
1

A Lustre V6 tutorial

Verimag

December 5, 2008 -

Outline

Lustre

Lustre V6

The Lustre V6 compiler

3

Outline

Lustre

Lustre V6

P. Raymond & the Synchronous group et al.

The Lustre V6 compiler

P. Raymond, J. Ballet, E. Jahier

4

Lustre

a Data-flow Synchronous Language

Generalised synchronous circuits: wires hold numerics

Operators + wires structured into nodes

Pre-defined operators

Boolean: and, not, ...

Arithmetic: +, -, ...

Temporal: pre, when, current

5

Lustre

Targetting reactive critical systems

Time constraints

→ we want a predictable bound on execution time

Memory constraints

→ we want a predictable bound on memory usage

→ (we want that bound to be as small as possible)

⇒ No loops, first-order

6

Lustre

a loop-free first-order language

But Can those limitations be overlooked ?

→ Yes: loops and genericity were introduced in V4

7

Lustre

Example of loops and genericity in V4

node add(const n:int; t1,t2 : int ^ n)

returns (res:int ^ n);

let
res = t1 + t2; -- for i=0..n-1, res[i] = t1[i] + t2[i];

tel

this is legal as long as n is a ground constant which
value is known at compile time → static genericity

Pushing that idea further ⇒ Lustre V6

8

Outline

Lustre

Lustre V6

a statically generic (1.5-order) Lustre

The Lustre V6 compiler

9

Lustre V6

What’s new (compared to V4)

Structure and enumerated types

Package mechanism (Ada-like)

→ Name space

→ Encapsulation

(Static) Genericity

→ Parametric packages

→ Parametric nodes (well-typed macros)

→ Static recursion

→ Array iterators (versus homomorphic extension – not new;

different)

10

Lustre V6

Structures

type complex = struct {
re : real = 0.;

im : real = 0.

};

node plus (a, b : complex) returns (c : complex);

let
c = complex { re = a.re+b.re ; im = a.im+b.im };

tel

11

Lustre V6

Enumerated type

type trival = enum { Pile, Face, Tranche };

12

Lustre V6

Enumerated clocks + merge (c©Pouzet)

type trival = enum { Pile, Face, Tranche };
node merge_node(clk: trival;

i1 when Pile(clk); i2 when Face(clk);

i3 when Tranche(clk))

returns (y: int);

let
y = merge clk

(Pile: i1)

(Face: i2)

(Tranche: i3);

tel

13

Lustre V6

Packages

package complex

provides
type t; -- Encapsulation
const i:t;

node re(c: t) returns (r:real);

body
type t = struct { re : real ; im : real };
const i:t = t { re = 0. ; im = 1. };
node re(c: t) returns (re:real);

let re = c.re; tel;
end

14

Lustre V6

Generic packages

model modSimple

needs type t;

provides
node fby1(init, fb: t) returns (next: t);

body
node fby1(init, fb: t) returns (next: t);

let next = init -> pre fb; tel
end
package pint is modSimple(t=int);

15

Lustre V6

Generic nodes

node mk_tab<<type t; const init: t; const size: int>>

(a:t) returns (res: t^size);

let
res = init ^ size;

tel
node tab_int3 = mk_tab<<int, 0, 3>>;

node tab_bool4 = mk_tab<<bool, true, 4>>;

16

Lustre V6

Generic nodes

node toto_n<<

node f(a, b: int) returns (x: int);

const n : int

>>(a: int) returns (x: int^n);

var v : int;

let
v = f(a, 1);

x = v ^ n;

tel
node toto_3 = toto_n<<Lustre::iplus, 3>>;

17

Lustre V6

Static recursion

node consensus<<const n : int>>(T: bool^n)

returns (a: bool);

let
a = with (n = 1) then T[0]

else T[0] and consensus << n-1 >> (T[1 .. n-1]);

tel

node main = consensus<<8>>;

18

Lustre V6

Are parametric nodes necessary?

