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Abstract.

A reactive system indefinitely responds to its environment. We are particularly interested here in
control and embedded applications, where the environment is often the physical world. During
the development of such systems, non-determinism is often useful, for describing a partially
designed system and/or its environment.
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LUTIN is a language designed to describe and simulate such non deterministic reactive systems.
Executing a LUTIN program consists in randomly generating a particular behaviour consistent
with its definition. In order to guide the generation, the language provides some constructs for
controlling the random choices.
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1 An overview of the language

Synchronous programs [1, 2, 3] deterministically produce outputs from input values. To be able
to compile, synchronous programs need to be fully deterministic. However, sometimes, we want
to be able to describe synchronous systems in a non deterministic manner.

e If one wants to describe (and simulate) an intrinsically non-deterministic system. A typical
example is when one want to describe the environment of a reactive program; it can be
very useful for testing and simulation purposes.

e Another potential use of the animation of non-deterministic code is when one wants to
simulate partially written reactive programs (some components are missing). The idea
is then to take advantage of program signatures, pre/post conditions, or code chunks to
simulate those programs the more realisticly as possible, taking into account the available
constraints, and drawing the non-deterministic parts. This can be very useful to simulate
and test applications at every stage of the development process.

We call an non-deterministic program such pieces of code that produce their outputs non-
deterministically. LUTIN is a language to describe such non-deterministic programs. LUTIN
program describes a set of data-flow constraints over Booleans and numeric values, that are
combined with an explicit control-structure based on regular expressions. LUTIN can be seen as
a language to program stochastic processes (Markov chains).

1.1 Symbolic state/transition systems
The basic qualitative model consists in a very general state/transition system, characterised by:

e amemory: a finite set of variables with no special restrictions on their domains (to simplify,
we will consider here just boolean, integer and floating values);

e an interface: variables are declared as inputs, outputs, or locals;

e a finite control structure based on regular expressions, whose atoms represent reactions of
the machine.

A global state of the system is then a pair made of the current control point (the control-state),
and a current valuation of its memory (the data-state).

1.2 Synchronous relations

We adopt the synchronous approach for the reactions: all values in the memory are changing
simultaneously when a reaction is performed. The previous value of the memory corresponds
to the source data-state, and the current value to the next data-state. The program statements
denote what are the possible values of the current memory depending on the current data-state.
This information is quite general: it is a relation between the past and current values of the
variables. In particular, no syntactic distinction is made between uncontrollable (inputs and
past values) and controllable (locals and outputs) variables. Performing a reaction will consist
in finding solutions to such a formula. This problem induces a restriction: we suppose that,
once reduced according to the past and input values, the constraints are solvable by some actual
procedure’.

Lconcretely, we have developed a constraint solver for mixed boolean/linear constraints.
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1.3 Weights

Since we have to deal with uncontrollable variables, defining a sound notion of distribution
must be done carefully: depending on its variables, a formula may be infeasible, and thus its
actual probability is zero. In other terms, if we want to use probabilistic distributions, we would
have to define a reaction as a map from the tuple (source state, past values, input values) to
a distribution over the pairs (controllable values, next state). Expressing and exploiting this
kind of model would be too complex. We prefer a pragmatic approach where probabilities are
introduced in a more symbolic way.

The main idea is to keep the distinction between the probabilistic information and the constraint
information. Since constraints are influencing probabilities (zero or non-zero), this information
does not express the probability to be drawn, but the probability to be tried. Therefore, we do
not use distributions (i.e., set of positive values the sum of which is 1) but weights. A weight is a
positive integer: if two possible reactions (i.e., the corresponding constraints are both satisfiable)
are labelled respectively with the weights w and w’, then the probability to perform the former
is w/w’ times the probability to perform the latter.

1.4 Static weights versus dynamic weights

The simplest solution is to define weights as constants, but in this case, the expressive power
can be too weak. With such static weights, the uncontrollable variables qualitatively influence
the probabilities (zero or not, depending on the constraints) but not quantitatively: the idea is
then to define dynamic weights as numerical functions of the inputs and the past-values. Taking
numerical past-values into account can be particularly useful. A good example is when simulating
an alive process where the system has a known average life expectancy before breaking down; at
each reaction, the probability to work properly depends numerically on an internal counter of
the process age.

1.5 Global concurrency

Concurrency (i.e., parallel execution) is a central issue for reactive systems. The problem of
merging sequential and parallel constructs has been largely studied: classical solutions are hier-
archical automata “a la StateCharts” [?, ?], or statement-based languages like Esterel [2]. Our
opinion is that deeply merging sequence and parallelism is a problem of high-level language, and
that it is sufficient to have a notion of global parallelism: intuitively, local parallelism can always
be made global by adding extra idle states. As a consequence, concurrency is a top level notion
in our model: a complete system is a set of concurrent program, each one producing its own
constraints on the resulting global behaviour.

1.6 More reading

Some case studies that use Lutin can be found in [1, 5]. A description of the constraint solving
algorithms is done here: [(]. A Lutin tutorial is also available in html and pdf.


http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lurette/doc/lutin-tuto/lutin-tuto-html.html
http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lurette/doc/lutin-tuto/lutin-tuto-pdf.pdf
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2 The LUTIN language

2.1 Data types

There exists 3 pre-defined data types: bool, int, and real.
Structured data-types (arrays, enums, structures) and user-defined abstract types are not yet
implemented (coming soon hopefully).

2.2 Nodes

Nodes are entry points for LUTIN programs. Nodes are made of an interface declaration and a
body. LUTIN nodes can be reused in other LUTIN nodes (as LUSTRE nodes); they can also be
top-level programs.

