
Using UML 2.0 in Real-Time Development
A Critical Review

Kirsten Berkenkötter
University of Bremen

P.O.B. 330 440

D-28334 Bremen

kirsten@tzi.de

Abstract

Since its standardization in 1997, UML has become the
mostly used specification language at all. Neverthe-
less, there is also a lot of criticism going on, concern-
ing both general and domain-dependent weaknesses
of UML. Especially in the field of real-time develop-
ment the language was criticized as its soundness and
expressiveness did not meet the requirements needed
for modeling safe systems.

The new major version UML 2.0 shall banish or at
least reduce these problems. It provides new con-
cepts for modeling with the help of UML and extends
formerly known ones, e.g. in the field of component
based development.

Hence, UML must be reviewed again with the for-
merly criticized points in mind to see if these have
been improved. Both general and real-time dependent
weaknesses have to be surveyed for a well-founded
judgement of UML 2.0.

1 Motivation

During the 1980s, object-oriented programming lan-
guages began to drive the conventional procedural
ones out of the market. The new programming
paradigm raised also the question for a new mod-
eling approach as the object-oriented concepts could
not go hand in hand with procedural ones well due
to their obvious differences. After some uphill strug-
gle, UML was born as an assemblage of different -
formerly competing - modeling techniques. In 1997,
UML 1.0 was standardized by the Object Management
Group (OMG).

Since then, several minor version have been released
which fixed typographical and grammatical errors, re-
solved logical inconsistencies, clarified vague and am-
biguous statements, and similar problems. The latest

of these was UML 1.4 which was published in 2001
(see [18]). The more far-reaching changes to the UML
standard were delayed to major version 2.0 that has
been adopted now (see [21] and [22]).

In spite of the success of UML, it is not the philoso-
phers’ stone of software engineering. There are se-
rious problems concerning both general and domain
specific purposes. Investigating the real-time domain
is in particular interesting as high standards for soft-
ware specification are required due to timing con-
straints, heavily-interacting parts, and an often safety-
critical background.

With the limitations and problems of UML 1.4 in
mind, the most interesting aspects of the new ma-
jor version have to be surveyed. We will investigate
which points have been improved and which have
not. Obviously, solving the general problems of UML
has highest priority. Building up on this, the useful-
ness of UML 2.0 in the real-time domain can be dis-
cussed.

Examples

In sections 2 to 4 and 6, a simple vending machine is
used as an example. It serves tea and coffee, where
tea costs 1 Euro and coffee 50 Cent. Its functionality
is described in a UML use case diagram (see figure 1).
In chapter 5, UML 2.0 is applied to a standard ther-
mostat example to investigate its usefulness in a self-
contained model.

2 Features of UML 1.4

UML 1.4 offers nine different diagram types for spec-
ifying both structure and behavior of a system. These
are use case diagrams for catching the requirements of

1



Figure 1: UML 1.4 Use Case Diagram of a Simple Coffee Machine

a system, class diagrams and object diagrams for de-
scribing its static structure, and component diagrams
and deployment diagrams which depict its imple-
mentation structure. Communication diagrams, se-
quence diagrams, statechart diagrams, and activity di-
agrams specify the different aspects of behavior of a
system, building up on the static structure defined in
the corresponding diagrams described above.

Figure 2: UML 1.4 Class Diagram of a Simple Coffee
Machine

All in all, UML 1.4 tries to specify and visualize all
aspects of software systems utilizing all nine diagram
types.

Figure 3: UML 1.4 Component Diagram Example

Each diagram type focuses on a specific aspect of the
system to be built. Class diagrams describe the struc-
ture and the interdependencies of the classes in an ob-
ject-oriented system (see figure 2) whereas object di-
agrams depict the instances of these classes. In con-

trast, the interdependencies between physical pieces
of software (e.g. in makefiles) are visualized by com-
ponent diagrams (see figure 3) and the relationships
between software and hardware by deployment dia-
grams.

Figure 4: UML 1.4 Statechart Diagram of a Simple Cof-
fee Machine

Behavior that occurs between objects, i.e. instances of
classes, is grasped in different ways, either with focus
on the structural dependencies between them (collab-
oration diagrams) or with focus on the messageflow
(sequence diagrams). The intraobject behavior is cap-
tured by statechart diagrams (see figure 4), whereas
the workflow and other activities in the system are de-
picted with the help of activity diagrams (see figure 5).

Advantages of UML

UML has improved software development not at least
in setting a common standard that simplifies the com-
munication between software developers. Its main
principles are easy to understand and easy to learn.
Today, it is the "language" of software engineering. It
is used not only for specifying a system but also for
communication purposes between people involved in
developing a system (engineers, computer scientists,
managers, clients, etc.) or for the documentation of

2



Figure 5: UML 1.4 Activity Diagram of a Simple Cof-
fee Machine

existing software. Nevertheless, it has not banished
the so called "software crisis". One reason for this is
the often insufficient application of UML.

To give an example, UML is often used in the start-
ing phase of a project for building a model of the soft-
ware, but afterwards this model is not kept up to date.
Hence, the UML model and the implementation of the
software differ in many points, a fact that poses prob-
lems when bugs have to be fixed or new people have
to deal with the software. Issues like these are not in
the scope of this article and are therefore not discussed
here. Other problems originate in UML itself. These
are the interesting ones.

