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Abstract 
This paper proposes a double extension to the UML 2.0 

new notation, for Real-Time Applications, using the 

Temporal-Assertion Components of the Arts'Codes 

method (Applicative Real-Time Systems based on 

Component Design) [9] , by adding : 

��Real-Time Components for an architectural design,  

��and Temporal-assertions (temporal extended-OCL [2-

5, 25]) for an a priori validation of the design and for 

the verification at the run-time. 

The Arts'Codes components describe the expected 

properties at run time (Assertion-Guards) and at the 

completion of an application (Goals to fulfill). They are  

executed in parallel and can communicate. 

These Arts'Codes Components are proposed as 

synchronous parallel subsystems [1,9,10], which are 

described in the form of a hierarchical  homothetic 

diagram. They can be viewed as an extension of the UML  

active objects, by: 

��adding Temporal-assertions that define the Goals of 

the component (a priori rules defining the properties 

it has to fulfill at the end of its work), 

��adding Temporal-assertions that define the Assertion-

Guards (Exception rules defining the verifications to 

test during its work, and what to do in case of ill-

functioning), 

��adding interface mechanisms which allow 

communication with other parallel components, 

��using the already existing OO UML data-attributes, 

function-methods and a 'run' manager-function 

(active-behavior method) . 

The hierarchy of components facilitates the validation of 

the whole system : each component has its own assertion-

properties to fulfill (goals and run-time-guards), and the 

property of the main component (the applicative system) 

is a composition of the properties of all the 

subcomponents (so allowing the validation of the whole 

designed system).   

This extension is described using a case study[24].  

 
Keywords: Component design, Temporal Logic, Real-

Time Systems, UML extensions. 

I. Introduction 
 Many graphic notations for software 

development have been proposed. Each one represents 

another view (another approach of the description of a 

system).  The following list is by no means exhaustive, 

but is indicative of the wide variety of notations in use: 

Petri-nets [14] for the control view; statecharts, an 

economical finite state machine representation [15] for 

the dynamic behavior view, DARTS [12] for the viewing 

of static data flow between tasks, object-oriented 

diagrams [16] such as in ROOM [13] to show the 

architecture of a system as linked parallel objects, etc… 

The Unified Modeling Language (UML), [11,13]  adopts 

a pluralistic attitude toward the multiplicity of notations, 

in two respects: 

1. Several diagrams and notations are incorporated 

within UML, addressing various aspects of 

system development.  UML is not a method, 

and thus does not address the way these 

diagrams are to be used.  On the contrary, there 

are several diagrams, each one with its own 

distinct syntax and semantics, which can be 

used interchangeably to convey different views 

of  the same information (e.g., Statecharts and 

Activity Diagrams, Sequence Diagrams and 

Collaboration Diagrams). 

2. UML provides several extension mechanisms, 

which, in effect, enable authors of non-UML 

notations to use UML as a meta-language to 

describe non-UML notations.  

UML’s versatility, notwithstanding, and, in part, because 

of this versatility, UML has  two fundamental limitations.   

1. As stated above, UML is not a method, and thus 

does not address or constrain the way the various 

diagrams are to be used.  This freedom from 

constraint is intentional, as it widens the user 

base and frees the user to select a process 

appropriate to business, technical and cultural 

circumstances.  On the other hand, this freedom 

from constraint, leaves the user as to whether a 

given model meets critical requirements.  We 
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will elaborate on this point in our survey of 

existing approaches to the modeling of 

components (see section II, below). 

2. The authors of UML emphasize the 

orthogonality of different aspects (e.g., static 

versus dynamic views).  Thus, UML 

intentionally adopted different diagrams to 

express orthogonal aspects, in keeping with  

Parnas’ “separation of concerns” doctrine. 

Philosophically this makes sense, but 

operationally, this results in a formidable 

cognitive overhead of drawing and navigating 

among the various diagrams.  Undoubtedly, 

frequent context switching among different 

views and notations poses a cognitive burden 

that discourages model-based engineering:  the 

official taxonomy of UML 2.0 references not 

less that 13 kinds of diagram and notations (see 

figure A-5 p.546 of [19]):  

�� for the structures: class diagram, 

component diagram, object diagram, 

composite structure diagram, deployment 

diagram and package diagram, and activity 

diagram,  

�� for the behaviors: use case diagram, 

state machine diagram, sequence diagram, 

collaboration diagram, interaction overview 

diagram and timing diagram. 

 

Arts'Codes proposes a definition of components, and a 

methodology [9], contributing to specification, realization 

and validation, endeavored to capture the structural and 

behavioral design of R-T systems in a unique kind of 

diagram with minimal notation. 

Arts'Codes is not unique in the endeavor to 

reduce the cognitive dissonance associated with multi-

notation models. For instance, Dori’s Object Process 

Methodology (OPM) [17]  as its name suggests, proposes 

a single diagram organized around process hierarchy.  

Arts'Codes, on the other hand, organizes the application 

around component hierarchies. For distributed or 

embedded real-time applications, we believe that 

components provide more natural and effective view of 

the system architecture, than processes. Furthermore, the 

architecture we propose supports a robust and verifiable 

implementation. 

  So, in this paper, we propose an extension of 

UML in order to include the concept of hierarchical R-T 

components. 

II. The concept of  R-T Components  
 

Various definitions of the term Component have 

been proposed.  The degree of rigor in each definition is 

indicative of the prominence of the concept Component 

in the lexicon of the authoring body.  

