
MDA for SoC Embedded Systems Design,

Intensive Signal Processing Experiment∗

Pierre Boulet, Jean-Luc Dekeyser, Cédric Dumoulin, Philippe Marquet

Laboratoire d’Informatique Fondamentale de Lille

Université des Sciences et Technologies de Lille

France

Abstract

The development of embedded applications is very difficult. Several different languages
are usually used to specify different parts of the application or of the hardware. Dealing
with so many languages can be daunting. A separation of the preoccupations: application,
hardware architecture, association between them and the simulation or execution technologies
are keys to efficient co-design of embedded applications. The Model Driven Architecture can
be used to better deal with the reuse of parts of the design and the interoperability between
both the implementation technologies and the various simulation levels.

We propose a construction of metamodels based on MDA to support a co-design method-
ology. This construction will be experimented on intensive signal processing application
co-design to justify the adequacy of this methodology to usual industrial development tech-
niques.

1 Introduction

Because of the vast scope of the encountered problems, of the quick evolution of the architectures,
we observe a very great diversity as regards the programming languages. Ten years ago each
new proposed model (for example within the framework of a PhD) led to the implementation
of this model in a new language or at least in an extension of a standard language. Thus a
variety of dialects were born, without releaving the programmer of the usual constraints of code
development. Portability of an application from one language to another (a new one for example)
increases the workload of the programmer. This drawback is also true for the development of
embedded applications. It is even worse, because the number of abstraction levels has to be
added to the diversity of the languages. It is essential to associate a target architecture model
to the application specification model, and to introduce as well as a relationship between them.
These two models are practically always different, they are often expressed in two different
languages.

From this experience, one can derive some principles for the design of embedded application
development environments:

∗This work has been supported by the ITEA 99038 project, Sophocles. This paper is an adapted version of
[BDDM03].



• To refrain from designing programming languages to express the two different models,
application and architecture.

• To profit from all the new systems dedicated to simulation or synthesis without having to
reformalize these two models.

• To use a single modeling environment possibly supporting a visual specification.

• To benefit from standard formats for exchange and storage.

• To be able to express transformation rules from model to model. Possibly the transforma-
tion tools could be generated automatically from this expression.

We believe that the Model Driven Architecture [MM03, Boa01] can enable us to conceive a
new method of system design respecting these principles. Indeed, it is based on the common
UML modeling language to model all kinds of artifacts. The clear separation between the models
and the platforms makes it easy to switch to a new technology while re-using the old designs.
This may even be done automatically provided the right tools.

In this paper, we will briefly recall the Model Driven Architecture in section 2. Then, with
some justifications (section 3), thanks to the MDA, we will propose a “Y” construction of our
metamodels to support a co-design methodology in section 4. Finally an experimentation of this
construction applied to intensive signal processing will justify the adequacy of this methodology
to usual industrial development techniques in section 5.

2 Model Driven Architecture

The Model Driven Architecture (MDA) [MM03, Boa01] is the OMG proposed approach for
system development. It primarily focuses on software development, but can be applied to any
system development. The MDA is based on models describing the systems to be built. A
system description is made of numerous models, each model representing a different level of
abstraction. The modeled system can be deployed on one or more platforms via model to model
transformations.

2.1 Models and Compilation Techniques

Model transformation is not new. The traditional compilation chain is based on model trans-
formations; a compiler is a translator: A compiler accepts as input a program in some language
and produces as output a program in an other language. This translation preserves the “mean-
ing” of the program. That meaning refers to the semantics of the program in the language it
is expressed in. This language is described in the language reference manual. This description
is actually a model of the language. Despite the language structure may be formally given in a
grammar, the model of the language is not formalized. Thus, if the compiler construction may
be derived from the grammar with the help of syntactic tools such as the well known Lex &
Yacc [LMB92], the rest of this construction is handmade by a specialist who ensures the respect
of the language semantics and the validity of the translation process.

In the traditional approach, the implicit model is used to write the compiler. The largest
drawback of this approach is the impossibility of automatic compiler/translator construction.