3 Flaws of UML 1.4

General Weaknesses

Six points are mainly criticized regarding to UML 1.4
(see e.g. [11], [7], and [17]). These are the UML speci-
fication itself, the metamodel, the usability, the poten-
tially inconsistent diagrams and views, the composi-
tion of models, and the insufficient support of error
handling. All problems have in common that they are
domain independent and partly crucial.

To begin with the specification, it is insufficient as it
is not formal at all. The semantics of the syntacti-
cal elements of the language are often imprecisely de-
fined. This leads to problems in communication, e.g.
between software project members, if it is not clear in
which way a diagram should be interpreted. Even
worse, tool vendors implement parts of UML differ-
ently in their tools. It is also difficult to check the dif-
ferent UML diagrams in a model for consistency and

to generate stub code from models if the underlying
language specification is ambiguous.

Furthermore, UML is based on a 4-layer metamod-
eling approach with the OMG’s Meta Object Facility
(MOF) as the meta-metamodel. Unfortunately, this
approach has not been followed strictly. This would
mean that every element of one layer is dependent
on exactly the layer above. The problem is related to
the one mentioned before. How can a specification be
consistent and sufficient if its backbone is not stable?

One of the most frequently discussed weaknesses of
UML 1.4 is its usability as it consists of an overwhelm-
ing number of diagrams and elements. It is hard to fig-
ure out which combination of these is best suited for
fulfilling a specific task, i.e. for designing certain soft-
ware systems. In addition, diagrams may represent
different views on a system (design view, implemen-
tation view, etc.) and different sides of a system (struc-
ture, behavior, etc.). There is no mechanism which de-
fines the interconnections between the diagrams de-
scribing a system.

Moreover, UML diagrams are flat, i.e. there is no pos-
sibility for hierarchical structuring of models. All ele-
ments in a system appear at the same level. This prob-
lem does not occur with small systems, but the bigger
a system gets, the harder it is to understand. A model
that uses hierarchies is less complicated as details are
hidden when unnecessary. Components and subsys-
tems are only insufficiently and ambiguously imple-
mented in UML 1.4 and hierarchical composition is
not possible at all.

At last, it has to be mentioned that huge parts of soft-
ware do not handle its intended usage but errors that
may occur. This fact leads to the demand for explicit
error handling support in UML.

Real-Time Domain

As discussed before, real-time systems require un-
doubtedly safe development and would benefit from
good ways of specification. These high demands (see
e.g. [16]) implicate also a high standard in specifica-
tion and high requirements on UML. This includes
the definition of hardware-software interdependen-
cies and the specification of timing constraints, com-
munication structures, and task management policies.

Real-time systems are often embedded systems, so
there is a strong relationship between hardware and
software. Both parts of the system have to be co-
ordinated. Modeling real-time systems implies that
both hardware and software are specified consistently.

3



A widely accepted solution is hardware-software co-
design which means specifying the software function-
ality in a - preferably executable - model and in addi-
tion, designing a model of the hardware architecture
of the system. The hardware and the software models
are mapped to achieve a complete system in the end.
The hardware serves as the platform for the software.

For the purpose of modeling this means that the hard-
ware offers an interface to the software. This must be
modeled by UML, but there is no mechanism pow-
erful enough to do it. Deployment diagrams are too
imprecise as they do not provide information on the
hardware (except the information that there is hard-
ware at all). Therefore UML needs a possibility for
modeling relationships between hardware and soft-
ware.

Another problem crucial for real-time development is
the specification of timing constraints like deadlines
and periods as these go always hand in hand with
real-time systems. In fact, a system is called real-
time system if it is not only dependent on computa-
tion but also on the time in which this computation is
processed. UML diagrams which cover behavioral as-
pects must keep timing information when used in the
real-time domain. This is only possible in a rudimen-
tary way. Of course, timing constraints can be added
to diagrams (see figure 6), but these are not available
in other diagrams of the same model. The nature of
these constraints is informal instead of giving a for-
mal specification of time. There is no underlying time
model in UML that describes the way time is progress-
ing.

Figure 6: Timing Information in a UML 1.4 Sequence
Diagram

Furthermore, real-time systems consist of different,
independent processes or threads that communicate
with each other. This communication has to be de-
scribed, e.g. which parts of the system may talk to
each other and which may not, which messages they
can send and receive, protocols that must be followed,
etc. A common solution is the definition of ports

as communication points for active objects which are
used as representations of processes and tasks (see
[23]). Ports are connected by communication channels
that allow posting and receiving of messages. Proto-
cols are used for steering these activities. A strict com-
munication concept like this is not supported by UML.
Instead, a lot of effort is needed when specifying com-
munication structures and often these descriptions re-
main insufficient in the end. Message flow can be
specified in various ways (sequence diagrams, collab-
oration diagrams, etc.), but detailed information like
periodicity and protocols cannot be given.

In addition, real-time systems have often to deal with
task management as this kind of software often con-
sists of several processes and threads whose schedul-
ing has to be regulated. Therefore, certain aspects of
task management like priorities have to be modeled
too. Again, UML does not provide mechanisms for
these purposes.

