Model-based Development of Embedded Systems:
Executable Models vs. Code Generation

Tim Schattkowsky*

L University of Paderborn, C-LAB,
D 33102 Paderborn, Germany
tim@c-lab.de

Abstract. The use of models during the development of embedded systems is
nowadays fairly limited. During the evolution of the system, the implementa-
tion and the design models often tend to get out of sync. The use of Model
Driven Architecture in the development of embedded systems makes this prob-
lem more imminent, as it is much more demanding by introducing two separate
modeling levels. Thus, there is a need to introduce techniques that overcome
this problem. Complete code generation and the use of executable models po-
tentially eliminate the need for a manual implementation that may get out of
sync with the design models. We discuss important properties of such ap-
proaches and outline the advantages and possibilities of using a UML virtual
machine in embedded systems.

1 Introduction

Nowadays, the role of the UML in the development of embedded systems, if it is used
at all, is usually limited to the specification of these systems. The employment of
UML in the design of embedded systems has caused severe problems in practice.
Objections from developers stem from their experience that the implementation of the
UML design models has to take place manually. This often results in software that
significantly differs from their design models, rendering these almost useless. There
are multiple reasons for this. Some are caused by the methodology (or lack thereof)
used for modeling these systems, others are caused by the role of the models in the
development process.

The design of the embedded system starts at a high level of abstraction. This ab-
straction allows an easier and sometimes more formal assessment of the problem.
However, the introduction of platform-specific properties significantly increases the
complexity of the models and often introduces additional elements into these models
that break capabilities to easily verify the correctness of these models.

The implementation of embedded systems is nowadays done using traditional im-
perative programming languages like C or C++. Usually, the design models are trans-
lated into these languages manually. This translation takes place by the developer
attempting to resemble the modeled behavior using the implementation language.
However, since the models usually mainly consist of state charts, this translation



tends to be error prone. Furthermore, especially for embedded systems, the imple-
mentation step often already breaks consistency between the design models and the
actual application, as the design models often do not fit the implementation platform
because the designer was simply unaware of platform specifics or left these out the
simplify the design or enable certain verification methods.

Even more, during the evolution of the application this tends to get worse. Thus,
the actual implementation and the models often tend to get out of sync after a short
period of development. The role of the design models later in the application life
cycle is often limited. Evolution often only takes place on the implementation level
without incorporating evolution of the design models. This renders the design models
quite useless after some time. In better cases, the design models are updated manually
to reflect changes in the implementation. However, this helps only for documentation
purposes.

Model Driven Architecture (MDA) [7] appears to be a direct assessment of the
problem, as it separates the Platform Independent Model (PIM) that intuitively solves
the problem from the Platform Specific Model (PSM) that describes the actual im-
plementation. However, the inclusion of platform characteristics at the modeling level
does not solve the problem. Additional efforts are moved from the implementation to
the model mapping. This may actually cause more work to be done at first hand.

The outlined problems are caused to a large amount be the de facto independence
between model and implementation causing these to get out of sync. There are two
well-known approaches that to overcome this problem — code generation and execu-
table models. In this paper, we will discuss their properties with respect to application
in embedded systems and their use in MDA-based approaches.

2 Code Generation from Models

Code generation is a well-known way of deriving an implementation from models. A
machine computes executable program code directly from the models. This may yield
different qualities of generated code. The code generation often only produces code
skeletons. These skeletons are incomplete fragments of code intended to be by a de-
veloper completed in the language of the generated code.

However, models providing complete information on a system can be used to gen-
erate the fully operational system from the models. In this case, the generated code
can be compiled to the executable system without the touch of a developer. In this
case, the code may not even be intended to be modified be the developer, as this
would raise the problem of reintegrating the changes into the model.

Only systems derived by complete code generation are inherently in sync with
their models. As the models are expected to be equivalent to the code, it is not desir-
able to allow changes to the generated code. The same changes could be made to the
models as well. Thus, only changes on the model should be allowed.

There is considerable support for code generation from UML models available.
Tools like Rational XDE [10], MagicDraw [4] and Together [1] are capable of
generating code skeletons from UML models to some extend. However, no fully
model-based development is currently supported, especially not at MDA level.