The definition of a new language implies the elaboration of the corresponding new implicit model
and the construction of a new compiler, even if the use of intermediate languages attempts to
alleviate the cost of evolution (a new model only needs a new translation to the intermediate
language) and retargetability (a new target only needs a new translation from the intermediate
language).

For sure, the definition of transformation tools able to handle whatever model is out of
the scope of our research project. Because the MDA approach targets in essence a specific
domain, we are convinced of the viability of automatic model transformations in the frame of
domain-specific models and languages. This approach is coherent with the Generative Program-
ming [CE00] methodology. Some works have already demonstrated graph to graph transfor-
mations parameterized by the input and output graph models (the metamodels) and a set of
transformation specifications [ALS+02].

2.2 MDA Focus

The MDA goals are: to increase the reuse of existing developments; to reduce the time of
new developments; to perenize current and future developments; to ease the integration of new
technologies with long proven business models. To achieve these goals, the MDA approach
promote a clear separation of the fundamental logic of the specification from the particular
technologies that implement it. This allows to build business models that can be implemented
across different existing platforms and rapidly deployed on new emerging technologies.

According to the MDA board ORMSC [Boa01],

“The MDA separates the models of the system into Platform Independent Models
(PIMs), and Platform Specific Models (PSMs). How the functionality specified in a
PIM is realized is specified in a platform-specific way in the PSM”.

Going from one model to another is done via some transformations. These transformations can
be done manually, or automatically with the help of the so called mapping rules (see section 2.4).

2.3 Model and Metamodel

A model is expressed with the help of a language, like UML, which can be visual or textual. A
language is itself described in a metamodel defining the available elements and the construction
rules.

In the MDA, several models are used simultaneously, each one being described by its own
metamodel. Models and metamodels are usually represented using the UML standard.

The MDA board defines platform as follows:

“A platform is the specification of an execution environment for models. The term
platform is used to refer to technological and engineering details that are irrelevant
to the fundamental functionality of a system.”

Thus a system or application that is described at the Platform Independent Level can be mapped
to several Platform Specific Models, each one representing a different technological implementa-
tion.



2.4 Transformations and Mappings

A key point of the MDA is the transformation between models. The transformations allow to go
from one model at a given abstraction level to another model at another level, and to keep the
different models synchronized. Related models are described by their metamodel, on which we
can define some mapping rules describing how concepts from one metamodel are to be mapped
on the other metamodel. From these mapping rules we deduce the transformations between any
models conforming to the metamodels.

2.5 Use of Standards

The MDA is based on proven standards: UML for modeling and the MOF for metamodel
expression. The new coming UML 2.0 [Obj03] standard is specifically designed to be used with
the MDA. It removes some ambiguities found in its predecessors (UML 1.x), allows more precise
descriptions and opens the road to automatic exploitation of models. The MOF (Meta Object
Facilities [Obj00]) is oriented to the metamodel specifications.

3 System-on-Chip Design

SoC (System-on-Chip) can be considered as a particular case of embedded systems. SoC design
covers a lot of different viewpoints including as much the application modeling by the aggregation
of functional components, as the assembly of existing physical components, as the verification
and the simulation of the modeled system, as the synthesis of a complete end-product inte-
grated into a single chip. As a rule a SoC includes programmable processors, memory units
(data/instructions), interconnection mechanisms and hardware functional units (Digital Signal
Processors, application specific circuits). These components can be generated for a particular
application; they can also be obtained from IP (Intellectual Property) providers. The ability
to re-use software or hardware components is without any doubt a major asset for a codesign
system.

3.1 Current Practice: The “Y-chart”

The multiplicity of the abstraction levels is appropriate to the modeling approach. The infor-
mation is used with a different viewpoint for each abstraction level. This information is defined
only once in a single model. The links or transformation rules between the abstraction levels
permit the re-use of the concepts for a different purpose. In the “Y-chart” [GK83] approach,
three domains are identified:

• Functional domain: algorithms, flowcharts, functional components.

• Structural domain: processors, memories, busses.

• Physical domain: delays, power consumption, hardware resources, real-time and embed-
ding constraints.