  

II.1 The UML component definition  
UML 2.0 [19 section 4] defines the term component  ( or 

more precisely the Basic Component) as follows:   

”A modular part of a system that encapsulates its 

contents and whose manifestation is replaceable within 

its environment. A component defines its behavior in 

terms of provided and required interfaces. As such, a 

component serves as a type, whose conformance is 

defined by these provided and required interfaces 

(encompassing both their static as well as dynamic 

semantics).” 

II.1.1 The UML component Structure definition 

Regarding conceptual representation of the external 

interfaces and internal structure of a Component UML 

2.0 leverages “the general improvements in 

CompositeStructures (around Parts, Ports and 

Connectors).” [19, section 8.3.1, p. 143].   

Regarding graphical representation of the external 

interfaces and internal structure of a Component UML 

2.0 exemplifies various representations within the 

Structure Diagram, each example appropriate to a 

different level of detail (19, figures provide various 

options within the Structure Diagram notation [19, 

section 8.3.1, figures 85-88, pp. 140-141]. 

Since UML 2.0 uses the classifier box for 

representation of both Classes  and Components, the 

stereotype mechanism must be used to denote a particular  

box as a component. The “component” stereotype (either 

iconic or textual or both) performs this denotation. The 

“subsystem” stereotype denotes large-scale components.  

In addition to stereotypes, there are, of course, features 

that distinguish Components from other Classifiers. 

 For features such as parts, ports, connectors, 

required interfaces, provided interfaces, using 

realizations and implementing artifacts UML 2.0 

recommends the use of additional, stereotyped 

compartments in the classifier box.  

Parts of components have a very general definition; it 

can be every kind of instances contained in the 

component: internal classes, subcomponents etc. [19, 

section 8.3.1, p. 136]. 

Let us give an example of UML 2.0 component 

structure (based on [21] and [26] examples), in figure 0 

we show a class Toaster which contains two parts: class 
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Thermostat and class Color control, connected through 

ports to various interfaces: temperature sensor, start 

button, color selector, color sensor, Heater and ejector. 

  

figure 0: a main toaster class: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this diagram, we see the structure of the system, 

but the behavior of the various classes is not described. 

 

II.1.2 The UML component behavior definition 

UML 2.0 defines component behavior in two 

respects:  

1. Any realization of a component must conform 

to its behavior specification “in terms of provided and 

required interfaces. As such, a component serves as a 

type, whose conformance is defined by these provided 

and required interfaces (encompassing both their static as 

well as dynamic semantics). 

2. With respect to entities external to the 

component, there is a formal behavioral contract: “of the 

services that it provides to its clients and those that it 

requires from other components or services in the system 

in terms of its provided and required interfaces.” [ibid., p. 

137] 

UML 2.0 provides ample means to specify component 

behavior, either implicitly or explicitly.  Behavior may be 

specified implicitly “by means of its publicly visible 

properties and operations.” For more precise and explicit 

definition “a behavior such as a protocol state machine 

may be attached to an interface, port and to the 

component itself…. behaviors may also be associated 

with interfaces or connectors to define the ‘contract’ 

between participants in a collaboration e.g. in terms of 

use case, activity or interaction specifications.” [ibid., p. 

138]. 

What is missing in UML 2.0 is an explicit link 

between architecture and behavior.  It is all well and good 

to view behavior at the various levels as a series of 

contracts between collaborating elements.  But there is no 

requirement, or guidance in UML 2.0 regarding 

concordance between architecture and behavior goals. 

The justification for this is that UML is just a notation 

standard and not a development methodology. 

Nevertheless, it is legitimate to ask (and to answer) what 

notation is required to support construction and 

verification of architectures that comply with behavioral 

goals. The developer of reliable components needs an 

answer to this question. 

In addition to the technical issue, there is the 

aforementioned cognitive issue.  For any system of non-

trivial complexity, it is difficult, if not impossible to to 

perform a complete mental integration the static view, as 

expressed in structure diagrams with the dynamic view, 

that may be expressed in statecharts, activity diagrams 

and/or interaction diagrams. 

 

 It is precisely these two issues that Arts’Codes  is 

intended to fill. 

 

II.2 The Interface "Façade" definition : Prior to the 

promotion of the component to a first-class entity, the 

object-oriented community sufficed with a  definition of a 

component  as "an object + an interface".  Object-oriented 

practitioners have used the "façade design pattern" [20], 

to distinguish between the external interface and the 

underlying implementation. Component users interact 

with the public operations of a façade class, which 

delegates the implementation of these operations to 

hidden constituent classes of the component.  This pattern 

facilitates implementation of component-oriented 

applications in classical object-oriented languages. 

 

II.3 The ITEA's Interface definition : The group 

"Information Technology for European Advancement" 

[21] has given a much more elaborate definition of 

components.  In addition to the “syntactic interface 

level”, it defines a “semantic interface level” as well as a 

“synchronization interface specification level.”  These 

latter two characteristics clearly encompass behavioral 

aspects.  However, the ITEA’s proposed use of UML to 

represent components is restricted to structural aspects.  

Accordingly, when using the UML Class notation to 

represent component blueprints, ITEA specifies two 

specific list compartments: provided interfaces and 

required interfaces. Similarly, for component instances, 

ITEA uses the UML component notation, in conjunction 

with the UML interface notation, modified to distinguish 

between provided and required interfaces. 

class Toaster 

part 1 

class Thermostat 

part2 

class Color Control 

Temperature 

 

 

       start 

 

color selector 

 

color sensor 

On  Heater 

eject 

UML2    notation :    port    connector 

  interface 
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II.4 The Meyers' Behavioral-contract definition : 
 In keeping with the capabilities and emphasis of Eiffel, 

Bertrand Meyers [22] stresses the behavioral aspects of 

component definition as a contract definition.  Such 

concepts as pre and post conditions are directly 

represented in Eiffel, and Meyers demands no less of a 

rigorous definition of components behavior. 
 