2.2.1 Support variables

The node? interface declares the set of input and output variables; they are called the support
variables. During the node execution, actual input values are provided by the program envi-
ronment. Output variable ranges can specified (or not) in the declaration. By default, numeric
value ranges from -10000 to 10000.

> Example:
node foo(x:bool) returns (t:real [0.0;100.0]; i:imnt) =
NodeBodyStatement

The node body is made of statements that we describe below.

2.2.2 Local variables

Node body statements can be made of a local variable declarations. Such variables are declared
with the exist keyword.

> Example:
exist y : real in st
exist z : int [-100000; 100000] in st

In their scope, local variables are similar to outputs; we call them the controllable variables.

2.2.3 Memory variables

Any expression may refer to the previous value of a variable using the pre keyword. The value
of pre x is inherited from the past and cannot be modified. Memories are therefore similar to
inputs; we sometimes call them the uncontrollable variables.

A memory variable pre x doesn’t need to be declared, as long as the variable x is declared.

> Example:

if x then (t > pre t) else (t <= pre t )
describes any valuation of the support where t is higher than its value at the previous instant
when x is true, and lower otherwise.

2used to be called system in the earlier versions of LUTIN, to highlight the difference with LUSTRE nodes.
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Note that pre can only operates over variables. For example, pre (t+10.0) is forbidden.

2.3 Trace Statements

A node body can be made of statements that describes how support and local variables evolve
at each instant. Such statements are called trace expressions (or a trace statements). Trace
expressions are either atomic, or composed of other trace expressions using operators inspired
by regular expressions, and described below.

2.3.1 Atomic Trace Statements (Constraints)
An atomic trace is simply a relation (or a constraint) between the program variables. A constraint
is a trace of length 1.

> Example:

x and (0.0 < t) and (t <= 10.0)
The constraint above describes any valuation of the support variables where x is true and + is
between 0.0 and 10.0.

Note that, during the execution, if x is an input of the current node, and if x is false at the
current instant, then the constraint is unsatisfiable.

Atomic statements can be combined to describe longer traces using the trace operators described
below.

An atomic statement is said to be startable if it is made of a satisfiable constraint. When an
atomic statement is not satisfiable, we say that it deadlocks.

2.3.2 Sequence

If st1 and st2 are 2 trace expressions, st1 £by st2 is a trace expression that
e behaves as st1, and when it terminates, behaves as st2;
e deadlocks as soon as t1 or t2 deadlocks.

The sequence st1 £by st2 is startable if and only if st! is startable.

2.3.3 Choice

If st1, ...stn are n trace expressions, {|st! |... |sin } (the first | is optional) behaves as follows:
randomly choose one of the startable statements from st1, ..., stn. If none of them are startable,
the whole statement deadlocks. {lst1 |... |stn } is startable if and only if one of the sti is
startable.

Weighted choice. In a choice, the random selection of a particular startable statement is
uniform. For instance, if k of n statements are startable, each of them is chosen with a probability
of 1/k.

This is the reason why the choice is not a binary, associative statement:

{st1 |{st2 |st3 }}

is not stockastically equivalent to

{{st1 |st2 }1st3 }
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In order to influence the probabilities, the user may assign weights to the branches of a choice:
{lwi: st1--- lwn: stn }

Weights (wi) may be any integer expression made of constants and uncontrollable variables. In
other terms, only the environment and the past may influence the probabilities. If not specified,
the weight is equal to 1, and the first bar is optional (e.g., '{st! |st2 }’ is equivalent to '{|1:
st1 11: st2 }'). Weights do not define the probability to be chosen among the choices, but the
probability to be chosen among the possible choices, (i.e., among startable statements).

Priority Choice. {|>st! |>... |>stn } behaves as st! if st1 is startable, otherwise behaves as
st2if st2 is startable, etc. If none of them are startable, the whole statement deadlocks. The first
|> is optionnal.

2.3.4 Loops

loop st terminates normally if st deadlocks; otherwise, it behaves as st £by loop st. This can be
read as “repeat the behavior of st as long as possible”.

Nested loops. The execution of nested loops may results on infinite, instantaneous loops.

> Example: If ¢ is a non satisfiable constraint, the statement
loop loop ¢
keeps the control but do nothing.

We consider programs that generates such instantaneous loops as incorrect (this is quite similar
to infinite recursion in classical languages).

Statically checking if a program is free of instantaneous loops is undecidable. One solution is to
adopt a statical criterium rejecting all incorrect programs, but also some correct ones.
Typically, a program is certainly free of instantaneous loop if each control branch whitin a loop
contains a statement that “takes time” (i.e., a constraint).

> Example: The (potentially) incorrect program:
loop loop c

can be safely replaced by:
loop {c fby loop c }

The opposite solution is to accept a priori any programs and generate a runtime error if an
instantaneous loops arises during the execution. This is the solution adopted in the operational
semantics (Section 4).

2.4 Exceptions
2.4.1 Defining and Raising Exceptions

Global exceptions can be declared outside the main node:
exception ident

or locally within a trace statement:

exception ident in st
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An existing exception ident can be raised with the statement: raise ident

2.4.2 Catching exceptions

An exception can be caught with the statement:

catch ident in st do st2

If the exception is raised in st1, the control immediatelly passes to st2. If the “do” part is omitted,
the statement terminates normally.

2.4.3 The predefined Deadlock exception

When a trace expression deadlocks, the Deadlock exception is raised. In fact, this exception is
internal and cannot be redefined nor raised by the user. The only possible use of the Deadlock
in programs is one try to catch it:

> Example:
catch Deadlock in stl1 do st2

Cf Section 2.7.4.