Due to its weaknesses, UML 1.4 has been used in the
real-time domain mainly in combination with other
techniques like ROOM (see [23]) or SDL (see [4]) but
not as a stand-alone solution for specifiying real-time
systems. Profiles like the UML Profile for Schedula-
bility, Performance, and Time Specification (see [19])
or the UML Modeling Language Specification (Action
Semantics) (see [20]) are an attempt to improve this
situation, but as profiles are barely specified in UML
1.4, it is just an attempt without practical relevance.

4 UML 2.0 at a Glance

In general, the specification of UML itself has changed
as there are different specification documents now,
e.g. for infrastructure, for superstructure, for Ob-
ject Constraint Language (OCL), and for model in-
terchange instead of one for all purposes. UML
is divided into a language core (infrastructure) that
is compliant to MOF, CWM (Common Warehouse
Metamodel), and other metamodels supported by the
OMG (see figure 7) and modeling elements (super-
structure) that build up on the core and provide func-
tionality that is needed for constructing models. This
distinction helps identifying fundamental parts of the
language that are needed as a basis for building mod-
els on the one hand, and elements that are really used
in models on the other hand. Furthermore, compli-
ance between metamodels and model interchange is
improved in this way.

Another point related to the UML specification is the
adoption of the strict metamodeling approach that has

4



Figure 7: UML 2.0 Core Concept

been demanded by many critics. In UML 2.0 each ele-
ment in one layer of the 4-layer metamodel is depen-
dent only on the layer above (except in the uppermost
layer of course), i.e. there is a stable backbone at last.
Nevertheless, UML 2.0 has not a formal specification
but an informal one which mostly consists of natural
language in addition with some constraints given in
OCL.

Profiles

The introduction of profiles to UML focuses on in-
creasing its usability. This has already been done rudi-
mentarily in the last minor versions, but profiles were
not specified in detail and with few semantics. Con-
struction and usage were left open.

Profiles are used to extend UML with domain specific
elements so that the language itself is not overloaded
with features not needed in all or at least many areas
of software systems (see figure 9). They provide the
powerful extension mechanism often requested.

Figure 8: UML 2.0 Profile Application

To give some examples for profiles, there were at-
tempts to specify profiles for Schedulability, Perfor-
mance, and Time and for Action Semantics for UML
1.4 (see [19] and [20]), both of whom intended to
support real-time purposes. The first one includes
model elements for resources, timing aspects, con-
currency, schedulability, and performance, e.g. de-
vices, processors, timeouts, delays, stimuli, synchro-
nization, scheduling policies, and workload. It goes
without saying that the second one focuses on intro-
ducing action semantics, i.e. execution guidelines for

models. This was done with respect to class diagrams
and statechart diagrams.

As profile support was not covered semantically suf-
ficient in UML 1.4., these attempts were not widely
known, but their results are partly adopted by UML
2.0.

Figure 9: UML 2.0 Profiling Mechanism

Developing profiles and applying them to models is
described in detail in UML 2.0. This is done by tak-
ing a metamodel, e.g. UML or MOF, and deriving
new, specific elements called stereotypes from the old
ones by adding new information (see figure 10). A
set of these derived elements form a profile, e.g. for
CORBA, for real-time purposes, etc. If a model applies
a profile (see figure 8), the stereotypes can be used as
model elements.

In addition to the new UML features on the core level,
there are also new constructs which can be used in
modeling directly, including structural elements, be-
havioral modeling, and new diagram types. It is not
in the scope of this article to discuss all of these in de-
tail, only the most interesting features of UML 2.0 are
introduced briefly to give an overview of the new pos-
sibilities.

Figure 10: Example for a Stereotype in a UML 2.0 Real-
Time Profile

Structural Modeling

On the structural side, there are several new concepts
that offer a wide variety of possibilities in model-

5



ing software systems including e.g. hierarchical com-
position of models, communication structures, and
components. Probably the most important of these
is the introduction of internal structures, i.e. hierar-
chical structuring of classifiers. Each classifier that
may (classes, components) or must (collaborations) be
composed by other elements therefore may or must
contain an internal structure which specifies its inside.

The internal structure describes how a containing el-
ement is composed by other elements called parts or
connectable elements (see figure 11). These are never
classifiers themselves, but instances or instance sets of
classifiers. The relationship between the containing
element and its internal structure is a kind of aggre-
gation, but of a strict form as the internal elements
belong to their containing element and cannot exist
without it.

In this way, a model can be described in different lev-
els of abstraction as its elements can be nested, e.g.
components that consist of other components and so
on. Hiding the nested parts gives an overview of the
system under consideration while showing them al-
lows detailed information.

Figure 11: UML 2.0 Structure Diagram of a Simple
Coffee Machine

In connection with an internal structure, communica-
tion paths can be specified. These so called connectors
interlink two or more parts to form a communication
channel between them (see figure 11) so that messages
can be sent and received. As parts occur only inside
an internal structure, i.e. inside a containing classifier,
there is a mechanism needed for connecting both in-
ternal parts with the outside and the containing classi-
fiers with one another. This is realized by ports which
serve as interaction points on the boundary of a clas-
sifier. They are also linked by connectors (see figure
11).

Ports serve as a kind of contract between the elements
they connect. They specify what an element expects
from its environment and what it offers to its envi-
ronment. Therefore, ports are usually of the type in-
terface. This is possible because UML 2.0 interfaces
can be either provided or required ones in contrast to
UML 1.4, where only provided interfaces were sup-
ported.