II.5  Arts’codes summary-definition: 
 Arts’codes is concerned with the Real-Time 

Components for embedded systems. Consequently, this 

definition is based on the concepts of the active-Object 

Oriented Programming i.e.: parallel execution of entities 

which encapsulate a data structure (attributes) and 

functions (operations) specific to the processing of these 

data. 

However the Arts’codes definition  of R-T 

Component  extends the basic definition of active objects 

as follows: 

a/ R-T Component oriented programming can fit the 

active-Objects to the operation of a physical 

device or a subsystem, thus allowing design 

methods oriented towards device/subsystem 

architectures and not only towards abstract-data-

type management; 

b/ a R-T system can be composed hierarchically 

(homothetic view) in components containing 

subcomponents, and/or can be composed in a 

network of components and allow communication 

between them; 

c/  R-T components can add some specific interfaces 

and mechanisms to communicate with other 

parallel components; 

d/   R-T components can have an explicit description 

of their behavior (implemented in what we call 

"manager") which coordinates the functions it has 

to perform depending on conditions, states, events 

and communication with other components; and 

subcomponent activation. 

e/ R-T components can add some features to the 

active-Objects, such as Assertions defining a 

priori the Goals that the Component has to fulfill, 

or verifying on-line the good-working during the 

execution. These assertions are related to the 

behavioral functioning of the components-

managers. The hierarchy of components allows the 

validation of the system : each component has its 

own properties to fulfill (goals and run-time-

guards), and the property of the main component 

(the applicative system) is a composition of the 

properties of all the subcomponents (so facilitating 

the validation of the whole designed system).   

 

III  Presentation of the Arts'Codes' 

Temporal-Assertion Components  
 

Arts'Codes follows Meyers [22] in the prominence 

given to dynamic behavioral aspects of components, and 

provides specific notation to support this emphasis. But 

Arts'Codes also  proposes a static architectural view of 

the composition of components (hierarchically or in 

network).  

The remainder of this paper describes Arts'Codes and 

suggests how it can be integrated in UML : by expressing 

its notation using UML extension-mechanism, by adding 

to UML a new kind of component--diagram, and by 

expressing the coherence between its  component--

diagram with the other UML diagrams. 

 

III.1  Component Design : 
In order to describe an ArtsCodes' component, the 

engineer will first specify different aspects of each 

embedded component of the system to be built (software 

and/or hardware) using 6 types of specification : 

 

COMPONENT     X 

{      ATTRIBUTES : ... 

     SUBCOMPONENTS: ... 

    METHODS : 

    GOALS : ... 

    MANAGER : ... 

   GUARDS : ... 

} 

 

In ITEA parlance[21], these specifications 

constitute a Component blueprint.  In UML, this blueprint 

can be represented by the Class symbol, with a different 

class list compartment for each specification type.  

However, for any complex application, the inclusion of 

all 6 list compartments would be unwieldy. UML 

diagrammatic notation permits the hiding of list 

compartments.  Given that Arts'Codes method proposes 6 

such compartments, such hiding would be encouraged, in 

accordance with the purpose of a given diagrammatic 

view.  For example, for a view representing system 

functionality, only the METHODS compartment would be 

exposed.  For a view emphasizing control structure, the 

MANAGER and GUARDS compartment would be 

exposed.  For a view related to system validation, the 

GOALS compartment would be exposed.  
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a)   ATTRIBUTES: here the signals, variables, clocks, and 

the interface of the component with other components, 

are given: 

external :{ 

in|out : 

 *variable-type variable-name; 

 *flag  flag-name;   

 *[flagged] signal signal-name; 

 *variable-type pipe-name[size]; 

 *clock clock-name; 

 signal Guard_Exception;} 

local:  {variable-list } 

 

b)    SUBCOMPONENTS: 

subcomponents:  

{* component-type   subcomponent-instance 

    (external variable-list)  }   // links definitions 

 

c)     METHODS: Description of the actions and functions 

to perform in the component (hardware or software). 

They are described (in any executable language : C++, 

Java etc.) as functions activated by the behavioral 

Manager when some conditions are fulfilled;  

 

d)    GOALS  : This describes the Aims of the component, 

meaning the properties that the component must fulfill at 

the end of its work, here specified in our extended OCL 

to Engineering  Temporal notation [4,5,25 ] (see 

Appendix) :  

if (signal|condition: name) then  

{ property: *flag-name; signal: *signal-name;} 

This corresponds in mathematical PTL (propositional 

Temporal Logic notation [2,3] to  

"Condition \/ signals ==> Property /\ signals"  (Condition 

or signals true) imply that (Property and signals are true). 

 

e)   MANAGER  : This is the component behavioral 

manager, which describes the ordering of its operations 

and the activation of different subcomponents; it 

describes the logical controller properties. They can be 

specified in our Engineering OCL Temporal notation 

[4,5,25]:  if (signal|condition: name) then  

{ action: *action-name; signal: *signal-name;} 

This corresponds in mathematical PTL (propositional  

Temporal Logic notation [2,3]) to    

" Condition \/ signals ==> Actions /\ signals "  (Condition 

or signals true) imply that (Actions and signals become 

true). 

In fact, they can be expressed in any language for 

execution (C++, Java etc.). But for the 

validation/verification process, the execution of the 

manager is supposed to be compatible with the 

"synchrony hypothesis " [ 1]. 