2.4.4 Non determinism and deadlocks

The general rule is that, if a statement can start, then it must start; this is the reactivity principle.

2.5 Parallel composition
2.5.1 The &> operator

In order to put in parallel several statements, one can write:

{&>st1 &>... &>stn }

where the first &> can be omitted.

This statement executes in parallel all the statements st1 ... stn. All along the parallel execution
each branch produces its own constraint; the conjunction of these local constraints gives the
global constraint.

If one branch terminates normally, the other branches continue. The whole statement terminates
when the last branches terminates.

If (at least) one branch raises an exception, the whole statement raises the exception.

2.5.2 Parallelism versus stockastic directives

It is impossible to define a parallel composition which is fair according to the stockastic directive.

10
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> Example: Consider the statement:
{{11000: X |[Y'} &> {11000: A |IB}}
where X, A, XAB, ANY are all satisfiable, but not XA A:

e the priority can be given to XA B, which does not respect the stockastic directive of the
second branch,

e or to AAY, which does not respect the stockastic directive of the first branch.

In order to solve the problem, the stockastic directives are not treated in parallel, but in sequence,
from left to right:

e the first branch makes its choice, according its local stockastic directives,

e the second one branch makes its choice, according to what has been chosen by the first one
ete.

In the example, the priority is then given to XAB.
Finally, the treatment is:

e parallel w.r.t. constraints (it’s a conjunction),
e but sequential w.r.t. weights directives (left to right).

Note that the concrete syntax (&>) reflects the fact the operation is not commutative.

2.5.3 Parallelism and exceptions

There is no notion of “muti-raising”, even when several statements are executed in parallel. In
a parallel composition, exception raising are, like stockastic directives, treated in sequence from
left to right.

2.6 Calling nodes from nodes: a cheap parallel composition mechanism

The run/:=/in construct is another way of executing code in parallel. It is actually the only
way of calling Lutin nodes from other nodes. Nodes are executed, and the result of this execution
is re-injected in the calling nodes (as if an external call is made).

Let i1, ...., im be m uncontrollable variables, and ol, ..., on be n controllable ones, then

run (ol, ..., on) := anode(il, ...., im) in st

will execute the node a_node, and compute values for ol, ..., on that will be substituted in st. In
st ol, ..., om are therefore uncontrollable.

Follows a working example that makes use of run statements:

> Example:
node N() returns (y:int) = y = O fby loop y = pre y+1
node incr(x:int) returns (y:int) = loop y = x+1
node use run() returns(x:int) =
exist a,b:int in
run a := N() in
run b := incr(a) in
incr(b) in

run x :
loop true

11
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If the chosen values during a run make a constraint unsatisfiable, no backtracking occurs. For
instance, the following expression is very likely to deadlock:

> Example:
run x := within(0,100) in x = 42

Indeed, if 42 is not chosen during the call to the within node (which definition is obvious), the
constraint x=42 will fail.

This form of parallelism is cheaper, because contraints are solved locally. But of course it is less
powerful: constraints are not merged, but solved in sequence (no backtracking). More detail on
the run semantics is provided in Section 4.2.

2.7 Some sugared shortcuts

In this section, we present a set of operators that do not add any expressing power to the
language, but that ought to make the LUTIN programmer’s life more harmonious.

2.7.1 Propagating a constraint into a scope

Very often, one wants to define some constraints that should hold in all (or most) of the program
statements. One way to do this is to to put it in parallel with the statement, and to raise an
exception as soon as one branch finishes.

> Example:
trap stop in {
&> loop { exp } fby raise stop
&> st fby raise stop

}

Because this is very useful, we defined a dedicated construct (assert) that has exactly the same
semantics:

> Example:
assert ezp in st

In other words, the constraint ezp (a Boolean expression) is distributed (propagated) in all the
constraints of the statement st.
2.7.2 Random loops

Random loops are defined by constraining the number of iterations. There are actually two
pre-defined kinds of random loops:

e Interval: loop[min, maz]
the number of iteration should be comprized between the integer constants min and max
(which must satisfy 0 < min < maxz).

e Average: loop~ av: sd
the average number of iteration should be av, with a standard deviation sd. The behavior

12
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is defined if and only if 4 * sd < av.

Note. Random loops are following the reactivity principle, which means that the actual number
of loops may significantly differ from the “expected” one since looping may sometimes be required
or impossible, according to the satisfiability of constraints. The precise semantics is given in §4.

2.7.3 Define and catch an exception

The following statement:
trap z in st do st2
is a shortcut for: exception z in catch z in st do st2

2.7.4 Catching deadlocks

catch Deadlock in st! do st2
can be written:

try st do st2

If a deadlock is raised during the execution of st1, the control passes immediately to st2. If st!
terminates normally, the whole statement terminates and the control passes to the sequel.

2.8 Combinators

Combinator were introduced in the language to allow code reuse. It’s a kind of well-typed macro.
One can define a combinator with the let statement:

let td (Params) : Type = St1 in St2

e Such a definition may appear at top-level, outside a node, in which case the "in St2’ is
absent.

e Classical scoping rules apply for St1: free variables are first binded to the Params declara-
tion, otherwise they are binded to the scope in which the whole statement appears.

e The ” (Params)” part is optional; with no parameters, the declaration simply means that
1d is an alias for the expression St1 within St2.

e The ”: Type” is optional; when absent, the type is deduced from the expression St1.

e The type is either a data-type (bool, int, real) or the type trace, meaning that the
expression ”St1” (and thus the identifier "id”) denotes a behaviour. trace is an abstract
type. It does not say anything about the support variables of the denoted behaviour.