Ports decouple the containing classifiers from their en-
vironment. From the outside, nothing but the ports
can be seen. They direct all signals designated to in-
ternal elements to their correct receiver. The other way
round, all signals from internal elements to the out-
side are also transmitted by ports.

Figure 12: UML 2.0 Component Diagram of a Simple
Coffee Machine

All these features are important for the new compo-
nent concept. Components are treated now as soft-
ware components instead of merely physical pieces
of software for deployment purposes. That means a
component is a modular, replaceable, and deployable
piece of software that is available at specification time,
at deployment time, and at runtime. A component
owns an internal structure that shows how it is com-
posed and interacts with its environment exclusively
over interfaces (see figure 12) or, more often, ports .

Therefore a component can be replaced by another
one which offers at least the same provided and re-
quired interfaces or ports as these are the only parts
of the component which are accessible by its environ-
ment. Subsystem is a standard stereotype of compo-
nent in UML 2.0. In contrast, it has been an explicit
model element in UML 1.4 with incomplete seman-
tics.

Physical instances of software are now called artifacts
which may be implementations of components. They
can be deployed on nodes, if needed with an ad-
ditional specification that describes the deployment.
Nevertheless, this specification is not more than a set
of constraints like execution = thread or processor = i386.

To cover all these new features, there are also new dia-

6



Figure 13: UML 2.0 Deployment Diagram

grams or extensions made to diagrams. UML 2.0 pro-
vides six different structural diagram types of which
the deployment diagram is the only one related to
the physical world. It is slightly different from the
formerly known deployment diagram as it obviously
supports the new model elements (see figure 13). The
same holds for class and object diagrams which fulfill
the same purposes as beforehand.

Two new diagram types are closely related to class di-
agrams, namely package diagrams and component di-
agrams. Instead of showing classes and their relation-
ships between one another, they visualize packages,
respectively components. The last of the structural di-
agrams is really new and is called composite structure
diagram (see figure 11). It focuses on internal struc-
tures, i.e. it shows the hierarchical composition of clas-
sifiers.

Behavioral Modeling

The possibilities of modeling behavior have also in-
creased in UML 2.0 as they have become much more
detailed. This starts with a new action model aligned
partly to the formerly mentioned Action Semantics
Profile for UML 1.4. The action model is more fine-
grained as there are now more than twenty different
action types instead of seven, grossly classified as in-
vocation actions, read/write actions, and computa-
tional actions. Actions are the smallest kind of behav-
ior in UML.

But actions are just the very basic of behavioral mod-
eling in UML. For processing and coordinating them,
activities are needed. This concept is already known
from UML 1.4 activity diagrams and is working in the
same way, even if activity graphs are now related to
petri nets instead of being a specific form of statema-
chines.

Activity diagrams look mainly the same, they con-
sist of nodes and edges (formerly states and transi-
tions), where nodes are either object nodes or control

nodes like fork nodes, join nodes, merge nodes, etc.
Advanced concepts like interruptible regions or loops
have been added to improve the possibilities of activ-
ity modeling.

Figure 14: UML 2.0 Sequence Diagram of a Simple
Coffee Machine with Time Constraints

New to UML is also a simple time model provided for
representing, specifying, and observing time trigger
(see figure 22), durations, and points in time (see fig-
ures 14 and 17), e.g. in context with messages. Nev-
ertheless, it is only rudimentarily in contrast to the
one proposed in the Schedulability, Performance, and
Timing profile for UML 1.4.

To give an example, the latter one has an explicit time
model with clocks, physical time, and discrete and
dense time values. In contrast, the UML 2.0 time spec-
ification is very lax. Time and duration constraints
and the corresponding observation actions are based
on time expressions that are defined as "often [...] a
non-negative integer expression ..." (see [22]). This is
obviously not a satisfying time model.

Figure 15: UML 2.0 Sequence Diagram with Alterna-
tive Combined Fragments of a Simple Coffee Machine

Another extension made to behavioral modeling in
UML concerns interactions, which are used for de-

7



scribing interactions between parts, respectively con-
nectable elements. This concept is similar to the
one depicted by sequence diagrams and collabora-
tion diagrams in UML 1.4, where interactions between
classifier roles have been shown. Indeed, sequence
diagrams and communication diagrams (just a new
name for collaboration diagrams) are still used for
depicting interactions, but these are of a more pro-
found nature than before. Instead of just visualizing
messageflow, interactions (more precisely interaction
fragments) can now be grouped to combined frag-
ments that support further modeling possibilities like
alternatives, options, breaks, loops, or critical regions
(see figure 15).

Interactionflow can be modeled by an interaction
overview diagram, i.e. a specific activity graph whose
activities are all interactions (see figure 16). If the main
emphasis shall be on reasoning about time, timing di-
agrams can be used to visualize change in states or
other conditions of structural elements (see figure 17).

Figure 16: UML 2.0 Interaction Overview Diagram of
a Simple Coffee Machine

Statemachines have slightly changed as there are now
behavioral and protocol statemachines. The first ones
have obviously the same purpose as before, i.e. de-
scribing intraobject behavior. The latter ones are used
for defining protocols. The main difference between
these two types of statemachines is that behavioral
ones describe the specific behavior of a classifier while
protocol ones describe an abstract behavior and may
be associated to interfaces or ports. In spite of this,
statemachines look the same as before.