 

f)   GUARDS : This is he watch-dog of the Component 

which ensure the correct-working properties (also 

specified in our Engineering OCL temporal-extension) 

that the component must satisfy during all its execution, 

and the reactions it has to do in case of ill-functioning 

(Exception). 

if (signal|condition: Guard_Exception name) then 

{action: *repair-action-name; signal: exit-signal;} 

 

This corresponds in mathematical Temporal Logic [2,3] 

to  

 (Exception_Condition \/ signal ==> repair_Actions ) 

\/ (Exception_Condition \/ signals ==>  exit_signal)  

\/(Exception_Condition \/ signals ==>repair_ Actions /\ 

exit_signal) 

 

NOTE1 : for specification purpose and mathematical 

proving of the consistency of the components[3-5], we 

propose that the Goals, the Behavioral manager and the 

exception-Guards can be specified in an engineering OCL 

temporal-extension which is sufficiently close to the 

automation engineer vernacular specification. 

For instance <> can be replaced by “later” or 

"henceforth", [] can be replaced by “always”, () can be 

replaced by “next”, (-) can be replaced by “before”, etc. 

“A Until C” means that action A is performed until the 

first clock-cycle ("synchrony hypothesis " [1]) when C  

becomes true (which is the usual interpretation of the 

English  word “Until”), etc. 

example of engineering Temporal OCL notation:  

if( Switch_gatedown and beginning and (until 

clock(x)=3) ) then (OKdown and later let_in) 

or in mathematical Temporal logic  

[](Switch_gatedown /\ beginning /\ (U clock(x)=3) ) 

 ==> (OKdown /\ <>let_in) 

(straightforward translation) 

 

NOTE2 : for specification and execution purpose [7-9], 

the Goals, the Behavioral manager and the exception-

Guards can be described as parallel automata. 

example 

/Switch_gatedown/ /clock(x) >= 3/ /state 1 / 

�   / let_in/ /state 3 / 

which are similar to statecharts specification and can be 

executed by an automata-based operating system [9], but 

can also be expressed any executable language (C++, 

Java etc.). 
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III.2  Components composition 
The Arts'Codes model enables the interleaving of the 

static architectural structure (structural model) and the 

dynamic behavior (behavioral model), and facilitates 

human cognition by providing clear correspondence 

between different graphical views, and an homothetic 

view (with the same notation) at all the levels : 

components and subcomponents. 

 

  III.2.1  Static Architecture 
The system to design can be composed into a hierarchy 

of Arts'Codes components and subcomponents,  or into a 

network of communicating Arts'Codes components 

(using the interfaces through the external ATTRIBUTES) 

Strict adherence to a hierarchical structure and fixed 

control mechanisms (which we elaborate in the remainder 

of this paper),  ensures that the system’s structure does 

not change often, and hence, it is relatively stable.  

 

  III.2.�  Dynamic behavior 
It allows to draw inside the manager:  It describes the 

dynamic management rules of the components. It 

defines the system reactions for internal and external 

inputs, by transmission of internal and external outputs. 

The subcomponents are activated in the states of the 

hierarchic automaton.   

So the system’s behavior described in the Manager of the 

component, may have to be changed (or adapted) many 

times.  

IV Introducing Temporal-Assertion 

components Diagram for UML 
In UML, from a static architectural point of view,  we 

have the concepts of package and objects, and therefore 

we have the class diagram to describe them graphically. 

We propose to add the component-design diagram. A 

package can group a hierarchy of components and each 

component can contain subcomponents or objects. 

In addition, a component has a behavioral manager 

described as a statechart extended to the control of 

subcomponents/assertions and entry/exit gates. As is 

evident from the case study (see figure 2, below), these 

gates are visually similar to, but semantically different 

from UML 2.0 entry/exit points [19, section 15.3.8, p. 

471].  Entry/exit points define transitions to and from 

states of stateCharts for a given component.  In 

Arts’Codes, the state machine of  a component is 

encapsulated in its manager, which can induce state 

transitions in the manager of a subcomponent (or of an 

upper-component) through the entry/exit gates, which 

work as control links. So, the state-machines of the 

various managers are independent and parallel. And the 

manager's extended statechart describes the own 

component behavior and the activation of the 

subcomponents. A key feature of Arts'Codes is the 

absolute control exercised by the statechart of the 

Manager over its subcomponents.  The manager, does not 

merely transmit events to subcomponent statecharts.  If 

this were the case, the subcomponent would discard the 

received event, if at the instant of receipt, it was in a state 

for which no reaction to that event were defined.  In 

Arts'Codes the manager can always activate or deactivate 

the subcomponent statechart, and force it into a particular 

state (using entry/exit gates), regardless of the 

subcomponent’s current state.  This insures system 

reliability, and verifiability. This requires that each 

subcomponent statechart support the “State Pattern,” [23] 

in which there is a  top level state, from which there are 

transitions to each of the other lower level states, each 

triggered by a different event . At the last level, the last 

component manager of the hierarchy is similar to an 

UML object with its statechart describing its own 

behavior without activating other components. 

 

IV.1  Example (informal description): 
Let us give the example of a toaster control [24] based on 

the color of the bread-slices and not only on the timing 

and temperature. The user chooses the bread-slices color 

that he wants using a button called "color-selector," 

introduces the bread-slices and pushes the button "start". 

The toaster stops in three cases: either when the color is 

attained, or when it does not work correctly (temperature 

too high) and after a certain time (a maximum time-out 

condition is raised).  