Here is an example of (global) Boolean combinator over data expressions:

> Example:
loet within(x, min, max: real): bool = (min <= x) and (x <= max)

13
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Here is an example of trace combinator. It takes two traces and returns a trace that:
e runs the two trace arguments in parallel,

e terminates when the second one terminates.

> Example:
let as_long.as(X, Y : trace) : trace =
trap Stop in
X & {Y fby raise Stop}
b

2.8.1 Reference declarations

If one wants to acces to the previous value of a variable, one has to declare in the combinator
profile that it is a reference using the ref keyword.

> Example:
let foo(pt: real ref, t: real) : bool =

if pre pt < pt then pt < t else t < pt
Another example of the use of reference variables is given in Section 7.1.

2.8.2 Pre-defined combinators: nor, xor, and #

Some useful combinators are predefined to state that, among a list of Boolean expressions:

e none is true (not)
e cxactly one is true (xor)

e cxactly zero or one is true (#)

> Example:
node N() returns (x,y,t:bool) =

{
| nor(x,y,z) or xor(x,y,z)
| #(x,y,t) -- actually equivalent to the previous line

}

2.9 Calling external code

In order to use external code from LUTIN, we provide a mechanism based on dynamic (shared)
libraries (a.k.a. .so or .d11 files). Such dynamic libraries should be built and used according to
certain conventions that we describe in this section.

14
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Moreover, the type of imported functions should be declared in the LUTIN file, and of course,
the declared types should match their definitions in the library. For example, in order to be able
to call the sin and the cos extern functions in a lutin file, one have to declare them like that:

> Example: A LUTIN program calling 2 extern functions sin() and cos().

extern sin(x: real) : real
extern cos(x: real) : real

node cartesian(r, alpha: real) returns (x, y: real) =
loop {
(x = r * cos (alpha)) and
(y = r * sin (alpha))

Another example, as well as the extern library compilation process and the LUTIN interpreter
options, is provided in Section 7.3

BEWARE: if the types you declare in the Lutin file does not match their definitions, it might
run silently returning wrong values!

15
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3 Syntax

3.1

3.2

3.3

Lexical conventions

One-line comments start with —— and stop at the the end of the line.

Multi-line comments start with (* and end at the next following *). Multi-line comments
cannot be nested.

Ident stands for identifier, following the C standard ([-a-zA-Z] [_a-zA-Z0-9]%),

Floating and Integer stands for decimal floating point and integer notations, following C
standard,

Syntax notation (EBNF)
Keywords are displayed like that: keyword.

Grammatical symbols like that: GramaticalSymbol.
Optional parts like that: | something |.
List (0 or more) parts like that: { something }.

Grouped parts like that: ( something ).

Syntax rules

Those syntax rules are automatically extracted from the yacc.

LuTiN files. A Lutin file (.1ut) is a list of declarations. Top-level declarations can be combi-
nator, exception, or node declarations.

lutFile = { lutOneDecl }

lutInclude = 1include <string>

lutOneDecl = [ lutInclude | lutLetDecl | lutExceptDecl | lutExternNodeDecl |
lutNodeDecl |

lutExceptDecl = exception [utldentList

lutLetDecl = let lutldent [ ( [ lutTypedParamList]) | [ : lutType | =
lutTraceExp

lutExternNodeDecl ::= extern lutldent | ( [ lutTypedParamList] ) || ¢ lutType ]

lutNodeStart 2= node | system

lutNodeDecl == lutNodeStart lutldent ( lutTypedldentListOpt ) returns (

lutTypedldentList ) = lutTraceErp

Variable and combinator Parameter Declaration. Both are declared with their type. The
ref type flag may only appear in combinator parameter declaration. A default value (=FEzp) may
only appear in variable declaration. Range annotations are only meaningful for numeric variables.

lutIdentList n= lutldent { , lutldent }

16
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lutldentTuple
lutERunVars

lutERun VarList
lut Typedldent

lut TypedldentListOpt

lutTypedldentList

lut Typed ParamList

lutTypedParam
lutERun Var

lutType
lutPredefType
lutParam Type

Trace expressions.

lutTraceExp

lutLoopExp
lutLoopStatExp
lutAverage
lutGaussian
lutChoice
lutPrio

lutPara
lutBraceFExp

lutldentList

( lutldentList )

( lutERunVarList )

lutERun VarList

lutERunVar { , lutERunVar }
lutldentList + lutType [ [ lutExp 5 lutExp 1 | [ = lutExp |
[ lut TypedIdentList |

lut TypedIdent { 3 lutTypedldent } | 3 ]
lut TypedParam { 3 lutTypedParam }
lutldentList : lutParam Type

n= lutldent | : lutType | [ = lutEzp |

lutPredefType | trace
bool | int | real
lut Type | lutPredefType ref

A Trace expression is a statement of type trace.

lutExp

raise lutldent

lutTraceExp £oy lut TraceExp

lutLoopExp

lutLoopStatExp

lutBrace Fxp

lutLetDecl in lutTraceExp

| strong | weak | assert [utEzp in lutTraceFxp

erun [utEERunVars := lutErp in lutTraceFxp

run [utldentTuple := lutBxp in lutTraceExp

run [utldentTuple := lutExrp

exist [utTypedldentList in lutTraceFxp

exception [utldentList in lutTraceFxp

try lutTraceEzp [ do lutTraceExp |

catch [utldent in lutTraceEzp [ do lutTraceExp |

trap lutldent in lutTraceExp | do lutTraceExp |

| strong | weak | loop lutTraceExp

loop ( lutAverage | lutGaussian ) lutTraceExp

[ lutExp | o lutEzp ] ]

“ tExp [ ¢ lutExp |

| [lwtEzp : | lutTraceExp { | [lutExp ¢ | lutTraceExp }
I> lutTraceExp { 1> lutTraceExp }

&> lutTraceExp { &> lutTraceExp }

{ (wtTraceEzp | lutPrio | lutTraceExp lutPrio | lutChoice |
lut TraceExp lutChoice | lutPara | lutTraceExp lutPara )

Trace expressions are surrounded by braces, and data expressions by parenthesis.
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Data Expressions.