Use cases are also regarded as behavior even if strictly
speaking, a use case is a (behaviored) classifier and
not a behavior itself. Nevertheless, use cases describe
the behavior that is offered by the system under con-
sideration, i.e. they visualize the requirements of this
system. Although use case specification has changed
slightly, the diagrams look mainly the same, so that
most users will not even notice that changes have been
made.

Figure 17: UML 2.0 Timing Diagram of a Simple Cof-
fee Machine

All in all, there are now seven behavioral diagrams
provided by UML, that are sequence diagrams, com-
munication diagrams, activity diagrams, interaction
overview diagrams, timing diagrams, state machine
diagrams, and use case diagrams. Altogether, there
are thirteen diagram types in UML 2.0. The con-
cepts of UML 1.4 have been taken over and new fea-
tures have been added. UML users will have to deal
only with the really new concepts and do not have to
bother with re-learning already known ones as the dif-
ferences in their specificion are often not observable in
a model.

5 UML 2.0 in Use

After discussing the new features of UML 2.0, some of
them will be applied in a small example, taken from
[1], to check their usability. Not all new features can
be covered in this example, e.g. activity diagrams or
deployment diagrams are not needed.

The system under consideration is a thermostat that
continuously measures the room temperature. It turns
a heater on and off due to the current temperature.
The behavior of the thermostat can be shown in a use
case diagram (see figure 18).

If the heater is off, the temperature � is decreasing in
the following way: ���������
	���������

If the heater is on, the temperature � is increasing ac-
cording to the function: ����������	����������������������������
 

is a constant determined by the room and � is de-
pendent on the power of the heater. 	 is the initial
temperature.

8



Figure 18: UML 2.0 Use Case Diagram of a Thermostat

The heater is turned on if the temperature falls below
� and is turned off if the temperature rises above

�
.

The temperature is measured continuously by the sen-
sor.

Figure 19: UML 2.0 Composite Structure Diagram of
a Thermostat

At this point, problems arise. UML knows integer,
string, boolean, and unlimited natural as standard
datatypes. There is no datatype that represents real
numbers. We have to introduce this ourselves (see fig-
ure 20). If we also want to give semantics for the new
datatype, we must define a profile.

Figure 20: UML 2.0 Real Number Datatype

For modeling the thermostat with UML 2.0, the sys-
tem is subdivided into a heater, a controller, and a sen-
sor. They are shown as parts in a composite structure
diagram and communicate via interface-typed ports
(see figure 19). The interfaces are shown in a class dia-
gram (see figure 21). Constants and operations of the
used classes are also shown there.

Other structure diagrams are not in use here. Compo-
nent diagrams and package diagrams are not used as
this is not necessary in an example of this size. The
same holds for deployment diagrams as the thermo-
stat is an entity which cannot be subdivided. Object
diagrams are also not used as all relevant informa-

tion is covered by the class diagram and the composite
structure diagram. Their usage would be obfuscating.

Figure 21: UML 2.0 Class Diagram of a Thermostat

As the thermostat consists of three parts we look at
these for modeling its behavior. The heater is either on
or off due to the signals sent by the controller. There-
fore two states on and off and corresponding signals
can be used for the heater‘s state machine (see figure
22).

The sensor is continuously measuring the tempera-
ture and sends them to the controller. Unfortunatly,
we have no possibility of modeling this correctly in
UML 2.0 due to the poor time mechanism. The best
solution is using a time trigger with a small value that
initiates sending the temperature value to the con-
troller. The measuring of the time is modeled as a
do-activity that is processed while the sensor is in the
state measuring (see figure 22). Therefore a continuous
actitvity shown in an activity graph is needed (see fig-
ure 23). As activities can be nearly all kind of behavior,
the implementation is described in a note for better
understanding.

Both heater and sensor communicate with the con-
troller by sending signals. The controller must always
accept new temperature values sent by the sensor. If a
new value arrives, the controller updates its own vari-
able for the temperature. If the value is less or equal
� , the on-signal is sent to the heater. Vice versa, the
off -signal is sent if the temperature rises above

�
. The

functions representing the behavior of the room tem-
perature cannot be shown exactly in UML. Again, one
may argue to use do-activities for this purpose, but
there is no way for describing a differential term in
an activity. Hence, the equations are shown as notes.

Three state machines are needed for visualizing the

9



Figure 22: UML 2.0 State Machine Diagrams of a Thermostat

behavior of the thermostat: one for the heater, one for
the sensor, and one for the controller. The measur-
ing of the temperature by the sensor is modeled as an
activity. Sequence diagrams or communication dia-
grams could also be used but this is unnecessary as
only few messages are exchanged. The same holds for
interaction overview diagrams and timing diagrams.

Figure 23: UML 2.0 Activity Diagram of a Thermostat

All in all, the structure of the thermostat can be
modeled well while behavioral modeling of real-time
aspects is as problematic in UML 2.0 as in UML
1.4. Composite structure diagrams improve model-
ing even in such a small example. Behavioral model-
ing still lacks efficient expressivness and formal back-
ground. The diagrams shown above can be inter-
preted differently by different viewers. This is further
discussed in the following.