 

IV.2 Graphic representation 
Component structure:  

In figure 1, we see the main package of the 

toaster-controller, which contains the main component 

(double-border box), its manager (triple-border box), and 

its subcomponents (double-border boxes: thermostat and 

color-control). We see also the connectors (arrows) 

between these components and with the I/O virtual 

devices (half- round-boxes) through data ports and 

interfaces. By convention, in Arts'Codes, the UML 

package notation is used to denote the overall system 

boundary (main component).  The half-round-boxes 

representation of I/O virtual devices is not standard-

UML, but is a permitted extension (iconic stereotype).  

Similarly, the double border of subcomponents, and the 

triple border for the Manager component are iconic 

stereotypes.  Iconic, rather than textual stereotypes have 

been chosen to articulate, the Arts'Codes metaphor of 
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plug-replaceable components, whose socket pins connect 

to external hardware devices.  Insofar as the virtual I/O 

devices support communication protocols, it serves an 

implementation of UML 2.0 interfaces. The ports allow 

support of data exchanges between the various elements 

(components, managers, virtual I/O devices). 

Regarding data and signal flow,  Arts'Codes overloads the 

association name to indicate the connectors (e.g., 

Temperature labeling the association connecting the 

Temperature Sensor with the Thermostat). This is 

consistent with UML 2.0 [19 section 17.2.2] which 

allows attachment of information items to associations. 

 

Figure 1 : main toaster component Structure 
���Arts'Codes static architecture diagram) 

     

     

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Manager's statecharts extensions:  
In  figure 2, we see the extended statechart of the main-

component's manager.  

In this extended statechart , the control of the entrance 

and the exit from a manager are represented by "Gates" 

(double-bordered small circles). For instance in Figure 2, 

the manager begins by its "Init I-Gate", sending the 

"e_eject" event and resetting the "HeaterOn" flag, in 

order to be sure that the toaster begins empty and cold, 

then it enters the "Idle state".   When the toaster is started 

(receiving the "e-start" event), it checks if the 

colorRequired is not 0 then it enters the "Toasting state". 

This statechart is extended to allow the parallel activation 

of subcomponents (double-bordered rectangles : 

thermostat and color-control) in the "Toasting state."  

 

Figure � : main toaster component Manager 
      (Arts'Codes dynamical behavior diagram) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another extension is the presence in the 

"Toasting state" of single-bordered rectangles for the 

assertions to test during the execution of this state (see 

"TooHot " or "TimeOut" at the bottom of Figure 1). 

Assertions can be tested when entering the state (pre-

condition), during the execution of this state (run-

condition), or when exiting the state (post-condition). If 

the assertion becomes true, it means a malfunctioning of 

the component, so an exception guard must be raised: the 

context will be saved and the manager will exit by the 

"Exception E-Gate" (see Figure 2), in order to enter the 

"Guards-chart" (see Figure 8). 

 

Example of Assertion (if) and Guard (then): 
(see Formulae 1) If the Guard detects that everything is 

OK or if it repaired the problem, then it will come back to 

the manager execution, coming back through the "History 

Resume R-Gate". If the problem is not repairable, it will 

come back through the "Initialize I-Gate" to reset the 

application (here, doing "e_eject" and coming back to the 

"Idle state"). 

UML2    notation 

       port 

       connector 

 

        interface const TempReq: 150; 

ColorReq,MaxTemp : integer; 

Timer : clock; 

Temperat 

sensor 

Color 

 Sensor 

Temperature 

Color 

Ejector 

Heater

On 

e_eject 

Start 
button 

e_start  

Thermostat 

Color 

control 

Manager 

TempReq 

ColorReq 

Color 

selector 

ColorReq 

�Heater 

const TempReq: 150,  max_try=5; 

ColorReq, MaxTemp, count : integer; 

Timer : clock; 

Temperat 

sensor 

Color 

 Sensor 

Temperature 

Color 

Ejector 

Heater

On 

e_eject 

Start 

button 
e_start  

Thermostat 

Color 
control 

Manager 

TempReq 

ColorReq 
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Formulae 1: Assertion/Guards of  "Toaster Manager" 

"TimeOut Exception ":    
if (time > timeOut)  

     then (reset(HeaterOn) and Critical_Gate); 

"TooHot Exception ":       
        if (Temperature > MaxTemp) 

        then (reset(HeaterOn) and incr(count) and 

 state=cooling); 

        if (state=cooling and count>max_try) 

        then (Critical_gate);      //ending the application 

        if (state=cooling and Temperature < TempReq)  

        then ( Resume_gate); 

 

NOTE : 

UML 2.0 supports four types of behavioral constraints: 

DurationConstraint, IntervalConstraint, TimeConstraint 

and InteractionConstraint, as well as pre and post-

conditions.  Richer support for real-time constraints and 

specification may be found in the emerging OMG 

standard for Schedulability [19]. 

 

Finally, if the toaster worked well, the "Toaster 

manager" will finish normally by receiving an 

acknowledgment from the "Terminate T-Gate" from the 

subcomponent "Color control", and it will exit the 

"Toasting state" to go back to the "Idle state" while 

sending the "e_eject" event. 

