

12

OPM [17] proposed by D. Dori gives another solution

of the integration of Structural and Behavioral

views. He uses the classical UML class diagram to

describe object-processes, and allows zooming in

a class box of the diagram in order to show the

internal statechart. This method resembles to ours

for the hierarchical zooming. However, the

hierarchy is organized around processes rather

than components. As we have already noted, a

component-based hierarchy is more compatible

with the physical architecture of embedded

systems. On the other hand, Arts'Codes tries to

reduce the number of diagrams and the complexity

of the various notations, we try to have homothetic

diagrams in the sense that at all the levels of the

hierarchy the diagrams and the notation are the

same.

V Conclusion

In fact we have designed all these hierarchical charts

(component chart, manager chart, Goal chart, exception

guard chart) in an homothetic same way, so that they

have the same notation at different levels

We propose that this architecture can be a

contribution to UML 2.0 by adding this kind of

homothetic diagram which gives an explicit

representation of behaviors for components, and a

possible validation by composing all the assertions of the

subcomponents. Furthermore, these diagrams allow

verification at run-time using the exception-guards

assertions. All these assertions are written in a unified

extension of OCL to Temporal and Boolean logic. The

behavior of each component is also described in this

extended OCL.

This hierarchical architecture and the automatic

translator that insures that “as-built” behavior conforms

to requirements and can be verified.

In summary, we stress that :

��enforcement of a same architectural style, for

simplicity, concerning all components,

managers and exception guards, with each

manager having absolute control over all its

immediate subcomponents,

��and the creation of a supporting tool that translates

this architecture into production quality

components, and allows a-priori validation and

run-time verification,

all this gives a robust and verifiable system.

Bibliography on related works

[1] Gérard Berry and Georges Gonthier "The Esterel

Synchronous Programming Language: Design,

Semantics, Implementation",. Science of Computer

Programming vol. 19, n°2, pp 87-152, 1992.

[2] Z. Manna, A. Pnuelli , The Temporal Logic of

Reactive and Concurrent Systems, Springer Verlag,

New-York, 1992

[3] Z. Manna and the STeP group," STeP: Deductive-

Algorithmic Verification of Reactive and Real-time

Systems", 8th Intern. Conf. on Computer-Aided

Verification, LNCS, vol. 1102, Springer-Verlag, pp.

415-418, July 1996 http://www-step.stanford.edu/

[4] G.Vidal-Naquet and H.G.Mendelbaum "Validation

of Temporal-Component based Embedded Systems"

 Proceedings of the ECOOP Conf., SIVOES

Workshop, Budapest, 2001

[5] G.Vidal-Naquet, H.G.Mendelbaum “TCOM : a

Temporal Component Oriented Methodology for the

industrial Automation Engineer” Proceedings of the

ISPRA Conf., Cadiz, Spain, 2002, WSEAS Press

 M.Fisher "A survey of Concurrent Metatem, the

language and its applications",

M.Fisher@mmu.ac.uk

[6] Rajeev Alur and David Dill “ A Theory of Timed

Automata,” Theoretical Computer Science,

126:183-235, 1994 [4]

[7] H.G. Mendelbaum & R.B. Yehezkael " Using

'Parallel Automaton' as a Single Notation to Specify,

Design and Control small Computer Based

Systems," Proceedings of the 8th Annual IEEE

International Conf. on the Engineering of Computer

Based Systems (ECBS), Washington D.C., IEEE

April 2001 M.Fisher, S. Kono, and M. Orgun (eds)

Journal of Symbolic Computation, Special Issue on

Executable Temporal Logics, 22(5), Academic Press,

Nov/Dec. 1996

[8] T. Hirst, R.B. Yehezkael, H.G. Mendelbaum,"Some

Theoretical Results on Parallel Automata, Conflict,

Complexity", JCT Research Report 2003, available

at http://sukka.jct.ac.il/~rafi

[9] A.Teitelbaum, “A unified methodology for the

formal design and execution of Real-Time

applications”, JCT research Seminar, 5/2/2002

A. Teitelbaum, H.G. Mendelbaum, "SPHAX

operating system", JCT Internal Report, (2001)