The authors propose to specify specific information in each of these three domains. The design
activities match a successive refinement process between each domain according to various ab-



straction levels. The design flows from the functional domain, to the structural domain, finally
to the physical domain, and so on while going down in the abstraction levels.

3.2 Intellectual Properties and Reuse

IPs are block-oriented instantiations of functional or physical units. They are especially designed
for reuse. A few characteristics make this possible (standard interface, formal verification, doc-
umentation, availability of different abstraction levels). In a codesign system, functional IPs
should be included in the functional domain. Physical IPs are used to specify the SoC architec-
ture. Some mapping constraints could appear due to their usage.

4 MDA Approach for “Y” Design

Our proposal is partially based upon the concepts of the “Y-chart”. The MDA contributes
to express the model transformations which correspond to successive refinements between the
abstraction levels.

Metamodeling brings a set of tools which will enable us to specify our application and
hardware architecture models using UML tools, to reuse functional and physical IPs, to ensure
refinements between abstraction levels via mapping rules, to ensure interoperability between the
different abstraction levels used in a same codesign, and to ensure the opening to other tools,
like verification tools, thought the use of standards.

4.1 Metamodels for the “Y” Design

ISP-UML

(application)

PIM

hardware

architecture

PIM

Mapping rules

use model
use model

- Platform specification 

concepts

association

PIM

deployment

PSM

- Application and architecture

association concepts

independently of targeted

platforms.

PIM

PSM

SystemC

Model

VHDL

Model

Java

Model

DPN*

Model

interoperability

Model

*Distributed Process Network

Figure 1: Overview of the metamodels for the “Y” design

We preserve the two following models: application and hardware architecture (functional
and structural domains) and we characterize them by different metamodels. Some concepts
from these two metamodels are similar in order to simplify their understanding and use. Models



for application and hardware architecture are done separately (maybe by two different people).
At this point, it becomes possible to map the application model on the hardware architecture
model. For this purpose we introduce a third metamodel, named association metamodel, to
express associations between the functional components and the hardware components. This
metamodel imports the two previously presented metamodels.

4.2 PIMs and PSMs

All the previously defined models, application, architecture and association, are platform in-
dependent. No component is associated with an execution, simulation or synthesis technology.
Such an association targets a given technology (Java, SystemC RTL, SystemC TLM, VHDL,
etc). Once all the components are associated with some technology, the deployment is realized.

The diversity of the technologies requires interoperability between abstraction levels and
simulation and execution languages. For this purpose we define an interoperability metamodel
allowing to model interfaces between technologies.

Mapping rules between the deployment metamodel, and interoperability and technology
metamodels can be defined to automatically specialize the deployment model to the chosen
technologies. From each of the resulting models we could automatically produce the execu-
tion/simulation code and the interoperability infrastructure.

The simulation results can lead to a refinement of the application, the hardware architecture,
the association or the deployment models (see figure 2).

5 Intensive Signal Processing Experiment

We have started implementing our ideas on MDA for SoC design in the particular case of
intensive signal processing applications. The application, hardware architecture and association
PIMs are under development using UML profiles. We will sketch below the main ideas of these
models.

5.1 Application PIM

The application metamodel describes a mean to express data dependences. It is based on the ISP
UML profile described in [DBDM03]. ISP UML allows the expression of both task parallelism
and data parallelism. A main characteristic of this metamodel is the single assignment form.
Thus the time dimension is explicit in the data structures (arrays) and can be infinite.

Modeling is component based. The component represents some computation and the in-
put and output capabilities via ports. Those components can be composed, data parallel or
elementary.

• A compound component expresses task parallelism by the way of a component graph. The
edges of this graph are directed and represent data dependences.