The Toaster-Behavior represented by the Toaster 

manager statechart (in Figure 2) can be translated easily 

in our engineering Temporal OCL  notation (for 

validation purpose) :  

 

 Formulae 2: Behavior of the "Toaster Manager" 

"Toaster-Behavior":  

if (init_Gate)  

     then (state=Idle and e_eject and not HeaterOn and  

               count=0 and MaxTemp=TempReq*1.2); 

if (state=Idle  and  e_start  and colorReq)  

     then (state=Toasting and  

         Thermostat.Init_Gate and Color_control.Init.Gate); 

if (state=Toasting and 
 Color_control.Terminate_Gate) 

 then (state=Idle and e_eject ); 

 

Going down in the hierarchy of the components, we 

can draw the thermostat subcomponent static architecture 

(see figure 3a) and its manager (see figure 3b).  

Figure 3a : thermostat subcomponent architecture 
 

 

 

 

 

 

 

In figure 3a, we see the I/O links of the thermostat 

component with the "Temperature sensor" and with the 

"Heater" device, and with the upper level component 

"Toaster". 

 

figure 3b: the manager of the thermostat 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure 3b, we see the thermostat manager, which is a 

classical statechart with no activation of further 

subcomponents. 

 

Finally while designing the "color control" 

subcomponent, we shall have the figure 4a giving its 

static architecture:  

 

 

 

 

 

 

 

the figure 4a shows that it receives data from the "Color 

sensor" device and from the upper level component 

"Toaster", but does not deliver outside any data, it will 

only use the dynamic "Terminate" gate to finish its work 

in the Behavioral description of its manager (see figure 

4b and 2). 
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Figure 4b: the manager of the color control 

subcomponent 

 

 

 

 

 

 

 

 
IV.4  Discussion on the Gates extension: 
In the Arts'Codes extended statecharts of the managers, 

we have seen, in the example, an important feature: the 

gates which allow to make the communication between 

components, by exchanging data or by sending/receiving 

signals. 

The gates may be viewed as a non-standard adornment of 

the UML statechart.  They are motivated by the 

Arts'Codes concern with reliability.  In the standard use 

of statecharts, communicating components send events to 

other components.  The sender has way of assuring that 

the receiver will react to the event in the way the sender 

intended, or, for that matter, that the receiver will react at 

all.  For reliable control, it augments the controlling 

abilities of the manager.  We must guarantee that 

manager will, initiate, terminate, or continue the 

operation of a subcomponent.  The appearance of a gate 

in the statechart of a manager, is, in effect, a constraint on 

the behavior and design of the statechart of the 

subcomponent.  The subcomponent statechart must 

provide hooks (in the form of specific transitions and 

triggering events) that allow the manager to exercise 

control according to its gates.   

 

V  Validation and Verification using 

Arts'Codes component diagrams 
 
 In our proposal, the diagrams can be easily 

translated into temporal-assertion formulae. The 

components' assertions for the goals validation, the run-

time verifications, the execution behavior and the 

exception-guards are written in a unified temporal 

notation, which is a minimal extension of OCL [25] (see 

our example-formulae 1 to 6, and the Appendix below). 

And is also sufficiently close to the mathematical 

Temporal notation, so this enables to have the same 

notation in the design, the proving and the execution.   

Originally, OCL was designed as a constraint 

specification notation and not as an execution language. 

Here we used an OCL-Temporal extension for this 

purpose in the Goals, and the Exception-Guards, but we 

use it also to describe the component behaviors in order 

to make the proving by comparing the result of the 

behaviors' execution to the goals and the guards. 

 

V.1 a priori Validation using Goals-Charts and 

global-properties 
The Goals can be described graphically with the 

same kind of diagram, the difference with the manager 

chart is that it can contain Temporal Logic operators 

(such as "later"or always or Until etc.)  instead of actions 
Figure 5: the Goals of the toaster 
 

 

 

 

 

 

 

 

 

This can be translated in engineering temporal notation: 

Formula 3:  

"Toaster-Goals" 

if (e_start and ColorReq>0) 

    then (later (e_eject and Color >= ColorReq ) ); 

 

In fact the validation of the work of the toaster must be 

obtained through the validation of the goals of its 

subcomponents. The Arts'Codes hierarchy of components 

facilitates the validation of the system : each component 

has its own goals assertion-properties to fulfill, and the 

property of the main component (the applicative system) 

is a composition of the properties of all the 

subcomponents (so allowing the validation of the whole 

designed system): 

 In this example, the validation will be done, if the 

following global-property is true: 

 

Formula 4: global-property of the toaster 

in mathematical temporal notation : 

 

Thermostat-Goals /\ Color_control-Goals /\ Toaster-Behavior 

==> Toaster-Goals 

 

or,  in our OCL extended Temporal notation: 

 

if (Thermostat-Goals and Color_control-Goals and Toaster-

Behavior)     then (Toaster-Goals); 
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and so, we need to represent also the goals of the 

subcomponents: 

Figure 6: The Goals of the Thermostat: 

 

 

 

 

 

 

 

 

 

This can be translated in engineering temporal notation: 

Formula 5:  

"Thermostat-Goals" :   
if (init_Gate)  

then (later always (Temperature=TempReq)  

Until (Pause_Gate) ); 

 

in the same way, let us represent The Goals of the Color 

control in Figure 7:  

 

 

 

 

 

 
 

 

 
This can be translated in our engineering OCL-temporal 

notation: Formula 6:  

"Color_control-Goals" :   

if (init_Gate) then (later(Color >= ColorReq) ); 

The global-property of the system (see formula 4) can be 

proved by combining all the sub-goals and the main 

behavior. For instance, using an automatic prover such as 

the STEP prover of Stanford [3,4,5]. But manually and 

intuitively, we can see that the global-property can be 

fulfilled (i.e. the system is designed properly) : the main 

goal wants to obtain e_eject and Color >= ColorReq 

when it starts with a certain color requirement (ColorReq 

>0); 

the main Toaster-Behavior activates the Thermostat and 

the Color_control components when it starts, the goal of 

the Thermostat-goal shows that it maintains a certain 

required Temperature when it starts, and the 

Color_control-goal shows that it terminates when the 

ColorRequired is reached, finally the main Toaster-

Behavior activates e_eject on termination of the 

Color_control component. So the main Goal is fulfilled. 

