
Issues in Mapping from UML Real-Time Profile to OSEK

API ∗

Zonghua Gu, Shige Wang and Kang G. Shin
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122, USA
zgu@eecs.umich.edu

Abstract
UML Profile for Schedulability, Performance and

Time is designed to add standard real-time extensions
to UML in order to facilitate real-time analysis capa-
bilities, such as rate monotonic analysis, based on the
profile. In this paper we explore issues involved in gen-
erating code for the OSEK API, which is a popular real-
time operating systems standard in the automotive in-
dustry.

1 Introduction
As embedded real-time systems become more and

more complex and mission- or safety-critical, the tradi-
tional development process of manual coding followed
by extensive and lengthy testing is becoming inade-
quate. The overarching concern for an embedded sys-
tem developer is no longer to optimize software at very
low levels in order to squeeze every ounce of perfor-
mance out of it,1 but to ensure high-level system cor-
rectness, modularity and maintainability at the expense
of some performance loss. In order to increase devel-
oper productivity, the abstraction level for software de-
velopment has been raised from assembly language to
modern programming languages such as C/C++ and
ADA. There is a recent trend to raise the level of ab-
straction further to the model-level, and rely on au-
tomatic or semi-automatic code generators to produce
code in a traditional programming language. Examples
of this approach include Unified Modeling Language
(UML) [11], Model-Driven Architecture (MDA) [10],
and Model-Integrated Computing (MIC) [6].

∗The work reported in this paper was supported in part by
DARPA and ARO under contracts/grants F3615-00-1706 and
DAAD19-01-1-0473, respectively.

1This may still be true for certain domains such as digital
signal processing for mass-produced consumer products, where
performance optimizations can result in large savings in hardware
costs.

UML is a general-purpose modeling language origi-
nally designed for information systems. In order to use
UML in the embedded real-time domain, it is neces-
sary to customize the design notations with concepts
specific to real-time systems. A UML profile is a spe-
cialized subset of UML that extends or specializes UML
with mechanisms such as stereotypes, tagged values, and
constraints. The UML Profile for Schedulability, Per-
formance and Time [5] (called RT-UML in the following
discussions) is defined to enhance UML with real-time
modeling notations and facilitate development of anal-
ysis tools that work on the models. In this paper we
mainly focus on the schedulability sub-profile. There-
fore most of the steorotypes start with “SA”, which
stands for Schedulability Anaysis.

Using UML for real-time software design is not new.
Currently, the major companies that produce UML
tools for the embedded real-time market, such as Ar-
tisan Software [7], Rational [13], ILogix [8] and Tele-
logic [14], each have their own proprietary extensions
to UML for modeling real-time concepts. The main
purpose of RT-UML is to define a standard syntax for
expressing real-time concepts, so that models created
by different companies with different tools can be ex-
changed freely.

OSEK [12] is a popular standard for real-time op-
erating systems (RTOSs) used in automotive control.
The OSEK standard is defined with the stringent tim-
ing and resource constraints in the automotive domain
in mind. It consists of three parts: OSEK-OS spec-
ifies the operating system, OSEK-COM specifies the
communications mechanism, and OSEK-NM specifies
the network management system. We mainly focus on
OSEK-OS in this paper. It describes a static RTOS
where all kernel objects such as tasks, counters, alarms,
events, messages and resources are created at compile

OIL File

Device Driver

OSEK Kernel

Executable

Linker

CompilerOS Config Files

Generation
System

C Code

C Code

C Code

Object Library

Application Code

Figure 1: Development process with OSEK.

time. The OIL(OSEK Implementation Language) file
is used to describe the kernel objects, and construct
a customized kernel for the application, ensuring that
only the necessary kernel objects and mechanisms are
included in the kernel build. This minimizes the size
and overhead of the RTOS as compared to the approach
where all RTOS mechanisms are included regardless of
whether the application needs them. Figure 1 shows
the development process with OSEK. There is a clean
separation between application functional code and OS
configuration code thanks to the use of OIL files.

Even though OSEK is designed targeting the au-
tomotive domain, it is suitable for any resource-
constrained environment. The major concepts in
OSEK include:

TASK Real-time schedulable entity in the RTOS with
a priority. Two types of tasks are defined: a ba-
sic task can assume states running, ready or sus-
pended, while an extended task has an additional
state waiting where it suspends its execution wait-
ing for an event to occur.

RESOURCE Passive entity protected by Priority
Ceiling Protocol(PCP), typically shared among
several tasks.