6 UML 2.0 Reviewed

General Weaknesses

The document structure has obviously been im-
proved. The division of infrastructure and superstruc-
ture definitely enhances the readability of the docu-
ment as core elements and model elements are han-
dled separately. Moreover, the package structure of
the specification is much more fine-grained. This al-
lows a better usage of modeling elements by users and
tool vendors, especially in relationship to the exten-
sion mechanisms, e.g. profiles.

UML 2.0 is mostly defined by natural language just
as UML 1.4. A formal definition of at least the core
elements has not been made, even if this is one of
the most criticized points of UML 1.4 (see [11]). In
contrast, other graphical languages like Message Se-
quence Charts (MSC, see [15] and [14]) or Life Se-
quence Charts (LSC, see [8]), which correspond to
UML sequence diagrams, and hybrid automata (see
[12]) or CHARON (see [2] and [3]), which correspond
to UML statechart diagrams, are based on a formal
specification.

One may argue that these languages are not as huge as
UML, but as mentioned before, the process of formal-
izing UML could start with its core elements. Efforts
in this direction have been done before, e.g. in [6] or
[10]. Some parts of UML like activity diagrams will
certainly never be formalized as there is no need for

10



it. Workflow must not be built on a mathmatical foun-
dation. In contrast, other parts like state machine di-
agrams require formalization for proper and sensible
usage.

The strict metamodeling approach favored by meta-
modelers has been introduced in the new language
version. This is another aspect of formal language
definition that provides a more powerful and sound
language specification. It is very valuable that at least
one of these two points has been put into praxis in
UML 2.0 as this improves the quality of the specifica-
tion documents.

To give an example, the profile mechanism that is
newly introduced in UML 2.0 requires a sound meta-
model definition as it is based directly on this. It al-
lows tailoring UML to specific domains without en-
larging the core language. Of course, formal specifi-
cation would also strengthen the power of extension
mechanisms.

The efforts to reduce the UML specification by remov-
ing unused elements are only half-hearted if not cold-
hearted. Nearly all elements have been taken over
from UML 1.4 to 2.0 without checking their benefits to
the language and to modeling in general. This leads
to the fact that the usability of UML has not been in-
creased. In fact, it has become worse as even more
elements have been introduced which enlarge the lan-
guage’s scale of possibilities. No less than four new
diagram types have been added to UML. It is dubi-
ous if all of these are really needed or if unnecessary
overlapping occurs.

One example for this is the object diagram, already
known from UML 1.4. It depicts the dependencies
between objects, or strictly speaking classifier roles,
at runtime. The communication diagram (collabora-
tion diagram in UML 1.4) shows the dependencies
between objects and, moreover, messages sent be-
tween them. Hence, an object diagram shows exactly
the same as a collaboration diagram except message-
flow (see figure 24). There is no reasonable motiva-
tion for defining two different diagram types for these
purposes. The same holds for interaction overview di-
agrams and activity diagrams in UML 2.0, as the for-
mer one is just a special case of the latter one. At least
activity diagrams are specified independently in UML
2.0 as they have been built up on statechart diagrams
before.

Interdependencies between different diagrams used
for building a model are not explicitely defined in
UML 2.0, leaving the responsibility for producing a
consistent model to the modeler or to the CASE tool
in use. Hence, model testing becomes difficult which
is obviously also related to the informal specification

of UML. A feature really demanded by develop-
ers, especially in the real-time sector is testing soft-
ware at model time to detect errors as soon as pos-
sible, but this is not working without clear consisten-
cies between the different UML diagrams. The infor-
mal specification is also hindering this purpose. The
only possibility is leaving the specification behind, but
then different tools mean different implementations of
UML and the advantage of a common language gets
lost.

Figure 25: UML 2.0 Sequence Diagram with ‘not’-
Interaction of a Simple Coffee Machine

Nevertheless, the possibilities of building consistent
models have improved as their hierarchical composi-
tion is possible now. Different levels of detail can be
visualized as elements on one level may include fur-
ther ones. This feature makes models more manage-
able and therefore improves their usability.

Last but not least, the modeling of error handling has
been enhanced as exceptions and interruptible regions
can be used in activity diagrams and therefore also in
interaction overview diagrams. To give an example,
‘not’-interactions can be defined, i.e. something that
should not occur during an interaction (see figure 25).
It is possible to model forbidden and unwanted be-
havior in this way.

As a conclusion, most of the general weaknesses of
UML 1.4 have been at least tackled in UML 2.0, with
varying degree of success. Unfortunately the most
grievous problems remain the same, which are the in-
formal specification of UML, the overwhelming num-
bers of elements and diagrams that jeopardize its us-
ability, and the possible inconsistency of different dia-
grams in a model.

Real-Time Dependent Weaknesses

The real-time dependent flaws have to be discussed
too. This includes the modeling of mutual depen-
dency of software and hardware, of timing con-

11



Figure 24: UML 1.4/2.0 Object Diagram and Collaboration/Communication Diagram of a Simple Coffee Ma-
chine

straints, of communication structures, and of task
management.

Regarding to the first aspect, UML 2.0 offers some new
features, as the deployment concept is enhanced by al-
lowing deployment specifications attached to an arti-
fact and the nodes on which it is deployed (see figure
13). Nevertheless, this is only rudimental and has an
informative nature. People who deal with the model
can read it more easily, but it is not a strict specifica-
tion.