• A data parallel component expresses data parallelism by the way of the parallel repetition
of an inner component on patterns of the input arrays producing patterns of the output
arrays. Some rules must be respected to describe this repetition. In particular, the output
patterns must tile exactly the output arrays.



hardware

architecture

signals frequencies

et :FFT
'signal' frequencies

inTiler:ComplexInputTiler
<<aolTiler>>

array pattern
outTiler:ComplexOutputTiler

<<aolTiler>>

pattern array

Java

Model

DPN

Model

SystemC

Model

VHDL

Model

Java code C++ code
SystemC

C++ code

VHDL

files

interoperability

Model

software / hardware interoperability

automatic transformation

i n p u t S ig n a l o u t p u t S ig n a l

f f t : I n f F F T
s i g n a ls f r e q u e n c i e s

a b s : I n f A b s o lu t e V a lu e

v a lu e s

a b s

s q u a r e : I n f S q u a r e

v a lu e s

s q u a r e s

e n e r g y : I n f E n e r g y

v a lu e s

e n e r g ie s

t h r e s h o ld : I n f T h r e s h o ld

le v e l s

t h r e s h o ld s

r e je c t i o n : I n f R e je c t i o n

in F r e q u e n c ie s

s q u a r e d M o d u le s
t h r e s h o ld s

o u t F r e q u e n c i e s

i f f t : I n f I F F T
f r e q u e n c i e s

s i g n a ls

ISP-UML

association

signals frequencies

et :FFT
'signal' frequencies

inTiler:ComplexInputTiler
<<aolTiler>>

array pattern
outTiler:ComplexOutputTiler

<<aolTiler>>

pattern array

inputSignal outputSignal

fft:InfFFT
signals frequencies

abs:InfAbsoluteValue

values

abs

square:InfSquare

values

squares

energy:InfEnergy

values

energies

threshold:InfThreshold

levels

thresholds

rejection:InfRejection

inFrequencies

squaredModules
thresholds

outFrequencies

ifft:InfIFFT
frequencies

signals

deployment

signals frequencies

et :FFT
'signal' frequencies

inTiler:ComplexInputTiler
<<aolTiler>>

array pattern
outTiler:ComplexOutputTiler

<<aolTiler>>

pattern array

inputSignal outputSignal

fft:InfFFT
signals frequencies

abs:InfAbsoluteValue

values

abs

square:InfSquare

values

squares

energy:InfEnergy

values

energies

threshold:InfThreshold

levels

thresholds

rejection:InfRejection

inFrequencies

squaredModules
thresholds

outFrequencies

ifft:InfIFFT
frequencies

signals

automatic generation

1b2

3

4

5

2b

2ctransformations

SynDEx AAA

refinement6

PSM

PIM

1

1. Separate application and hardware architecture modeling

2. Association with semi-automatic mapping and scheduling

3. Deployment (choice of simulation or execution level and platform for each com-
ponent)

4. Automatic generation of the various platform specific simulation or execution
models

5. Automatic simulation or execution code generation

6. Refinement at the PIM level given the simulation results

Figure 2: Overview of a possible methodology



• An elementary component is the basic computation unit of the application and has to be
defined for each target technology.

This hierarchical description allows to consider the application with different granularities. In-
deed, the data dependences expressed at one level are approximations of the real data depen-
dences described at the deepest level of the hierarchy.

5.2 Hardware Architecture PIM

The hardware architecture metamodel, though not completely finalized yet, exhibits the same
modeling elements as the application metamodel: components, ports and links between ports
of components. These modeled physical components are either active components such as pro-
cessors or direct memory accessors; passive components such as random access memories or
sequential access memories; buses; or even compound components. The ports model the com-
munication endpoints of the components and the links between ports model the data paths.

Our description is inherently hierarchical. We introduce a repetitive hierarchy (similar to the
data parallel components of the application metamodel) to deal with multiprocessors or memory
banks, for example. In the same way as in the pattern extraction of the application metamodel,
we are able to describe most of the regular interconnections between the repeated components.
As in the application metamodel, the hierarchy allows to view the hardware architecture with
several granularities, exposing or not its inner details.

5.3 Association PIM

The association metamodel is currently under development. It will allow to express the mapping
and the scheduling of an application on a hardware architecture. It imports the two metamodels
used to model these application and hardware architecture. It adds an association view to
express the mapping by linking the components of the application with active components of
the hardware architecture and the ports and dependences of the application model with the
passive hardware elements and the buses.