COUNTER and ALARM A counter counts timer
ticks or other recurring signals such as angle-based
encoder interrupts. An alarm is associated with
a counter and is triggered whenever the counter
reaches a certain value. A periodic task can be de-
fined with a cyclic alarm associated with a counter
that is driven by the system timer, and an aperi-
odic task can be defined with an alarm associated
with a counter driven by some external interrupt.

EVENT Synchronization mechanism between ex-
tended tasks. An extended task can suspend itself
waiting for an event sent by another task (extended
or basic) or an interrupt service routine. When the
event is received, the task transitions from waiting
state to ready state.

ISR Three categories of ISR are defined: Category 1
ISR is not allowed to call any OSEK API, and is
independent of the OS; category 2 ISR is allowed
to call OSEK API functions freely; category 3 ISR
is divided into 2 sections, where API calling is al-
lowed in the first section but not in the second.

RT-UML OSEK

¿SAResourceÀ Resource.

SAResource.
SACapacity

Maximum number of tasks that can
access a shared resource simultane-
ously. Always one.

SAResource.
SAAccessControl

Priority Ceiling Protocol. OSEK
does not implement other protocols
specified in RT-UML such as Prior-
ity Inheritance.

¿GRMAquireÀ API call GetResource()

GRMAquire. is-
Blocking

Boolean parameter that defines if
the requesting task should block if
the requested resource is not avail-
able. Always true.

¿GRMReleaseÀ API call ReleaseResource()

¿SASchedulableÀ Basic Task. The OSEK concept of
an extended task is not present in
RT-UML.

¿SATriggerÀ Alarm. Declared in the OIL file, and
set with API calls SetRelAlarm()
and SetAbsAlarm(), to set an alarm
with either relative or absolute ex-
piration time.

¿SAPriorityÀ Task priority.

Table 1: Mapping from RT UML concepts to OSEK
concepts, either entities in the OIL files, or OSEK API
calls. This is intended to be a small sample rather than
a comprehensive definition.

In order to achieve seamless integration of modeling
and software development, it is desirable to have au-
tomated mechanisms for generation of application code
from models. In our context, we would like to map from
RT-UML concepts into the OSEK API. Since RT-UML
is mainly a collection of notations for expressing appli-
cation timing behavior and is orthogonal to the func-
tional behavior, we do not consider generation of func-
tional code from UML models, which has been covered
adequately by many commercial UML tools. Instead,

we focus on the mapping of concurrency, synchroniza-
tion and real-time constructs found in RT-UML.

Table 1 shows some example mappings. Most con-
cepts in RT-UML have intuitive mappings into OSEK
entities, either in the OIL file, or in the C-based
OSEK API. However, some concepts in RT-UML do
not have direct correspondences in OSEK, mainly be-
cause they were designed for different purposes. OSEK
is an implementation-level API designed for software
development on an embedded target, while RT-UML
is mainly designed for software modeling and real-time
analysis. Therefore, some annotations in RT-UML
such as worst-case execution time, absolute and relative
deadlines are absent in OSEK. Note that in OSEK, task
deadline is always implicitly defined the same as its pe-
riod. That is, if a task is invoked again while it is still
executing, it is deemed a deadline violation, also called
timing overrun, and error handling mechanisms in the
OSEK RTOS can detect and report this situation.

2 An Example Application Scenario in
Automotive Control

Figure 2 shows an application scenario in automotive
engine control. The system consists of 2 periodic tasks
and 1 interrupt-triggered task accessing a shared data
area protected by Priority Ceiling Protocol. It consists
of both Electronic Throttle Control(ETC) and Air-Fuel
Ratio (AFR) Control. With ETC, the usual mechani-
cal linkage between the gas pedal and the throttle plate
is eliminated, and the throttle is actuated by a DC mo-
tor. AFR controls the fuel injector timing so that the
ratio of fuel to air must not deviate more that 0.1 from
the stoichiometric air-to-fuel ratio of 14.64. Fuel is in-
jected into the intake port area of the engine cylinders
once every thermodynamic cycle (once every two engine
revolutions). The injectors are set up to deliver a pulse
of fuel whose duration corresponds to a fuel amount
(mass) which achieves a desired air to fuel ratio of the
charge in the cylinder. The timing of the pulse with
respect to the cylinder intake valve opening is also im-
portant for reasons of proper mixing of fuel and air so
that ignition of the charge is reliable.