A data expression is a statement of type bool, int, or real. They are

almost classical algebraic expressions, except for the special ”operator” pre which requires a
variable identifier.

lutFExp

lutUnExp
lutBinFxp

lutNaryFExp
lutExpList
lutConst

lutConst

lutldentRef

pre lutldent

( lutExp )

lutUnFExp

lutBinFExp

if lutBrp then lutkrp else lutkxp
lutNaryExp

(= | not ) lutExp

lutExp (=| <> | or |xor |and |=> |+ |- |* |/ |div |mod | < |<=|> |
>= ) lutEzp

[ (# | nor | xor ) (lutEzpList) ]
[lutExp | { 5 lutExp }

true | false | lutlnteger | lutFloating

Ident references, with or without arguments, appear in both trace or data expressions. Arguments
can be any expressions.

lutldentRef
lutArgList
lutArg

3.4

Priorities

lutldent | ( [ lutArgList] ) |
lutArg { , lutArg }
lutTraceExp

Priorities are the following, from lower precedence to higher precedence. In the same level, the
default is to group binary operators left-to-right (note that it may result in type errors).

else,

=>, logical implication, group right-to-left,

or,
xor,

and,

= <>,

>, L, >= <=
+, = (binary),

* /. div, mod,
not,

- (unary).

18
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4 Semantics

4.1 Abstract syntax

The semantics is defined according to the following abstract syntax, where:

e we only consider binary priority choice and parallel composition, since they are left-
associative,

e we define the empty-behaviour (¢) and the empty-behaviour filter (¢ \ ), which are not
available in the concrete syntax, but useful for defining the semantics,

e random loops are normalized by expliciting their weight functions:

— the stop function ws takes the number of iteration already performed and returns the
relative weight of the “stop” choice,

— the continue function w. takes the number of iteration already performed and returns
the relative weight of the “continue” choice.

These functions are completly determined by the “profile” of the loop in the concrete
syntax (interval or average, together with the corresponding static arguments). See §4.5
for a precise definition of these weight functions.

e the actual number of (already) performed iterations is syntacticaly attached to the loop;
this is convenient to define the semantics in terms of rewriting. In the main statement, this
flag is obviously set to 0.

empty behaviour: €

: _ empty filter: ¢\ e
atomic constraint:

catch: [t <> t/]

raise: 1" :
sequence: t - t' choice: [iL t;i/w;
priority: t > t/ random loop: tgwc’“’s)
parallel: t & t/ priority loop: t*

T denotes the set of trace expressions, and C the set of constraints.

4.2 The run function

The semantics of an execution step is given by a function taking an environment e and a (trace)
expression t: Run(e,t).
This function returns an action which is either:

e a transition %n, which means that ¢ produces a constraint ¢ and rewrite itself in the (next)
trace n,

e a termination I*, where x is a termination flag which is either ¢ (normal termination), &
(deadlock) or some user-defined exception.

A denotes the set of actions, and X denotes the set of termination flags.
The run function is inductively defined using a recursive function R (t, g, s) where the parameters
g and s are continuation functions returning actions.

e g:CxT — Ais the goto function, defining how a local transition should be treated
according to the calling context.
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e s: X — Aisthe stop function, defining how a local termination should be treated according
to the calling context.

At the top level, R, is simply called with the trivial continuations:
Run(e,t) = Re(t, Me,v).>v, Az.19) (1)
4.3 The recursive run function

4.3.1 Basic traces.

The empty behavior raises the termination flag in the current context:
Re(e,g,5) = s(e)

A raise statement terminates with the corresponding flag:
Re(1%,g,8) = s(x)

A constraint generates a goto or raises a deadlock, depending on its satisfiability in the environ-
ment:

Re(c,9,5) = (e = )7 g(c.e) : 5(9)

4.3.2 Sequence.

Re(t-t,g,5) = Relt,g',6)
where:

gd(e,n) = gle,n-t)
sx) = (z=¢)?Re(t',g,5) : s(x)

4.3.3 Priority choice.

There is no continuation here: just a deterministic choice between the two branches. The second
branch is taken if and only if the first branch deadlocks in the current context.

Re(t=t,g,5) = (r# )71 : Ro(t',g,s) where r=TRe(t g,s))

4.3.4 Empty filter.

This internal construct is introduced to ease the definition of the loops. Intuitively, it forbids
the core t to terminate immediately.

Re(t\ €,9,5) = Relt, g,s")

where:
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4.3.5 Priority loop.

The semantics is defined according to the equivalence:
& (t\e)-t" e
4.3.6 Catch.
Note that z is a catchable exception (either § or a user-defined exception).
Re([t <= t'], 9,5) = Re(t, g &)

where:

where:
s(x) = (x=¢)?Ret,g,5) : s(x)
gd(e,n) = Re(t',qd",s") with:
s'"(z) = (x=2¢)?g(c,n) : s(z)
J"(d,n') = glend,n&n')

4.3.8 Weighted choice.

The evaluation of the weights, and the (random) total ordering of the branches according those
actual weights are both performed by the environment:
Sorte(t1/wy, -+, tn/wy) returns:

e a priority expression t,(1) > - > t,() reflecting the priorities that have been (randomly)
assigned to the branches; note that £ may be less than n, since some branches may have
an actual weight of 0.

e the deadlock expression 1% if all weights are evaluated to 0.