NOTE: The validation of a component is based on the 

assumption that its subcomponents have been validated 

earlier and that their goals are reliable. 

 

V.3 Run-Time Verification using Exception Guards 

Charts 
The exception handling of the toaster (see formulae 1) 

can be described with the same kind of chart, it is 

activated by the manager during the execution, and comes 

back to the manager after handling : 

 

Figure 8: The exception guards chart 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
When the "Toaster Manager" is in the "Toasting 

state" (see Figure 2), it will test (Formulae 1), at each 

cycle of execution, the two assertions "TooHot" and 

"TimeOut". If one of them becomes true, it will raise an 

exception i.e : save the context of the manager, and 

activate the corresponding guard (i.e. it will enter the 

corresponding Exception gate of Figure 8 ), and execute 

the following treatment. 

For instance, in case of  "TimeOut" Exception, it 

will close the Heater and go back to the manager through 

its Init gate which will reset the Manager. 

In Case of "TooHot" Exception, it will try to 

cool the toaster, if there were too many tries (max_try), it 

will go back to the manager through its Init gate which 

will reset the Manager. If there were not too many tries, it 

will wait until the temperature went down to less than 

TempReq, then it will go back to the manager through the 

Resume Gate and continue the normal work. 

 

VI comparison with statecharts, Room and 

OPM 
The statechart is a visual formalism for complex 

systems defined by Harel [15], and was specially adapted 

to reactive systems.  Reactive systems are characterized 

by being event-driven, continuously having to react to 
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external and internal stimuli.   

      And he adds [15] " what makes the problem 

especially acute is the fact that we need tools fitting 

nicely into human being’s frame of mind".  This idea is 

one of the main goals of this Arts'Codes paper, to fit the 

graphic program representation to the visual mental one. 

      His approach for program description is based on 

State diagrams: Much of the literature seems to agree that 

states and events are a priori a rather natural medium for 

describing the dynamic behavior of a complex system. 

Globally speaking, he added to the known State Diagram 

two main ideas: Hierarchy and Concurrency: The two 

essential ideas enabling this extension are the provision 

for ‘deep’ descriptions and the notion of orthogonality. 

The Statecharts [15] describe well the dynamic of 

behaviors, but not the components architecture as in 

ROOM and in Arts'Codes. For this, we must use the class 

diagrams of UML to see the objects; and the message 

sequence diagrams to see the interactions between the 

objects. 

The ROOM (Real-Time Object-Oriented Model) 

methodology was developed specifically for dealing with 

distributed real-time systems based on the object 

paradigm. It was defined by Bran Selic[13] and it uses a 

variation of the basic statechart formalism. 

One of the reasons of this modification was that "it is 

generally unrealistic to apply the concept of broadcast 

communications across a lossy wide-area network". 

This model is defined in the following way: 

Behavior specifies the dynamic aspects of a system, while 

structure deals mainly with architectural issues: how is 

the system decomposed, what is the relationship between 

the components, etc. Inheritance is both a reuse and an 

abstraction facility. 

The main structural element is the actor: it represents 

an active concurrent activity with a specific 

responsibility, and it is completely hidden from its 

environment and other actors by an encapsulation shell. 

  The ROOM method was our principal inspiration for 

Arts'Codes, but there are certain key differences between 

the two. 

1. ROOM considers the behavior role simply as a 

regular sub-actor, it doe’s not have a special 

rank in its components.  In the Arts'Codes 

approach the Manager is the Component master, 

without it no subcomponent activation is 

possible, and it has access to all components 

features. 

2. The subcomponents activation by the manager's 

behavioral states in Arts'Codes increases 

significantly the expressiveness of the 

subcomponents' parallelism and synchronization, 

enabling “what you see is what you get 

(WYSIWYG)” and avoiding undesirable side 

effects at the execution stage. Moreover, the 

subcomponents activation is shown by their 

links to the gates, enabling in such a way more 

explicit graphical expressiveness. 

3. ROOM approaches to the behavior description is 

like a flat state diagram, with no distinction 

between normal and exception partition.  It does 

not guide the developer to validate (ab)normal 

behavior.  Arts'Codes adds Assertions to the 

components, in order to track and to manage 

with abnormal behavior. 

4. The encapsulated ROOM states are not 

supported in Arts'Codes.  Our approach is that 

encapsulation is made by components, and a 

state is only the component status, it is not an 

independent entity.  Although Arts'Codes 

supports state hierarchy, it is only for expression 

improvement. 

5. The interconnections between the ROOM actors 

are provided by ports, which abstract the 

protocols.  The protocols have to be defined in a 

Message Sequence Chart separately.  In 

Arts'Codes each variable is interconnected 

automatically and the detailed connection is 

provided.  This approach meets the 

standardization of embedded development 

requirements. The ROOM approach is more 

suitable for versatile network interconnection.  

Arts'Codes enables network or controllers 

interconnections through the Virtual Devices. 

6. While ROOM adopts the run-to-completion 

programming model, Arts'Codes  is supported 

by an execution platform which adopts the 

Synchrony Hypothesis, alleviating in such a way 

synchronization and timing efforts. 