3 Directly Executable Models

The most obvious way of keeping the implementation and the design synchronous is
quite straightforward using the design models as the implementation. For UML, this
implies the existence of a Virtual Machine (VM) capable of executing the UML sub-
set used in the modeling approach.

The use of a virtual machine eliminates the need to translate the models into a dif-
ferent language use a code generator. This has several advantages. The model be-
comes directly executable on any platform providing the necessary VM. This elimi-
nates the effort necessary to generate new executable code each time a new target
platform appears or some improved mechanisms for running the software on a plat-
form have to be incorporated. Such updates will be made to the VM without touching
the executed models. Thus, unlike for code generation approaches there is no depend-
ency on the creator of the model to run it on a new or enhanced platform. This is a
substantial gain, as all changes to the execution environment (the VM) are now im-
mediately beneficial to all executed software. Furthermore, the models are always
immediately executable. This decreases the turnaround time during development.
However, [12] seems to overestimate the value of this benefit, as it can be automated
to a large extend. This may practically nullify the benefit.

4 Comparing Resource Requirements

There are also some problems with the use of executable models. A VM is a more
generic approach than generated code and uses potentially more resources. It is likely
to be more time and memory consuming the specialized generated code. In the field
of embedded systems this is an important consideration. There is a strong belief, that
these systems are resource limited in a way that we need to consider different tech-
niques for development on these systems. While this was true when the systems
where limited in a sense, that both computing power and memory where close to
nonexistent, it is worth reconsidering this nowadays. We are approaching an age
where especially the memory required holding the executable part of a software is of
an ever decreasing size compared to the memory available. Even if in some systems
memory is still a consideration, it will fade over time.

What is most interesting in this context is the size and the memory overhead of the
VM, because it is very likely that the VM is more complex and has a larger memory
imprint then the software executed on such a VM. Otherwise the difference in mem-
ory usage between using a VM and executing generated Code comes down to the
relation in size between the models and the generated code. The size of the VM is
however strongly related to the size of their counterpart for generated code, which is
the runtime library the code relies on. These are similar in function and very likely
require comparable resources. Thus, the efficient realization of a VM does not need to
have drawbacks on this side.

What remains is only the difference in size for the executed code. It seems to be
reasonable to consider this difference as fairly constant. The usual way of code gen-



eration implies that the size of generated code strongly correlates with the model size.
This makes the size difference undesirable for most applications, especially in the
near future.

5 Approaches on Executable UML

There has been already a lot of work done in defining the semantics of UML models
for simulation and code generation. Most this work is currently based on the UML
1.x specification. Thus, these approaches had to introduce additional means of de-
scribing the behavior that extended beyond UML itself.

The xXUML approach [11] targets at creating executable application models and in-
cludes a complete development methodology targeting at embedded system develop-
ment. XUML is currently based on the UML 1.x specification. It creates a well-
defined platform for executable models based on class diagrams and state diagrams.
The core of the approach is the Action Specification Language (ASL) used to define
the behavior of active objects during their lifecycle. With this language, clear action
semantics are introduced into the models. This work has been integrated into an
OMG-adopted standard for precise action semantics for the UML [6]. However, to
create the executable Model, the XUML approach relies on a platform-specific (i.e.,
Ada) code generation mechanism. Different specific compilers can be used to create
the complete software system from the UML models and ASL.

The Executable and Translatable UML (*;UML) [8] approach defines a develop-
ment process that incorporates complete code generation from an application specific
UML maodel. It relies on translation modules that have to generate specific and 100%
accurate code for the application target platform. The underlying models are executa-
ble and can undergo certain verifications. The application of “;UML has been out-
lined [9][5].

For virtual machines, the Sun Java Platform [14] is the most well-known example
of a virtual machine nowadays. It is designed to support, among others, some features
that are of interest here. It executes “bytecode” representing object-oriented pro-
grams. The Java VM [3] has been implemented in hardware, und thus it demonstrates
the applicability of the idea of executing fully object-oriented in a VM that can be
implemented in both hard- and software.

