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How to read this manual

This reference manual is splitted in two parts. The first chapter presents and defines
the Lustre basic concepts. This Lustre Core language corresponds more or less to the
intersection of the various versions of the Lustre language (from V1 to V6). Advance
features (structured types) that changed accross version versions are not presented here.

The second chapter deals with the V6 specific features. Arrays, that were introduced
in V4, are processed quite differently, using iterators. But the main novelty resides in
the introduction of a package mechanism. Readers already familiar with Lustre ougth
to read directly this chapter.



Chapter 1

An Overview of the Lustre Language

1.1 Introduction

This manual presents the LUSTRE language, a synchronous language based on the
dataflow model and designed for the description and verification of real-time systems.
In this chapter, we present the general framework that forms the basis of the language:
the synchronous model, the dataflow model, and the synchronous dataflow model.
Then we introduce the main features of the language through some simple examples.

The end of the chapter gives some basic elements for reading the rest of the docu-
ment: it makes precise the metalanguage used to describe the syntax throughout the
document and describes the lexical rules of the language.

1.1.1 Synchronous Model

The synchronous model was introduced to provide abstract primitives assuming that
a program reacts instantaneously to external events. Each output of the program is
assigned a precise date in relation to the flow of input events.

A discrete time scale is introduced. The time granularity is considered to be adapted
a priori to the time constraints imposed by the dynamics of the environment on which
the system is to react. It is verified a posteriori. Each instant on the time scale cor-
responds to a computation cycle, i.e., in the case of LUSTRE, to the arrival of new in-
puts. The synchrony hypothesis presumes that the means of computation are powerful
enough for the level of granularity to be respected. In other words, the time to compute
outputs in function of their inputs is less than the level of granularity on the discrete
time scale. Consequently, outputs are computed and inputs are taken into account “at
the same time” (with respect to the discrete time scale).

6
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1.1.2 Dataflow Model

The dataflow model is based on a block diagram description. A block diagram can be
described either graphically, or by a system of equations. A system is made up of a
network of operators acting in parallel and in time with their input rate.

Example 1 A Textual and a graphical view of the same network

node count (x,y: int) returns (s: int); count
let
S = 2*(X+y);
tel =+
2 X S

Graphic view of a network

This model provides the following advantages:

e maximal use made of parallelism (the only constraints are dependencies between
data),

e mathematical formalization (formal verification methods),
e program construction and modification,

e ability to describe a system graphically.

1.1.3 Synchronous Dataflow Model

The synchronous dataflow approach consists in adding a time dimension to the
dataflow model. A natural way of doing this is to associate time with the rate of
dataflow. The entities manipulated can naturally be interpreted as functions of time.
A basic entity (or flow) is a couple made up of:

e a sequence of values of a given type,
e a clock representing a suite of graduations (on the discrete time scale).

A flow takes the t”* value in its sequence at the t'" instant of its clock. For instance,

the description given by the previous diagram expresses the following relation:

for any instant t,s; = 2 % (x; + y)
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The time dimension is therefore an underlying feature in any description of this type
of model. LUSTRE is a synchronous language based on the dataflow model. The syn-
chronous aspect introduces constraints on the type of input/output relations that can
be expressed: the output of a program at a given instant cannot depend on future in-
puts (causality) and can depend on only a bounded number of inputs (each cycle can
memorize the value of the previous input).

1.1.4 Building a Description

A LUSTRE program describes the relations between the outputs and inputs of a system.
These relations are expressed using operators, auxiliary variables, and constants. The
operators can be:

e basic operators,
e more complex, user-defined, operators, called nodes.

Each description written in LUSTRE is built up of a network of nodes. A node de-
scribes the relation between its input and output parameters using a system of equa-
tions. Nodes correspond to the functions of the system and allow complex networks to
be built simply by passing parameters.

The synchrony hypothesis presumes that each operator in the network responds to
its inputs instantaneously.

A LUSTRE description is a list of type, constant and node declarations. The declara-
tions can occur in any order.

The functional behavior of an application described in LUSTRE does not depend on
the clock cycle. It is therefore possible to perform a functional validation of the appli-
cation (ignoring the time validation) by testing it on a machine different from the target
machine (on the development machine in particular).

Time validation is performed on the target machine. If the computation time is less
than the time interval between two instants on the discrete time scale, it can be consid-
ered to be zero, and the synchrony hypothesis is satisfied. The interval between two
instants on the scale is imposed by the requirements report. Computation time depends
on software and hardware performance. LUSTRE is a language describing systems with
a deterministic behavior from both a functional and a time point of view.

1.2 Basic Features

In this section, we present informally the main basic features of the language, through
several simple examples.