See §4.4.1 for the precise definition of Sort,.
R@(|IT'L:1 ti/U}i,g, S) = Re(SOTte(tl/’U}l, e ,tn/wn)a g, S)

4.3.9 Random loop.

The semantics is defined according to the equivalence:

o) o (1N e) 1849 fuweli) | efwa(i)

)
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4.4 The execution environment
4.4.1 Random sort of weighted choices
4.5 Predefined loop profiles
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5 Executing LUTIN programs
5.1 The toplevel interpreter
Here is the output of lutin --help:

usage: lutin [options] <file> | lutin -help

-n, -m, -node, -main <string>
Set the main node
--version, -version
Print the current version and exit

-V Set the verbose level to 1
-vl <int> Set the verbose level
-gnuplot, -gp

call gnuplot-rif to display data (type ’a’ in the gnuplot window to refresh it)
-rif, -quiet, -q, -only-outputs
display only outputs on stdout (i.e., behave as a rif input file)
-0 <string> output file name
-L, -1ib <string>
Add a dynamic library where external code will be searched in
--replay, -r
Use the last generated seed to replay the last run
-seed <int> Set a seed for the pseudo-random generator (wins over --replay)
-boot Perform ther first step without reading inputs
--max-steps, -1 <int>
Set a maximum number of simulation steps to perform
--step-inside, -si
Draw inside the convex hull of solutions (default)
--step-edges, -se
Draw a little bit more at edges and vertices
--step-vertices, -sv
Draw among the vertices of the convex hull of solutions
-precision, -p <int>
Set the precision used for converting float to rational (default: 2)
-locals, -loc
Show local variables in the generated data.
—--ocaml, -ocaml
Generate ocaml glue code that makes it possible to call the lutin interpreter
from ocaml with the current set of arguments.
-h, -help, —--help
Display this message
-more Show hidden options (for dev purposes)

5.2 The C and the OcamL API

It is possible to call the LUTIN interpreter from C or from OCAML programs.
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Calling the LUuTIN interpreter from C. In order to do that from C, one can use the functions
provided in the luc4c_stubs.h header file (that should be in the distribution). A complete
example can be found in examples/lutin/C/. It contains, a C file, a LUTIN file that is called
in the C file, and a Makefile that illustrates the different compilers and options that should be
used to generate a stand-alone executable.

Calling the LUTIN interpreter from OCAML. In order call LUTIN from OCAML, one can use
the functions provided in the luc4ocaml.mli interface file (or cf the ocamlcdoc generated html
files). A complete example can be found in examples/lutin/ocaml/.

5.3 Tools that can be used in conjunction with LUTIN

Some tools developed in the Verimag lab might be useful in you write LUTIN programs. In this
section, we list the tools and describe briefly how they can be used in conjunction with LUTIN.

5.3.1 LUSTRE

Using the lutin --2c-4lustre <string> option and the C API described in Section5.2, one
can call the LUTIN interpreter from a lustre node. A complete example can be found in
examples/lutin/lustre/.

5.3.2 LUCIOLE

LucioLk is GUI that provides buttons and slide bars to ease the execution of LUSTRE programs.
Using the lutin --2c-4luciole option, one can use the LUTIN interpreter in conjunction with
Luciole. This can be very handy when writing LUTIN programs. A complete example can be
found in examples/lutin/luciole/.

todo : Faire une copie d’ecran illustrant une simu luciole/lutin.

5.3.3 LURETTE

LURETTE is a tool that automates the testing of reactive programs, for example written LUSTRE.
The LUTIN program interpreter is embedded into LURETTE; it is mainly used to program the
environment of the System Under Test (a.k.a. SUT). Hence, LURETTE is able to test the program
into a simulated environment. The SUT inputs are the LUTIN outputs, and vice versa.
Therefore, LUTIN is used to close the reactive programs by providing inputs. From a lutin-centric
point of view, a LUTIN program could use LURETTE and LUSTRE to close the LUTIN program.
A complete example can be found in examples/lutin/xlurette.

5.3.4 RDBG
Lutin programs can be debugged with RDBG (http://rdbg.forge.imag.fr/).

5.3.5 CHECK-RIF

A tool that performs post-mortem oracle checking using the Lustre expanded code (.ec) inter-
preter ECEXE.
Here is the output of check-rif --help:
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Usage:
check-rif [options]* -ec <file>.ec <Rif File name to check>

Performs post-mortem oracle checking using ecexe.

The set of oracle Inputs should be included in the set of the RIF
file inputs/outputs.

At the first run, the coverage information is stored/updated in the
coverage file (cf the -cov option to set its name). The variables
declared in this file should be a subset of the oracle outputs. If
the coverage file does not exist, one is 1is created using all the
oracle outputs. If not all those outputs are meaningfull to compute
the coverage rate, one just need to delete corresponding lines in the
coverage file. The format of the coverage file is straightforward,
but deserves respect.

Options are:

-ec <string>ec file name containing the RIF file checker (a.k.a., the oracle)

-cov <string>0Override the default coverage file name (<oracle name>.cov by default).
-reset-cov reset the coverage rate (to 0%) before running

-stop-at-error Stop processing when the oracle returns false

-debug set on the debug mode

--help Display this list of optiomns.