VMs for other programming languages have been created, including the once
groundbreaking UCSD Pascal and Smalltalk [2]. Software emulators for computer
hardware emulating complete systems in software or the runtime for the classic Lu-
casarts Adventures [13] are examples for VMs as well.

Finally, there exists a proposal for a UML VM [12]. However, this does not cover
the use of a true VM for UML models. Instead, it uses code generation to create Java
code from the models. It appears that the runtime semantics including garbage-
collected memory management are fully supplied by Java. This is currently not desir-
able for embedded systems.



6 Towards a UML Virtual Machine for use in Embedded Systems

As already described, we several advantages for the use of a VM over code genera-
tion. Some of these advantages have to be backed up by the design of the VM. The
special properties of Embedded Systems have to be considered when considering the
application of a VM in embedded systems. As said, the VM itself has to fit inside the
system to meet the more limited memory requirements. Furthermore, a mechanism for
providing timing-accurate execution has to be considered. The necessary timing in-
formation has to be contained in the executed model (i.e., as a description of maxi-
mum transition time between states),

By providing a VM for UML with a small memory footprint and no need for a
stack to execute the VM itself (as opposed to using a stack at runtime for the executed
model) it is possible to synthesize such a VM to a FPGA to directly provide a flexible
execution environment. The JAVA VM has been hindered by both their need for a
stack and the garbage collection memory management to achieve this nowadays.

A UML VM targeting at embedded systems could be designed in a way that over-
comes these problems. Such a VM could be based on executing a mixture of state
charts and sequential code in a way that enables the complete development of the
whole system using MDA by using VM-compatible models as PSMs. The PSM for
embedded systems is in this special case very likely to be much related to the PIM. As
the development would be focused on the construction of these models, the approach
inherently enables fully model-based development.

7 Conclusion & Future Work

We have discussed different aspects of using code generation and executable models
to support MDA. We found the use of these methods very desirable, as both can fully
eliminate the need for manual implementation in the development of embedded sys-
tems. However, we found that there are some important advantages in the use of a
VM, which make it more desirable than code generation approaches. The use of a
VM keeps models and implementation inherently in sync. Furthermore, improve-
ments to the runtime environment are instantly available to all application compatible
with the VM. Even more, these applications are instantly available for new platforms
hosting the VM.

We are working on the implementation of such a virtual machine for use in em-
bedded systems. The VM under development complies with the requirements out-
lined here and is based on the current UML 2.0 specification. We plan an evaluation
of the VM in a european industry context.



References

(1]
(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]
[11]

[12]

[13]
[14]

Borland Software Corp.: Together. http://www.borland.com/together, 2003.

Goldberg, A., Robson, D: Smalltalk: The Language and Its Implementation. Addison-
Wesley, 1983.

Lindholm, T., Yellin, F.: The JavaTM Virtual Machine Specification. Second Edition,
Addison-Wesley, 1999.

Magic Draw. http://www.magicdraw.com, 2003.

Mellor, S., Balcer, M., Balcer, M.J., Mellor, S.J.: Executable UML: A Foundation for
Model Driven Architecture. Addison-Wesley, 2002.

Object Management Group, The: Action Semantics for the UML. OMG ad/2000-08-04,
2000.

Object Management Group, The: Model Driven Architecture (MDA). OMG ormsc/2001-
07-01, 2001.

Project Technology, Inc.: Executable and Translatable UML - Summary.
http://www.projtech.com/pdfs/xtuml/xtuml_summary.pdf, 2002.

Project Technology, Inc.: Model Driven Architecture (MDA).
http://www.projtech.com/info/mda.html, 2003.

Rational Software: Rational XDE. http://www.rational.com/products/xde/, 2003.

Raistrick, C., Wilkie, 1., Carter, C.: Executable UML (XUML). In Proc. 3rd International
Conference on the Unified Modeling Language UML, 2000.

Riehle, D., Fraleigh, S., Bucka-Lassen, D., Omorogbe, N.: The Architecture of a UML
Virtual Machine. In Proceedings OOPSLA 2001, ACM Press, 2001.

ScummVM. http://www.scummvm.org/, 2003.

Sun Microsystems, Inc.: The Java Language Specification. Second Edition. 2000.