The only sensible possibility for modeling hardware
is treating it as a component deployed on a node, i.e.
an artifact. As components communicate with their
environment exclusively over required and provided
ports, this would be an acceptable handling of the
problem. Software components could communicate
with the hardware over ports that abstract the behav-
ior of the hardware.

In contrast, the real-time programming language
Giotto (see [13]) gives better support for this prob-
lem as it uses a platform independent specification
and a defined way of tailoring a system to a platform.
This is done by giving platform specifications and jit-
ter tolerance when compiling the model for imple-
mentation on a specific platform. Further support for
hardware-software interdependencies in UML could
be achieved by a profile created for this application
area.

The same holds for the specification of timing con-
straints. UML 2.0 provides functionalities in this di-
rection in contrary to version 1.4 as it includes timing
and duration constraints, but remains insufficient for
real-time purposes as the time model remains unspec-
ified. A profile that includes the needed elements, e.g.
a profile for Schedulability, Performance, and Time
like in UML 1.4., is necessary here.

To give some examples, there must be a general clock
in the system which provides time so that expressions
like now + 5 make sense. It is crucial to have the abil-
ity to specify constraints like durations, periodicities,
deadlines, and so on, exactly. Languages like Timed
Communication Sequential Processes (Timed CSP, see

[9]) or special temporal logics like Duraction Calcu-
lus (DC) (see e.g. [16]) provide such expressions, while
modeling techniques like Hybrid Automata (see [12])
use system clocks for modeling time. It shall be possi-
ble to built up on these results to gain sufficient timing
support in UML, e.g. the Object Constraint Language
(OCL) could be enhanced for these purposes.

A matter that has really been improved is the defi-
nition of communication structures. This goes hand
in hand with the introduction of internal structures
for hierarchical composition of classifiers, as the ba-
sic mechanism for describing internal elements - the
newly introduced parts - serves also as the basis for
defining communication structures. Messages can be
sent and received by connectors which visualize the
connection between parts. This concept is enriched by
interfaces and ports whose task is describing which
messages can be posted (provided ports and inter-
faces) and received (required ports and interfaces).
They restrict message flow to the messages described
by them. Moreover, protocol state machines can be
used for describing this message flow more detailed.

Another point related to real-time systems is the han-
dling of task management as this is required very of-
ten by such systems. Like beforehand, there is no pre-
defined way in doing this. Again, an example for
a good solution in this field is Giotto. It specifies a
system platform-independently while the scheduling
is done by giving the compiler additional constraints
which concern the platform and jitter tolerance. If
possible, a schedule can be generated that meets all
timing constraints. As scheduling and task manage-
ment are not needed by all kinds of software systems,
this is an example for good design of UML. The core
UML should not be overloaded with too many pos-
sibilities and model elements. This is left to profiles
designed for specific working fields.

So it seems that the best solution for real-time devel-
opment in UML is using a real-time profile that fills
the gaps between standard UML and real-time de-
mands. This leads to the next problem as this pro-
file must also be a standardized. Just imagine that ev-
ery tool vendor gives its own real-time profile with

12



a CASE tool. This would be very problematic as the
idea of a standard modeling language would get lost.

Obviously, this is a problem arising with the introduc-
tion of profiles to UML. There are several domains
in software development that are in need of a specific
profile with which appropriate models can be built.
This is not only the real-time domain, there are also
demands for business applications, internet applica-
tions, and so on. Every domain has its own "vocab-
ulary" and wants this to be supported. Profiles of-
fer a mechanism to fulfill this need, but they have to
be standardized, e.g. to allow model interchange be-
tween different tools. Time will tell, if profile devel-
opment can be steered properly.

7 Conclusion

So, after the discussion of UML 1.4 and its weak-
nesses, of new features introduced in UML 2.0, and of
their benefits to software development in general and
with special focus on real-time development, UML 2.0
can be assessed.

On the one hand, UML 2.0 brings really some im-
provements to software development like the possi-
bility to built hierarchically composed models. It is
easier to structure models in this way. Furthermore,
component-based development, specification of com-
munication structures, and interaction modeling have
been improved. This allows better modeling in all
kinds of working areas and remedies weaknesses of
UML very often criticized. Profiles are a new and
powerful extension mechanism, but as mentioned be-
fore, their development has to be supervised.

In spite of the improvements made, UML is still over-
loaded with elements and diagrams whose usability is
dubious. Moreover, there are other important points
which have not been improved. First to see is that
the UML specification is still informal and therefore
in many cases insufficient, e.g. for efficient testing. Es-
pecially in the real-time domain this is a disadvantage
as saftey-critical systems should be based on sound
models. In many respects it is crucial for real-time de-
velopment with UML in which way profile usage will
develop.

As a final note, there is no doubt that software devel-
opment with UML is preferable to software develop-
ment without any modeling done before implementa-
tion. Huge parts of software are still lacking security
and have - partly tremendous - errors. Of course, no-
body wants to live in a house whose statics have not
been calculated beforehand. The same holds for soft-
ware. Nobody wants to use an error-prone program

(even if we all do if there is no choice). The software
crisis has not been solved as we can see every day.
Each help in building safe software should be used.
Nevertheless, modeling must be further improved to
get more help, especially in the real-time domain.