7. In ROOM the priorities are attached to events, in 

Arts'Codes the priority is attached to the 

component and inside the component to the 

Manager’s state-transitions.  This approach 

enables determinism, because an event may 

enable many transitions and the reaction order 

must be fixed. 

8. Arts'Codes introduces the “socket” concept in 

order to enable Reusability of components.  A 

component is a type until it is inserted in a 

socket, creating in this way a new instance of 

this component type. 
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OPM [17] proposed by D. Dori gives another solution 

of the integration of Structural and Behavioral 

views. He uses the classical UML class diagram to 

describe object-processes, and allows zooming in 

a class box of the diagram in order to show the 

internal statechart. This method resembles to ours 

for the hierarchical zooming. However, the 

hierarchy is organized around processes rather 

than components.  As we have already noted, a 

component-based hierarchy is more compatible 

with the physical architecture of embedded 

systems. On the other hand, Arts'Codes tries to 

reduce the number of diagrams and the complexity 

of the various notations, we try to have homothetic 

diagrams in the sense that at all the levels of the 

hierarchy the diagrams and the notation are the 

same.  

 

V  Conclusion 

 

In fact we have designed all these hierarchical charts 

(component chart, manager chart, Goal chart, exception 

guard chart) in an homothetic same way, so that they 

have the same notation at different levels   

We propose that this architecture can be a 

contribution to UML 2.0 by adding this kind of 

homothetic diagram which gives an explicit 

representation of behaviors for components, and a 

possible validation by composing all the assertions of the 

subcomponents. Furthermore, these diagrams allow 

verification at run-time using the exception-guards 

assertions. All these assertions are written in a unified 

extension of OCL to Temporal and Boolean logic. The 

behavior of each component is also described in this 

extended OCL. 

This hierarchical architecture and the automatic 

translator that insures that “as-built” behavior conforms 

to requirements and can be verified.  

In summary, we stress that : 

��enforcement of a same architectural style, for 

simplicity, concerning all components, 

managers and exception guards, with each 

manager having absolute control over all its 

immediate subcomponents,  

��and the creation of a supporting tool that translates 

this architecture into production quality 

components, and allows a-priori validation and 

run-time verification,  

all this gives a robust and verifiable system. 
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Appendix: 

 

GRAMMAR FOR OCL, EXTENDED TO INCLUDE 

TEMPORAL ENGINEERING EXPRESSIONS 
(based on OCL Specification, v 1.1 31 [25]) 

 
The grammar description uses the EBNF syntax, where 

"|" means a choice , "?" optionality and "*" means zero 

or more times.   

The temporal extensions are shown in bold characters (it 

can be seen, that they are minimal and concern only 4 

lines). 

 
expression := logicalExpression 
ifExpression := "if" expression  "then" 

expression   "else" expression "endif"|";" 
logicalExpression := relatExpression 
(logicTemporalOperator relatExpression)* 
relatExpression := additiveExpression 
( relatOperator additiveExpression )? 
additiveExpression := 
multiplicativeExpression 
( addOperator multiplicativeExpression )* 
multiplicativeExpression := unaryExpression 
( multiplyOperator unaryExpression )* 
unaryExpression := ( unaryOperator 
postfixExpression ) 
| postfixExpression 
postfixExpression := primaryExpression ( 
("." | "->") featureCall )* 
primaryExpression := literalCollection 
| literal 
| pathName timeExpression? qualifier? 
featureCallParameters? 
| "(" expression ")" 
| ifExpression 
featureCallParameters := "(" ( declarator 
)? ( actualParameterList )? ")" 
literal := <STRING> | <number> | "#" <name> 
enumerationType := "enum" "{" "#" <name> ( 
"," "#" <name> )* "}" 
simpleTypeSpecifier := pathTypeName 
| enumerationType 
literalCollection := collectionKind "{" 
expressionListOrRange? "}" 
expressionListOrRange := expression 
( ( "," expression )+ 
| ( ".." expression ) 
)? 
featureCall := pathName timeExpression? 
qualifiers? 
featureCallParameters? 
qualifiers := "[" actualParameterList "]" 
declarator := <name> ( "," <name> )* 
( ":" simpleTypeSpecifier )? "|" 
pathTypeName := <typeName> ( "::" 
<typeName> )* 
pathName := ( <typeName> | <name> ) 
( "::" ( <typeName> | <name> ) )* 
timeExpression := "@" <name> 

actualParameterList := expression ( "," 
expression )* 
logicTempoOperator := logicalOperator | 
tempoOperator | logicalOperator tempoOperator 
logicalOperator := "and" | "or" | "xor" | 
"implies" 
tempoOperator := "Since" | "Until" | 
"next"|"previous"|"always"|"later"|"before" 
collectionKind := "Set" | "Bag" | 
"Sequence" | "Collection" 
relationalOperator := "=" | ">" | "<" | 
">=" | "<=" | "<>" 
addOperator := "+" | "-" 
multiplyOperator := "*" | "/" 
unaryOperator := "-" | "not" 
typeName := "A"-"Z" ( "a"-"z" | "0"-"9" | 
"A"-"Z" | "_")* 
name := "a"-"z" ( "a"-"z" | "0"-"9" | "A"-
"Z" | "_")* 
number := "0"-"9" ("0"-"9")* 
string := "’" ( (~["’","\\","\n","\r"]) 
| ("\\" 
( ["n","t","b","r","f","\\","’","\""] 
| ["0"-"7"] ( ["0"-"7"] )? 
| ["0"-"3"] ["0"-"7"] ["0"-"7"] 
) 
) 
)* 
"’" 
 