Both ETC and AFR are triggered periodically, with
different periods dictated by application characteristics.
Both tasks read from a shared data area called SFP-
Data (SFP stands for Scaled Fuel Parameters) that gets
updated by an SFPCalculation task, which is triggered
by the crankshaft and camshaft pulse signals aperiod-
ically. The task calculates the appropriate duration of
each injector pulse as well as the engine angle to start
each injector pulse. The corresponding OSEK OIL file
is shown in the appendix.

3 Implementation Approach
We are aware of some implementations of the UML

RT Profile in commercial UML tools [7], and we believe
it is in the interest of UML tool vendors to implement
a code generator from RT-UML to OSEK in order to
facilitate adoption of RT-UML in the automotive in-
dustry. For demonstration purposes, we propose to im-
plement a prototype code generator based on a generic
meta-modeling tool called Generic Modeling Environ-
ment(GME) [3] from Vanderbilt University. GME is a
configurable toolset for creating domain-specific mod-
eling and program synthesis environments through a
meta-model that specifies the modeling paradigm of
the application domain. The meta-model captures all
the syntactic, semantic and presentation information
regarding the application domain, and defines the fam-
ily of models that can be created using the resulting
modeling environment. It contains descriptions of the
entities, attributes, and relationships that are available
in the modeling environment, and the constraints that
define what modeling constructs are legal. Model trans-
formation is defined as transforming a model conform-
ing to its meta-model A to another model conform-
ing to a different meta-model B. It is often termed
semantic translation since it changes model seman-
tics in the process of transformation, which is gener-
ally a more difficult problem than syntactic translation
such as file format conversion from postscript to PDF,
where document syntax is changed while semantics re-
mains the same. A model interpreter performs model
transformation by traversing model structure based on
meta-model definitions, and generates another model
by mapping entities in one model to the other. A code
generator from RT-UML to OSEK can be viewed as
a model interpreter that transforms from RT-UML to
OSEK API. Conceptually the process works as follows:
we first construct a meta-model for RT-UML based on
the OMG document, then synthesize a domain-specific
modeling environment for RT-UML using GME. The
model interpreter is written in C++. It traverses the
RT-UML model structure based on a set of APIs gen-
erated from the RT-UML meta-model, and generates
OSEK entities in the OIL file whenever it encounters
a corresponding RT-UML entity. We can either ex-
plicitly define a meta-model for the OSEK API in the
form of UML class diagrams, or implicitly embed this
knowledge within the model interpreter.

4 Related Work
Alan Moore[4] described an extension to UML RT

Profile in order to model the OSEK kernel in the form
of an OSEK Sub-profile. The intention is to stress-
test the RT Profile, and to facilitate tool integration

SFPCalc:Calculation

<<SAresource>>

SFPData:Data

SAaccessControl=

PriorityCeiling}

{SAcapacity=1,

SAworstCase=(2.0,’ms’),

{SApriority=5,

<<SAaction>>

<<SAschedulable>>

ETCControl:Control

SAworstCase=(0.3,’ms’),

{SApriority=8,

<<SAaction>>

<<SAresponse>>

RTat={’non−periodic’}

{SAschedulable=$R1,

<<SAtrigger>>

{SAabsDeadline=(1,’ms’)}

Clock_10ms:Clock

Clock_1ms:Clock

:CrankCam Signal: Signal

<<SAaction>>

<<SAaction>>

<<SAaction>>

AFRControl:Control

<<SAschedulable>>

<<SAschedulable>>

SAworstCase=(0.5,’ms’),

{SApriority=10,

<<SAaction>>

{SAabsDeadline=(10,’ms’)}

<<SAresponse>>

{SAschedulable=$R3,

<<SAtrigger>>

{SAabsDeadline=(1,’ms’)}

<<SAresponse>>

{SAschedulable=$R2,

<<SAtrigger>>

ReadSFPData()

ReadSFPData()

RTat={’periodic’,10,’ms’}

WriteSFPData()

RTat={’periodic’,1,’ms’}

Figure 2: An application scenario in automotive engine control. SFP stands for Scaled Fuel Parameters; AFR
stands for Air Fuel Ratio control; ETC stands for Electronic Throttle Control.