8 Acknowledgments

I would like to thank Christian Schröder who intro-
duced me to the field of UML and real-time devel-
opment and helped me very much. Furthermore, I
would like to thank Jan Peleska and Ulrich Hanne-
mann whose comments on the first drafts of this doc-
ument have been very helpful. All their suggestions
were useful in improving this paper.

13



References

[1] R. Alur, C. Courcoubetis, N.Halbwachs,
T.A.Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J.Sifakis, and S.Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science,
138(1), 1995.

[2] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur,
F. Ivanc̆ić, V. Kumar, I. Lee, P. Mishra, G. Pappas,
and O. Sokolsky. Hierarchical Hybrid Model-
ing of Embedded Systems. In Embedded Software,
First International Workshop, EMSOFT 2001, Tahoe
City, CA, USA, October 8-10, 2001, volume 2211 of
Lecture Notes in Computer Science. Springer, 2001.

[3] R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Com-
positional Refinement for Hierarchical Hybrid
Systems. In Hybrid Systems: Computation and Con-
trol, 4th International Workshop, HSCC 2001, Rome,
Italy, March 28-30, 2001, volume 2034 of Lecture
Notes in Computer Science. Springer, 2001.

[4] M. Björkander. Graphical Programming Using
UML and SDL. IEEE Computer, 33(12), Decem-
ber 2000.

[5] G. Booch, I. Jacobson, and J. Rumbaugh. Das
UML Benutzerhandbuch. Addison-Wesley, 1999.

[6] R. Breu, U. Hinkel, C. Hofmann, C. Klein,
B. Paech, B. Rumpe, and V. Thurner. Towards
a Formalization of the Unified Modeling Lan-
guage. In ECOOP’97 - Object-Oriented Program-
ming, 11th European Conference, Jyväskylä, Finland,
June 9-13, 1997, Proceedings, volume 1241 of Lec-
ture Notes in Computer Science. Springer, 1997.

[7] M. Broy, M. von der Beeck, P. Braun, M. Rappl,
and Z. Wen. A fundamental critique of the UML
for the specification of embedded systems. Au-
gust 2001.

[8] W. Damm and D. Harel. LCS’s: Breathing Life
Into Message Sequence Charts. Formal Methods
in System Design, 19(1), July 2001.

[9] J. Davies and S. Schneider. A brief history of
Timed CSP. Theoretical Computer Science, 138(2),
February 1995.

[10] C. Fischer, E.-R. Olderog, and H. Wehrheim. A
CSP View on UML-RT Structure Diagrams. In
H. Hußmann, editor, Fundamental Approaches to
Software Engineering, 4th International Conference,
FASE 2001 Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS
2001 Genova, Italy, April 2-6, 2001, Proceedings,

volume 2029 of Lecture Notes in Computer Science.
Springer, 2001.

[11] D. Harel and B. Rumpe. Modeling languages:
Syntax, semantics and all that stuff, Part I: The
basic stuff. Technical Report MSC00-16, The
Weizmann Institute of Science, Israel, August
2000.

[12] T. A. Henzinger. The Theory of Hybrid Au-
tomata. In 11th Annual IEEE Symposium on Logic
in Computer Science, New Brunswick, New Jersey,
27-30 July 1996, Proceedings. IEEE Computer Soci-
ety Press, 1996.

[13] T. A. Henzinger, B. Horowitz, and C. Kirsch.
Giotto: A Time-triggered Language for Embed-
ded Programming. In Embedded Software, First
International Workshop, EMSOFT 2001, Tahoe City,
CA, USA, October, 8-10, 2001, Proceedings, vol-
ume 2211 of Lecture Notes in Computer Science.
Springer, 2001.

[14] ITU-T. ITU-T Recommendation Z.120: Message
Sequence Charts (MSC) - Annex B: Algebraic Se-
mantics of Message Sequence Charts, 1995.

[15] ITU-T. ITU-T Recommendation Z.120: Message
Sequence Charts (MSC), 1996.

[16] M. Joseph, editor. Real-time Systems - Specification,
Verification and Analysis. Tata Research Develop-
ment and Design Centre, June 2001.

[17] G. Martin, L. Lavagno, and J. Louis-
Guerin. Embedded UML: a merger of
real-time UML and co-design, March
2001. www.gigascale.org/pubs/101/Embe-
ddedUML.whitepaper.v7.External.pdf.

[18] OMG. Unified Modeling Language Specification,
version 1.4, September 2001.

[19] OMG. UML Profile for Schedulability, Perfor-
mance and Time Specification, March 2002.

[20] OMG. Unified Modeling Language Specification
(Action Semantics), January 2002.

[21] OMG. UML 2.0 Infrastructure Specification,
OMG Adopted Specification, September 2003.

[22] OMG. UML 2.0 Superstructure Specification,
OMG Adopted Specification, August 2003.

[23] B. Selic. Using UML for Modeling Complex Real-
Time Systems. In Languages, Compilers, and Tools
for Embedded Systems, ACM SIGPLAN Workshop
LCTES’98, Montreal, Canada, June 1998, Proceed-
ings, volume 1474 of Lecuture Notes in Computer
Science. Springer, 1998.

14