5.3.6 SIM2CHRO

SIM2CHRO is a program written par Yann Rémond that displays data files that follows the RIF
convention. For example, to display RIF file, one can launch the command : sim2chrogtk
-ecran -in data.rif

5.3.7 GNUPLOT-RIF

GNUPLOT-RIF is another tool that displays RIF files. Sometimes it performs a better job than
SIM2CHRO, sometimes not.
Here is the output of gnuplot-rif --help:

gnuplot-rif [options] <f>.rif
Generates a <f>.gp file such that gnuplot can plot the rif file.

gnuplot-rif first reads the content of a file named .gnuplot-rif in the
current directory, if it exists. If it contains:

hide T
hide totox
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gnuplot-rif will ignore all I/0 which names begin by ’toto’, as well as
the variable ’'T’. If it contains:

show xx*
it will show show only I/0 beginning by ’xx’. If it contains:
plot_range 12 42
it will plot data from step 12 to 42 only. If it contains:

dynamic
window_size 56

it will show only the last of 56 steps of the simulation (40 by default).

If one ’show’ statement is used, all hide statements are ignored.
If several plot_range or window_size are used, the last one win.

A1l these values can be overriden by setting options.
Command-line options are handled afterwards.

-no-display generate the .gp file, without launching gnuplot
-dyn  dynamically display the end of the rif file

-size <s> set the size of the sliding window in -dyn mode
-min <min> only display steps > min (ignored in -dyn mode)
-max <max> only display steps < max (ignored in -dyn mode)
-nogrid remove the grid (useful with -dyn)

--hide-var <string> hide a variable (one can use the wildcard ’*’)
-hv <string> shortcut for --hide-var

--show-var <string> show a wildcard-hided variable
-sv <string> shortcut for --show-var

Changing the default gnuplot terminal:
-wxt launch gnuplot with the wxt terminal
-qt launch gnuplot with the qt terminal
-x11 launch gnuplot with the X11 terminal
-jpg output in a jpg file
-pdf output in a pdf file
-ps output in a B&W post-script file
-cps output in a color post-script file
-eps output in a color encapsulated post-script file
-latex output in a latex file
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-V set on a verbose mode
-h  display this help message

An example is provided in Figure 1 of Section 7.1.

6 Known bugs and issues

6.1 Numeric solver issues

Since we target the test of real-time software, we put the emphasis on the efficiency of the solver.
In order to solve numeric linear constraints, we use the library of convex polyhedron POLKA [?]
which is reasonably efficient, at least for small dimension of manipulated polyhedra — the algo-
rithms complexity is exponential in the dimension of the polyhedron. Polyhedron of dimension
bigger that 15 generally leads to unreasonable response time.

Note however that independent variables — namely, variables that do not appear in the same
constraint — are handled in different polyhedra. This means that the limitation of 15 dimensions
does not lead to a limitation of 15 variables. Fortunately, having more than 15 variables that
are truly interdependent in the same cycle ought to be quite rare.

6.1.1 Solving integer constraints in dimension n > 2

When the dimension is greater than 2, for the sake of efficiency, we do not use classical methods
such as linear logic for solving integer constraints: we solve those constraints in the domain of
rational numbers and then we truncate. The problem is of course that the result may not be a
solution of the constraints.

In such a case, we chose to pretend that the constraint is unsatisfiable (after a few more tries
according to various heuristics), which can be wrong, but which is safe in some sense. The right
solution there would be to call an integer solver, which is very expensive, and yet to be done.

6.1.2 Fairness versus efficiency

A LUTIN program can be interpreted in two different modes; one that emphasises the fairness
of the draw; the other one that emphasises the efficiency. Indeed, suppose we want to solve the
following constraint:

(A1) V (BA ) Aas A (g Vas)

where b is a Boolean, and where o; are atomic numeric constraints of the form: ), a;z; < cst.
The first step is to find solution from the Boolean point of view. This leads to the four solutions:

bagazosazes,  bogasozouds,  boqasastaas,  boanasouds
Now, suppose that:
a1 =100>2, as=200>2z, ag=2>0, auy=z >z, as=x>1

where x is an integer variable that has to be generated by LuTiN. We use the convex polyhedron
library to solve the numeric constraints, which lead respectively to the following sets of solutions:
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Sl=bAz€[2;100]; S2=bAx=0; S3=bAT€[2;200; S4=bAT=0

In order to perform a fair draw among the set of all solutions, we need to compute the number
of solutions in each of the set Si. But this computation is very very expensive for polyhedron
of big dimension. Moreover, as we use Binary Decision Diagrams [?] to solve the Boolean part,
associating a volume to each numeric part results in a lost of sharing in BBDs.

Therefore, we have adopted a pragmatic approach:

e implement an efficient mode that is fair with respect to the Boolean part only;
e implement a fair mode that performs an approximation of the polyhedron volume.

The polyhedron volume is approximated by the smallest hypercube containing the polyhedron.
Note that this leads to no approximation for polyhedron of dimension 1 (intervals), and reasonable
approximation in dimension 2. But the error made increases exponentionally in the dimension.
Therefore, for polyhedron of big dimension, it is better to use the efficient mode, and to rely only
the probability defined by transition weights.

Note that when there are only Boolean variables as output or local variables, the two modes are
completely equivalent.

6.1.3 Fair mode and precision and the computations

In the fair mode, we compute an approximation of polyhedron volume. But how to mix set
of solutions that involves both integers and floats (which are necessarily computed by distinct
polyhedra)?

The solution we have adopted is the following: relate both domain via the precision of the
computations, which is a parameter of the LUTIN programs interpreter. For example, with a
precision of 2 digits after the dot, we consider that the set x € [0; 3] contains 300 solutions.