Teitelbaum A., Mendelbaum H.G., "Arts'Codes :

Generation of Parallel-Automata Real-Time

Systems, using a Unifying Diagrammatic

Component Oriented Design Methodology," to be

published in Proceedings of the

UML'2003 -SVERTS

13

IEEE Conference SwSTE03, Tel-Aviv, 2003

 [10] F. Boulanger, G. Vidal-Naquet "An object

Execution model for reactive modules with C++

implementation", Proceedings of ECOOP'96, Linz,

July 1996 , Max Mühlhäuser editor, dpunkt.verlag

(1997)443-449

[11] Booch G. Object-Oriented Analysis and Design

(OOAD), Addison Wesley Pub.(1993)

 UML Resource Center, Unified Modeling

Language., Standard Software Notation Guide,

version1.1,http://www.rational.com/uml/index.jtmpl,

15 Feb. 1999

 H.G. Mendelbaum, R. Gallant, J-F. Brette, Ch.

Ducateau, "Java-prototyping of hardware/software

CBS using a Behavioral OO Model", Proceedings of

the IEEE conference on Computer Based Systems,

Edinburgh, Apr. 2000

[12] Gomaa, H.: "A Software Design Method for Real

Time Systems (DARTS), CACM, vol.27, n°9

(1984) 938-949

 Mendelbaum, H.G., Finkelman, D. "CASDA :

Synthesized Graphics Design of Real-Time

Systems.", IEEE Computer Graphics and

Applications, vol.9, n°1 (1989) 40-46

[13] Selic B., Rumbaugh, J. : "Using UML for

Modeling Complex Real-Time Systems,"

 http://www.objectime.com/new/uml/index.html,

ObjectTime Ltd/Rational Software Corp. White

Paper, (March 1998)

Selic B " Protocols and Ports : Reusable Inter-

object behaviour patterns", Proceedings of the

IEEE 2
nd

 ISORC Symposium, St-Malo, France,

(May 1999)

 Selic B., Gullekson G., Ward P., Real-time

Object-Oriented Modeling (ROOM), John Wiley

Pub. (1994)

[14] Peterson, J.L., "Petri Nets," Computing Surveys,

vol.9, n°3 (1977), 223-243

[15] Harel, D. and al., "Statemate: a Working

Environment for the Development of Complex

Reactive Systems," IEEE Trans. Software Eng.,

vol.16, n°4 (1990) 403-414

 Harel D. and E. Gery, "Executable Object

Modeling with Statecharts," IEEE Computer,

(July 1997)31-42

[16] Mendelbaum, H.G., "Introduction to a CAD

Object-oriented Method for the Development of

Real-time Embedded Systems," Proceedings of

the 1
st
 Israeli-IEEE Conf. On Software

Engineering , Herzlya (1986)

[17] Dori D., "OPM: Object-process methodology,"

Technion, (1998)

http://brd4.ort.org.il/~zbarzilay/OPM1.ppt
����

 Lavi J.and J. Kudish, Systems Modeling &

Requirements Specifications: The ECSAM Method

for Computer-Based Systems Analysis and

Modeling, Dorset House Publ., New-York, 2003

[19] OMG, "UML: Superstructure, version 2.0, Final

Adopted Specification", ptc/03-08-02

http://www.omg.org/cgi-bin/apps/doc?ptc/03-08-02.pdf

OMG, "UML Profile for Schedulability,

Performance, and Time Specification",

 ptc/2003-03-02, Draft Available Specification,

 April 2003.

http://www.omg.org/cgi-bin/apps/doc?ptc/03-03-02.pdf

 [20] Gamma E., R. Helm, R. Johnson and J.

Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Addison Wesley

Longman, 1995

[21] Task 1.4 "Definition of Components and Notation

(D.1.4.4)", Software Development Process for Real-

Time Embedded Software Systems (DESS),Version

02 - Public, ITEA, Dec. 2001

[22] Bertrand Meyers " Contracts for Components,"

 Software Development Magazine, July 2000

[23] B. Douglass, Doing Hard Time: Developing

Real-Time Systems with UML, Objects,

Frameworks, and Patterns, Addison Wesley

Longman, 1999

 [24] R.C. Martin "UML Tutorial: Complex Transitions"
 Eng. Notebook Column, C++ Report, Sept. 98,

http://www.objectmentor.com/resources/articles/cplxtrns.

pdf

[25] www.rational.com/media/uml/resources/

media/ad970808_UML11_OCL.pdf

 www.it.bond.edu.au/inft821/UML-Object

Constraint Language/

[26] M. Bjorkander, C. Kobryn "Architecting Systems

with UML 2.0", IEEE Software J., (July/Aug.

2003), pp. 57-61

UML'2003 -SVERTS

14

Appendix:

GRAMMAR FOR OCL, EXTENDED TO INCLUDE

TEMPORAL ENGINEERING EXPRESSIONS
(based on OCL Specification, v 1.1 31 [25])

The grammar description uses the EBNF syntax, where

"|" means a choice , "?" optionality and "*" means zero

or more times.

The temporal extensions are shown in bold characters (it

can be seen, that they are minimal and concern only 4

lines).

expression := logicalExpression
ifExpression := "if" expression "then"

expression "else" expression "endif"|";"
logicalExpression := relatExpression
(logicTemporalOperator relatExpression)*
relatExpression := additiveExpression
(relatOperator additiveExpression)?
additiveExpression :=
multiplicativeExpression
(addOperator multiplicativeExpression)*
multiplicativeExpression := unaryExpression
(multiplyOperator unaryExpression)*
unaryExpression := (unaryOperator
postfixExpression)
| postfixExpression
postfixExpression := primaryExpression (
("." | "->") featureCall)*
primaryExpression := literalCollection
| literal
| pathName timeExpression? qualifier?
featureCallParameters?
| "(" expression ")"
| ifExpression
featureCallParameters := "(" (declarator
)? (actualParameterList)? ")"
literal := <STRING> | <number> | "#" <name>
enumerationType := "enum" "{" "#" <name> (
"," "#" <name>)* "}"
simpleTypeSpecifier := pathTypeName
| enumerationType
literalCollection := collectionKind "{"
expressionListOrRange? "}"
expressionListOrRange := expression
(("," expression)+
| (".." expression)
)?
featureCall := pathName timeExpression?
qualifiers?
featureCallParameters?
qualifiers := "[" actualParameterList "]"
declarator := <name> ("," <name>)*
(":" simpleTypeSpecifier)? "|"
pathTypeName := <typeName> ("::"
<typeName>)*
pathName := (<typeName> | <name>)
("::" (<typeName> | <name>))*
timeExpression := "@" <name>

actualParameterList := expression (","
expression)*
logicTempoOperator := logicalOperator |
tempoOperator | logicalOperator tempoOperator
logicalOperator := "and" | "or" | "xor" |
"implies"
tempoOperator := "Since" | "Until" |
"next"|"previous"|"always"|"later"|"before"
collectionKind := "Set" | "Bag" |
"Sequence" | "Collection"
relationalOperator := "=" | ">" | "<" |
">=" | "<=" | "<>"
addOperator := "+" | "-"
multiplyOperator := "*" | "/"
unaryOperator := "-" | "not"
typeName := "A"-"Z" ("a"-"z" | "0"-"9" |
"A"-"Z" | "_")*
name := "a"-"z" ("a"-"z" | "0"-"9" | "A"-
"Z" | "_")*
number := "0"-"9" ("0"-"9")*
string := "’" ((~["’","\\","\n","\r"])
| ("\\"
(["n","t","b","r","f","\\","’","\""]
| ["0"-"7"] (["0"-"7"])?
| ["0"-"3"] ["0"-"7"] ["0"-"7"]
)
)
)*
"’"