The data parallelism in the application metamodel and the repetitive hardware components
can be associated to define parallel schedules. This association is independent (it really is at the
PIM level) of the abstraction levels used for simulation or execution.

5.4 PSM Levels

The other levels contain technological data and thus are considered as PSM. The deployment
model specifies the technologies used for each model elements of the association model. This
can be done manually by a human. The deployment model can be automatically exploited to
produce the models corresponding to each technology (Java, DPN, SystemC, VHDL, ...). Then,
the transformation rules and code generation rules are used to generate the appropriate code
and files for a technology.

We expect that in the future any MDA aware technology will comes with its metamodel
and its code and configuration generation rules. Adding such new technology will only require
the development of the transformation rules from the deployment metamodel to the technology
metamodel.



6 Conclusion and Perspectives

We have proposed in this paper to use the Model Driven Architecture to design SoCs embedded
systems. The MDA eases the reuse of application or hardware designs and the interoperability
between different simulation levels and technologies.

The separation of the application models, of the hardware architecture models and of the
association models allows to follow the current practice of SoC design (the “Y” design). These
tree metamodels are PIMs, independent of the technologies used for simulation or execution.
The specification of these technologies is done in the deployment metamodel. From this PSM
to the execution or simulation code generation, mapping rules allow automation.

To validate our approach, we have sketched application, hardware and association meta-
models dedicated to intensive signal processing. To further the experiment, we are studying
SystemC [Ope02] PSMs for intensive signal processing. We are specifying all our metamodels
with the MOF and intend to write a tool [DDK+03] to express and apply mapping rules in our
particular domain of application: intensive signal processing. We have restricted our approach
to SoCs for intensive signal processing, but we are confident that this approach can also be used
with other kind of embedded systems.

References

[ALS+02] Aditya Agrawal, Tihamer Levendovszky, Jon Sprinkle, Feng Shi, and Gabor Karsai. Gen-
erative programming via graph transformations in the model-driven architecture. In OOP-
SLA 2002 Workshop on Generative Techniques in the context of Model Driven Architecture,
November 2002.

[BDDM03] Pierre Boulet, Jean-Luc Dekeyser, Cédric Dumoulin, and Philippe Marquet. Mda for soc
design, intensive signal processing experiment. In FDL’03, Frankfurt, September 2003. ECSI.

[Boa01] OMG Architecture Board. Model driven architecture (MDA). Technical Report ormsc/2001-
07-01, OMG, 2001.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

[DBDM03] Cédric Dumoulin, Pierre Boulet, Jean-Luc Dekeyser, and Philippe Marquet. UML 2.0 struc-
ture diagram for intensive signal processing application specification. Research Report RR-
4766, INRIA, March 2003.

[DDK+03] Cédric Dumoulin, Jean-Luc Dekeyser, Boris Kokoszko, Stéphane Pulon, and Gérard Cristau.
Interoperability between design and simulation tools using model transformation techniques.
In FDL’03, Frankfurt, September 2003. ECSI.

[GK83] D. D. Gajski and R. Kuhn. Guest editor introduction: New VLSI-tools. IEEE Computer,
16(12):11–14, December 1983.

[LMB92] John Levine, Tony Mason, and Doug Brown. Lex & Yacc. O’Reilly & Associates, 1992.

[MM03] Joaquin Miller and Jishnu Mukerji, editors. MDA Guide (Draft Version 0.2). http://www.

omg.org/docs/ab/03-01-03.pdf, 2003.

[Obj00] Object Management Group, Inc. MOF meta object facility, specification, version 1.3. http:
//www.omg.org/cgi-bin/doc?formal/00-04-03, January 2000.

[Obj03] Object Management Group, Inc., editor. U2 Partners’ (UML 2.0): Superstructure, 2nd
revised submission. http://cgi.omg.org/cgi-bin/doc?ad/03-01-02/, January 2003.



[Ope02] Open SystemC Initiative. SystemC. http://www.systemc.org/, 2002.