6.2 Last breath

Before stopping (Vanish exception), the LUTIN interpreter generates one dummy vector of values
that should be ignored.
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7 Examples

7.1 Up and down

The examples/lutin/up_and_down directory of the LUTIN distribution contains a complete run-
ning (via the Makefile) example.

> Example: The ud.lut file.

let between(x, min, max : real) : bool = ((min < x) and (x < max))

node up(init, delta:real) returns( x : real) =
x = init fby loop { between(x, pre x, pre x + delta) }

node down(init, delta:real) returns( x : real) =
x = init fby loop { between(x, pre x - delta, pre x) }

node up_and_down(min, max, delta : real) returns (x : real) =
between(x, min, max)

fby
loop {
| run x := up(pre x, delta) in loop { x < max }
| run x := down(pre x, delta) in loop { x > min }
}
node main () returns (x : real) =

run x:= up_and_down(0.0, 100.0, 5.0)

This program first defines 3 combinators: between, up, and down. between is used to constraint a
variable between a min and a max. Is is used by the up combinator, that constraint a controllable
variable to be between its previous value and its previous value plus a constant (delta). The
parameter of up needs to be declared as reference, so that it possible to use its previous value
(cf 2.8.1).

Then comes the definition of the main node. At the first instant, the output x is chosen between
the minimum and the maximum. Then, either it goes up or it goes down. If it goes up (resp
down), it does so until the maximum (resp minimum) value is exceeded, and then it goes down
(resp up), and so on forever.

7.2 The crazy rabbit

The examples/lutin/crazy rabbit directory of the LUTIN distribution contains a bigger pro-
gram.
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A visualisation of ud.nif
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Figure 1: This image has been obtained with the command lutin -1 100 ud.lut -main main
> ud.rif ; gnuplot-rif -jpg ud.rif
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> Example: The rabbit.lut file.

include "../crazy-rabbit/ud.lut"
include "../crazy-rabbit/moving-obstacle.lut"

node rabbit_speed (low, high:real) returns (Speed: real) =
exist Delta, SpeedLow, SpeedHigh: real in
let draw_params() =
between(Delta, 0.5, 1.0) and
between(SpeedLow, 0.0, low) and between(SpeedHigh, 1.0, high)
in
let keep_params() =
(Delta = pre Delta) and (SpeedLow = pre Speedlow) and
(SpeedHigh = pre SpeedHigh)

in
{
&> loop { draw_params() fby loop ~100: 10 { keep_params() } }
&> Speed = 1.0 fby
run Speed := up_and_down(pre SpeedLow, pre SpeedHigh, pre Delta)
}

extern sin(x: real) : real
extern cos(x: real) : real

-- extern printint(i:int) :unit
exception Pb

node rabbit (x_min, x_max, y_min, y_max : real)
returns(x, y, plx, ply, p2x, p2y, p3x, p3y, pé4x, p4y: real ; freeze:bool) =
exist Speed, Alpha, Beta : real in
let keep_position() = ((x = pre x) and (y = pre y)) in
let draw_params() = between(Alpha, -3.14, 3.14) and between(Beta, -0.3, 0.3)
in
-- The beginning
run Speed := rabbit_speed(5.0, 50.0) in
run plx,ply, p2x,p2y, p3x,p3y, p4x,pdy := obstacle(x_min, x_max, y_min, y_max) in
let 1line() =
(x = (pre x + Speed * cos(pre Alpha))) and
(y = (pre y + Speed * sin(pre Alpha))) and
(Alpha = pre Alpha) and
-- And he always avoids the obstacle
not is_inside(x,y,plx,ply,p2x,p2y,p3x,p3y,psx,ply)
in
let escape () =
try
between(x, pre x - 21.0, pre x + 21.) and
between(y, pre y - 21.0, pre y + 21.) and
not is_inside(x,y,plx,ply,p2x,p2y,p3x,p3y,p4x,ply)
do raise Pb
in
let curve() =
(x = (pre x + Speed * cos(pre Alpha))) and
(y = (pre y + Speed * sin(pre Alpha))) and
(Alpha = pre Alpha - Beta) and (Beta = pre Beta) and
not is_inside(x,y,plx,ply,p2x,p2y,3k,p3y,psx,ply)
in
let spiral()
(x = (pre
(v = (pre

+ Speed * cos(pre Alpha))) and
+ Speed * sin(pre Alpha))) and
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7.3 Calling external code

The examples/lutin/external _code directory of the LUTIN distribution contains a complete
running (via the Makefile) example of calling extern code from LUTIN.
This directory contains a C file foo.c that defines a C function rand_up_to.

> Example: The foo.c file.

#include <stdlib.h>
#include <math.h>

#ifdef WIN32

#define EXPORT __declspec(dllexport)
#else

#define EXPORT

#endif

// Uniformly draws an integer between 0 and max.

// Not the most useful function for Lutin...

EXPORT int rand_up_to(int min, int max)
double r = ((double) random ());
int res = min + ((int) ((r * (((double) (max-min+1)) / ((double) RAND_MAX)))));
return res;

This C function, as well as two other function that are part of the standard C math library is
are used in the LUTIN program call_external _c_code.lut.

> Example: The call _external c_code.lut file.

One needs to generate a shared lib from this C file (foo.so under unix, or foo.dll under windows),
and to pass this shared library to the LUTIN interpreter via the -L foo.so option. Since the
LuTiN file also uses the sin and the sqrt functions that are part of the standard math library,
one also need to pass the -L. 1ibm.so option. For instance

lutin call_external_c_code.lut -m Fun_Call -L libm.so -L obj/foo.so

All this compilation process is illustrated in the Makefile contained in the directory.
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