Lurette, Lucky, and co.,
Simulation tools.

But what about Simulink?

Erwan Jahier: Verimag/CNRS
Pascal Raymond: Verimag/CNRS

Synchron 2005

25 november - Malta

Lurette, Lucky, and co.
The dark side of Lutin

Erwan Jahier: Verimag/CNRS
Pascal Raymond: Verimag/CNRS

Synchron 2005

25 november - Malta

Lu . {rette | cky | tin}

@ |Lurette

o Test and simulation of RP (feedback)
¢ Black-box testing
@ Provide realistic inputs to the SUT (constraint solving)

@ Lucky

o The input sequence generator of Lurette V2

@ Lutin
e Higher-level language that compiles into Lucky

Non-deterministic reactive machines

@ An interface
@ An explicit control structure (weights)

@ Constraint define one reaction of the machine
@ Boolean (bdd)
@ Numerics (polyhedra)

What about Simulink?

@ Simulink o Lucky
@ is a modelling environment ¢ is dedicated to test and
simulation

@ Have a fix set of (random-

based) library procedures of @ is a language to program
stimuli stimuli

Simulate a Simulink model
of a car driver (Caspi)

@ Controls the steering wheel

@ Feedback

@ Looks just one point ahead (no anticipation)

@ Therefore it is equivalent to a car following a target

@ With Simulink, Paul Caspi stimulated this controller
with a target that draws a square (ie, a circle in the
Mauras topology)

@ We proposed him a more elaborated trajectory

Demo 1: a rabbit running
straight ahead

X_min, x_max

Rabbit
speed
rabbit speed
R Xy
rabbit position -
F .
—-

y_min, y_max

Demo 1 : a rabbit running
straight ahead

pi<a<p? X = pre(x) + speed . cos(a) "
X = pre(x) " y = pre(y) + speed . sin(a) A
y = pre(y) a = pre(a)

demo...

Demo 2 : a rabbit running
drawing lines and curves

X = pre(x) + speed . cos(a) * X = pre(x) + speed . cos(a) *
y = pre(y) + speed . sin(a) * y = pre(y) + speed . sin(a) *
a=pre(@) +b a = pre(a)
1000 1000
: : 1 1 . :
pi<a<p? pi<a<p?
-0.3<b<0.3" X = pre(x) "
X = pre(x) " y = pre(y)

y = pre(y)

demo...

Demo 3 : lines, curves,
around an obstacle

obstable * obstable *

X = pre(x) + speed . cos(a) * X = pre(x) + speed . cos(a) *
y = pre(y) + speed . sin(a) * y = pre(y) + speed . sin(a) *
a=pre(@a)-b a = pre(a)

pi<a<pi?

03<b<03A Pi<a<pl”
X = pre(x) A X = pre(x) !
y = pre(y)

y = pre(y)

Demo 3 : lines, curves,
around an obstacle

Where:
Cbstacl e =
al. X+ pl >Y A
a2. X+ p2 >Y AN
a3. X + b3 > Y A
ad. X + b4 > Y A

demo...

Demo 4: The obstacle is moving

Rabbit + moving obstacle

speed
rabbit speed

X_Min, X_max

T

i I

y_min, y_max ipiw | rabbit posiion =
obstacle ——m

demo...

Conclusion of the demo

@ Probably this could have been done with
matlab and the Simulink stimuli lib, but...

¢ ¢ ¢ ¢ o O G

Entry points

_urette

_urette/Scade

_ucky interpreter

_uc4ocaml (RML)

Luc2c (Simulink)

_uckyDraw (API for Ocaml and C)

_utin compiler

Conclusion

@ Complementary to Simulink
@ Several entry points

@ Freely available
http://wwverimag. fr/~synchron

Thank you for your attention

Questions?