A LUSTRE program or subprogram is called a node. LUSTRE is a functional language
operating on flows. For the moment, let us consider that a flow is a finite or infinite
sequence of values. All the values of a flow are of the same type, which is called the

8
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] L] L EDCE [ ] [ ]

Figure 1.1: A Node

type of the flow. A program has a cyclic behavior. At the nth execution cycle of the
program, all the involved flows take their nth value. A node defines one or several
output parameters as functions of one or several input parameters. All these parameters
are flows.

1.2.1 Simple control devices

As a very first example, let us consider a Boolean flow X = (x1,x,...,Xp,...). We want
to define another Boolean flow Y = (y1,¥2,...,Yn, . ..) corresponding to the rising edge
of X, i.e., such that y,; is true if and only if x, is false and x,,;1 is true (X raised from
false to true at cycle n + 1). The corresponding node (let us call it EDGE) will take X as
an input parameter and return Y as an output parameter (see Fig. 1.1). The interface of
the node is the following:

node EDGE (X: bool) returns (Y: bool);

The definition of the output Y is given by a single equation:
Y = X and not pre(X);

This equation defines “Y” (its left-hand side) to be always equal to the right-hand side
expression “X and not pre(X)”. This expression involves the input parameter X and
three operators:

e “and” and “not” are usual Boolean operators, extended to operate pointwise on
flows: if A = (aq,4ay,...,44,...) and B = (by, by, ..., by,...) are two Boolean flows,
then “A and B” is the Boolean flow (a; A by, ap Aby, ..., a5 Aby,...). Most usual
operators are available in that way, and are called “data-operators”.

e The “pre” (for “previous”) operator allows one to refer at cycle n to the value
of a flow at cycle n — 1: if A = (ay,ap,...,4ay,...) is a flow, pre(d) is the flow
(nil,ay,az,...,4,-1,...). Its first value is the undefined value nil, and for any
n > 1, its nth value is the (n — 1)th value of A

As a consequence, if X = (x1,X2,...,Xy,...), the expression “X and not pre(X)”
represents the flow (nil, xo A —=x1,..., Xy A =x,—1,...). Now, since its value at the first
cycle is nil the program would be rejected! by the compiler: it indicates that the output
lacks an initialization. A correct equation could be:

10r, at least, a warning would be returned.
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Y = false -> X and not pre(X);

Here, “false” denotes the constant flow, always equal to false. We have used the sec-
ond specific LUSTRE operator, “~>” (read “followed by”) which defines initial values. If
A= (ay,ay,...,a,,...)and B = (b1, by, ..., by,...) are two flows of the same type, then
“A -> B” is the flow (ay,by,...,by,...), equal to A at the first instant, and then forever
equal to B.

So, the complete definition of the node EDGE is the following:

Example 2 The EDGE node

node EDGE (X: bool) returns (Y: bool);
let

Y = false -> X and not pre(X);

tel

Once a node has been defined, it can be called from another node, using it as a new
operator. For instance, let us write another node, computing the falling edge of its input
parameter:

Example 3 The FALLING_EDGE node

node FALLING_EDGE (X: bool) returns (Y: bool);
let

Y = EDGE(not X);

tel

The EDGE node is of very common usage for “deriving” a Boolean flow, i.e., trans-
forming a “level” into a “signal”. The converse operation is also very useful, it will be
our second example: We want to implement a “switch”, taking as input two signals
“set” and “reset” and an initial value “initial”, and returning a Boolean “level”.
Any occurrence of “set” rises the “level” to true, any occurrence of “reset” resets it to
false. When neither “set” nor “reset” occurs, the “level” does not change. “initial”
defines the initial value of “level”. In LUSTRE, a signal is usually represented by a
Boolean flow, whose value is true whenever the signal occurs. Below is a first version
of the program:

Example 4 The SWITCH1 node

node SWITCH1 (set, reset, initial: bool) returns (level: bool);
let
level = initial ->
if set then true
else if reset then false
else pre(level);
tel

10
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which specifies that the “level” is initially equal to “initial”, and then forever,

e if “set” occurs, then it becomes true
o if “set” does not occur but “reset” does, then “level” becomes false

e if neither “set” nor “reset” occur, “level” keeps its previous value (notice that
“level” is recursively defined: its current value is defined by means of its previous
value).