between UML modeling tools and OSEK-based analy-
sis tools. The sub-profile defines stereotypes to repre-
sent OSEK-specific concepts such as Task, ISR, Alarm,
Counter, Resource, etc. This approach takes advan-
tage of the UML profile mechanism and allows accurate
modeling of OSEK concepts. It would be straightfor-
ward to develop a code generator based on the OSEK
sub-profile, which can be implemented within a UML
modeling tool such as Artisan Studio [7]. However, it
may take years to achieve standardization of the pro-
posed sub-profile, so this approach is likely to remain a
vendor-specific solution instead of a standard solution.
Instead of proposing a separate OSEK sub-profile, we
propose a more pragmatic approach of mapping the
existing real-time profile to OSEK API. However there
are also drawbacks to our approach. Even though sig-
nificant overlaps exist between RT-UML and OSEK,
many concepts exist in OSEK but are missing in RT-
UML, and vice versa, due to different design purposes.
For example, RT-UML does not have suitable defini-
tions for the OSEK concepts of alarms, counters, ISRs.
Even though similar concepts such as clock and timer
exist in the RT-UML Real-Time Profile, their seman-
tics is not an exact match for the corresponding OSEK
concepts. Therefore, the code generator would have to

infer from the UML model and insert these objects into
the generated OIL file and C code.

Some tool vendors, such as Telelogic [14], ILogix [8],
DSpace [2] and Mathworks [9], have developed au-
tomated code generators for modeling tools such as
SDL, Statemate and Matlab/Simulink that can gener-
ate OSEK-compliant code. However we are not aware
of code generators for UML that targets the OSEK
API. We believe this should be a worthwhile endeavor,
since UML is widely used in the automotive body elec-
tronics domain, and UML RT Profile should be an ideal
candidate modeling notation.

Becker [1] described mapping from UML RT Profile
to the Real-Time Java API (RTSJ). Since Java is an
object-oriented language, it is a natural fit for code gen-
eration from UML, while OSEK is based on C instead
of C++ due to tight resource constraints. RT-Java of-
fers a much richer set of concurrency and real-time API
calls than OSEK, which must live under much tighter
resource constraints than RT-Java. For example, RT-
Java offers sophisticated memory management facilities
with a real-time garbage collector, while OSEK does
not allow dynamic memory allocation, and forces all
system objects to be pre-allocated at system startup.
RT-Java evolved from Java running on the desktop and

mainly targets hand-held devices such as PDAs and cell
phones, which often have ample processing power run-
ning heavyweight OSs such as Windows CE, instead
of “under-the-hood”, deeply embedded systems with
severe resource constraints targeted by OSEK. Note
that traditionally embedded software development in
automotive control does not even use a RTOS. It was
relatively recent that usage of a RTOS becomes com-
monplace. Therefore, it is understandable that OSEK
designers are very conscious of resource requirements
of the RTOS, and tradeoff efficiency against features.

References
[1] L.B. Becker, R.H. Holtz, and C.E. Pereira.

On mapping rt-uml specifications to rt-java api:
bridging the gap. In Proceedings of Fifth IEEE
International Symposium on Object-Oriented Real-
Time Distributed Computing, pages 348 –355,
2002.

[2] Lutz Koster, Thomas Thomsen, and Ralf Stracke.
Connecting simulink to osek: Automatic code gen-
eration for real-time operating systems with tar-
getlink. In Proceedings of SAE Congress, 2001.

[3] Akos Ledeczi, Miklos Maroti, Arpad Bakay, and
Gabor Karsai. The generic modeling environment.
In Proceedings of the IEEE International Work-
shop on Intelligent Signal Processing, May 2001.

[4] Alan Moore. Extending the uml rt profile to sup-
port the osek infrastructure. In Proceedings of
Fifth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pages
341–347, 2002.

[5] OMG. Uml profile for schedulability, performance
and time. Technical report, Object Management
Group, 2003.

[6] Janos Sztipanovits and Gabor Karsai. Model-
integrated computing. IEEE Computer,
30(4):110–111, April 1997.

[7] Artisan Software website.
http://www.artisansw.com.

[8] ILogix website. http://www.ilogix.com.

[9] Mathworks website. http://www.mathworks.com.

[10] OMG MDA website. www.omg.org/mda.

[11] OMG UML website. www.omg.org/uml.

[12] OSEK website. http://www.osek-vdx.com.

[13] Rational website. http://www.rational.com.

[14] Telelogic website. http://www.telelogic.com.

A OSEK Files for the Example Sce-
nario in Figure 2

The OIL file defines the alarms used to trigger tasks,
but does not specify the period for a periodic alarm.
The way to have a task triggered periodically is to ex-
plicitly set alarms by using the SetRelAlarm API call in
the C code. For example, in order to set the RunAFR-
ControlAlarm to trigger AFRControl task every 1 ms,
we need to call

SetRelAlarm(RunAFRControlAlarm /*AlarmID*/,

0/*Offset*/,1/*Period*/);

When the system starts up, the TASK InitAlarms
is first invoked which sets up alarms for all the pe-
riodic tasks. At runtime, the interrupt service rou-
tine CrankCamSignalISR is triggered by external inter-
rupts from crankshaft and camshaft, and increments
the counter CRANKCAM COUNTER, which in turn
sets the alarm RunSFPCalcAlarm that triggers the
aperiodic task SFPCalcTask.