Indeed, parametric nodes could be emulated with the
package mechanism

→ but we keep them to keep the syntax ligth

→ we didn’t really want to have recursive packages

19

Lustre V6

Arrays

As in Lustre V4

→ The array size is static (var mat23: int ˆ 2 ˆ 3;)

→ Array slices (T1[3..5] = T2[0..2];)

But no more homomorphic extension

where t1 + t2 means ∀i ∈ {0, .., size − 1}, t1[i] + t2[i]

⇒ operate on arrays via iterators

20

Lustre V6

The fill iterator

node incr (acc : int) returns (acc’, res : int);

fill<<incr; 4>>(0) (4, [0,1,2,3])

21

Lustre V6

The red iterator

red<<+; 3>>(0, [1,2,3]) 6

22

Lustre V6

fill+red=mapred, fillred, fold

fill<<incr; 4>>(0) ≡ fold<<incr; 4>>(0)

red<<+; 3>>(0, [1,2,3]) ≡ fold<<+; 3>>(0, [1,2,3])

23

Lustre V6

The fold iterator

node cumul(acc in,x:int) returns (acc out,y:int)

let

y = acc in+x;

acc out = y;

tel

fold<<cumul>>(0, [1,2,3]) (6, [1,3,6])

fold<<fold<<fold<<full adder; n>>; m>>; p>>

(false, x, y) (r,’’x+y’’)

24

Lustre V6

The map iterator

map <<+; 3>>([1,0,2],[3,6,-1]) [4,6,1]

25

Lustre V6

About Lustre V6 array iterators

More general that usual iterators:

their are of variable arity

26

Outline

Lustre

Lustre V6

The Lustre V6 compiler

The front-end

The back-end (J. Ballet)

The back-back-end (J. Ballet)

27

The Lustre V6 compiler

The Front-end: lus2lic

Perform usual checks

→ Syntax, Types, Clocks

→ Unique definition of outputs

→ Combinational cycles detection

Perform some static evaluation

→ arrays size

→ parametric packages and nodes

→ recursive nodes

Generate intermediate code: LIC (Lustre internal code)

28

Lustre Internal Code (LIC)

was: expanded code (ec)

LIC ≡ core Lustre

No more packages

Parametric constructs are instanciated

→ constants

→ types

→ nodes

29

Lustre Internal Code (LIC)

was: expanded code (ec) cont.

LIC versus ec

→ Nodes are not (necessarily) expanded

→ Arrays are not (necessarily) expanded

LIC versus Lustre v4

→ Structures and enums

→ array iterators

30

Lustre potatoes

lustre
core V4
ec

V6

lic

struct, enums, packages, genericity, ...

arrays

homomorphic

extension

array iterators

31

The Lustre V6 compiler

The back-end

The role of the backend is to generate sequential code

We defined (yet) another intermediary format to repre-
sent sequential code: SOC (Synchronous Object Code)

The idea is that translating this format into any se-
quential language is easy, and done at the very end

32

The back-end

maps each node to a Synchronous Object Component (
SOC)

A SOC is made of:

a set of memories

a set of methods: typically, an init and a step method

each method is made of a sequence of guarded atomic
operations

atomic operation (named actions) can be

another SOC method call

an assignment (a wire)

33

The back-end

From node to SOC

For each node, we:

Identify memories

Explicitely separate the control (clocks) from the computations

→ set of guarded equations

Split equations into more finer-grained steps: actions

→ a set of guarded actions (a wire or a call)

Find a correct ordering for actions (sheduling)

→ a sequence of guarded actions

34

The back-back-end

From SOC to C

pretty-print the SOC into, let’s say, C

provide a C implementation of every predefined (non-
temporal) operators

35

Lustre V6 compiler

An alpha release is available

http://www-verimag.imag.fr/∼synchron/lustre-v6/

The front-end lus2lic seems ok

lus2lic --lustre-v4: added last friday; seems to work

The back-back: generates C code... But its not fin-
ished.

36

http://www-verimag.imag.fr/~synchron/lustre-v6/

Thanks for your attention

37

	Title page