Below is definition of tasks in the C source code.

TASK(InitAlarms) {

/* Initialize Model */

osek_mrate_initialize(1);

/* AFRControlAlarm runs every 1ms */

SetRelAlarm(RunAFRControlAlarm /*AlarmID*/,

0/*Offset*/,1/*Period*/);

/* ETCControlAlarm runs every 10ms */

SetRelAlarm(RunETCControlAlarm /*AlarmID*/,

0/*Offset*/,10/*Period*/);

TerminateTask();

}

ISR(CrankCamSignalISR) {

/*Increment CRANKCAM_COUNTER*/

}

TASK(SFPCalcTask) {

GetResource(SFPData);

/* Perform computation */

/* Write output variables */

ReleaseResource(SFPData);

TerminateTask();

}

TASK(AFRControlTask) {

GetResource(SFPData);

/* Read input variables */

/* Perform computation */

ReleaseResource(SFPData);

TerminateTask();

}

TASK(ETCControlTask) {

GetResource(SFPData);

/* Read input variables */

/* Perform computation */

ReleaseResource(SFPData);

TerminateTask();

}

Below is the OIL file.

CPU MPC555{

/*************************************/

/* Tasks */

/*************************************/

TASK SFPCalcTask {

TYPE = BASIC;

SCHEDULE = NON;

PRIORITY = 10;

ACTIVATION = 1;

AUTOSTART = FALSE;

STACKSIZE = 4096;

SCHEDULE_CALL = FALSE;

RESOURCE = SFPData;

};

TASK AFRControlTask {

TYPE = BASIC;

SCHEDULE = NON;

PRIORITY = 8;

ACTIVATION = 1;

AUTOSTART = FALSE;

STACKSIZE = 4096;

SCHEDULE_CALL = FALSE;

RESOURCE = SFPData;

};

TASK ETCControlTask {

TYPE = BASIC;

SCHEDULE = NON;

PRIORITY = 5;

ACTIVATION = 1;

AUTOSTART = FALSE;

STACKSIZE = 4096;

SCHEDULE_CALL = FALSE;

RESOURCE = SFPData;

};

/*************************************/

/* Must be highest priority in the system.*/

/*************************************/

TASK InitAlarms {

TYPE = BASIC;

SCHEDULE = FULL;

PRIORITY = 16;

ACTIVATION = 1;

AUTOSTART = TRUE;

STACKSIZE = 128;

SCHEDULE_CALL = FALSE;

};

/*************************************/

/* Alarms */

/*************************************/

ALARM RunSFPCalcAlarm {

COUNTER = CRANKCAM_COUNTER;

TASK = SFPCalcTask;

ACTION = ACTIVATETASK;

};

ALARM RunAFRControlAlarm {

COUNTER = SYSTEM_TIMER;

TASK = AFRControlTask;

ACTION = ACTIVATETASK;

};

ALARM RunETCControlAlarm {

COUNTER = SYSTEM_TIMER;

TASK = ETCControlTask;

ACTION = ACTIVATETASK;

};

/*************************************/

/* ISRs */

/*************************************/

ISR CrankCamSignalISR {

CATEGORY = 2;

};

/*************************************/

/* Resources */

/*************************************/

RESOURCE SFPData {

/*Put application-specific attributes here. */

}

/*************************************/

/* Counters */

/*************************************/

COUNTER SYSTEM_TIMER {

MAXALLOWEDVALUE = 65535;

TICKSPERBASE = 1;

MINCYCLE = 1;

};

COUNTER CRANKCAM_COUNTER {

MAXALLOWEDVALUE = 65535;

};

/*************************************/

/* O/S */

/*************************************/

OS OSEK_OS {

CC = AUTO;

STATUS = STANDARD;

SCHEDULE = AUTO;

SYSTEMSTACKSIZE = 16000;

StartupHook = TRUE;

ErrorHook = FALSE;

ShutdownHook = FALSE;

PreTaskHook = FALSE;

PostTaskHook = FALSE;

WINDVIEW_SUPPORT = FALSE;

RTA_SUPPORT = FALSE;

STACK_FILL_DIAGNOSTIC = FALSE;

};