Moreover, if this node is intended to be used only in contexts where inputs set and
reset are never true together, such an assertion can be specified:

assert (not (set and reset));

Otherwise, this program has a flaw: It cannot be used as a “one-button” switch,
whose level changes whenever its unique button is pushed. Let “change” be a Boolean
flow representing a signal, then the call

state = SWITCH1(change,change,true);

will compute the always true flow: “state” is initialized to true, and never changes
because the “set” formal parameter has been given priority. To get a node that can be
used both as a “two-buttons” and a “one-button” switch, we have to make the program
a bit more complex: the “set” signal must be considered only when the switch is turned
off. We get the following program:

Example 5 The SWITCH node

node SWITCH (set, reset, initial: bool) returns (level: bool);
let
level = initial ->
if set and not pre(level) then true
else if reset then false
else pre(level);
tel

1.2.2 Numerical examples

Recursive sequences are very easy to define in LUSTRE. For instance, the equation
“N =0 -> pre N + 1;” defines the sequence of natural numbers. Let us complexify
this definition to build an integer sequence, whose value is, at each instant, the number
of occurrences of the “true” value of a Boolean flow X:

N =0 -> if X then pre N + 1 else pre N;

11
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This definition does not exactly meet the specification, since it ignores the initial value
of X. A well-initialized counter could be:

PN = 0 -> pre N;
N = if X then PN + 1 else PN;

or, simply
N = if X then (0 -> pre N) + 1 else (0 -> pre N);
or even
N = (0 -> pre N) + if X then 0 else 1;
Let us write a more general operator, with additional inputs:
e an integer init, which is the initial value of the counter;
e an integer incr, which must be added to the counter when X is true;

e a Boolean reset, which reset the counter to the value init, whatever be the value
of X.

The complete definition of this operator is the following;:

Example 6 The COUNTER node

node COUNTER (init, incr: int; X, reset: bool) returns (N: int);
var PN: int;

let
PN = init -> pre N;
N =
if reset then init
else if X then PN + incr
else PN;
tel

This node can be used to define, e.g., the sequence of odd integers:
odds = COUNTER (0,2,true,false);

or the sequence of integers modulo 10:

mod10
reset

COUNTER (0,1,true,reset);
true -> pre(mod10)=9;

12
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Our next example involves real values. Let f be a real function of time, that we want
to integrate using the trapezoid method. The program receives two real-valued flows F
and STEP, such that

Fp = f(xn) and X471 = xu + STEP, 41
It computes a real-valued flow Y, such that
Yn+1 - Yn + (Fn + Fn+1) * STEPn+1 /2

The initial value of Y is also an input parameter:

Example 7 The integrator node

node integrator(F,STEP,init: real) returns (Y: real);
let

Y = init -> pre(Y) + ((F + pre(F))*STEP)/2.0;

tel

One can try to connect two such integrators in loop to compute the functions sin(wt)
and cos(wt) in a simple-minded way:

Example 8 The buggy sincos node

-— there s a loop !
node sincos(omega:real) returns (sin, cos: real);

let
sin = omega * integrator(cos,0.1,0.0);
cos = omega * integrator(-sin,0.1,1.0);
tel
node integrator(F,STEP,init: real) returns (Y: real);
let

Y = init -> pre(Y) + ((F + pre(F))*STEP)/2.0;

Called on this program, the compiler would complain that there is a deadlock. As a
matter of fact, the variables sin and cos instantaneously depend on each other, i.e., the
computation of the nth value of sin needs the nth value of cos, and conversely. We have
to cut the dependence loop, introducing a “pre” operator:

13
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Example 9 The sincos node

node sincos(omega : real) returns (sin, cos: real);
var pcos,psin: real;
let
pcos = 1.0 fby(cos);
psin = 0.0 fby sin;

sin = omega * integrator(pcos,0.1,0.0);

cos = omega * integrator(-psin,0.1,1.0);
tel
node integrator(F,STEP,init: real) returns (Y: real);
let

Y = init -> pre(Y) + ((F + pre(F))*STEP)/2.0;

1.2.3 Multiple Equation

The node sincos above does not work very well, but it is interesting since it returns
more than one output. To call such a node, LUSTRE allows multiple definitions to be
written. Let s, c, omega be three real variables, then

(s, c) = sincos(omega);
is a correct LUSTRE equation, defining s and c to be, respectively, the first and the second
result of the call.

So, the left-hand side of an equation can be a list of variables. The right hand side of

such a multiple definition must denote a corresponding list of expressions, of suitable
types. It can be

e a call to a node returning several outputs
e an explicit list

o the application of a polymorphic operator to a list

For instance, the equation
(min, max) = if a <b then (a,b) else (b,a);
directly defines min and max to be, respectively, the least and greatest value of a and b.

14



Table of contents 15/52

1.2.4 Clocks

Let us consider the following control device: it receives a signal “set”, and returns a
Boolean “level” that must be true during “delay” cycles after each reception of “set”.
The program is quite simple:

Example 10 The STABLE node

node STABLE (set: bool; delay: int) returns (level: bool);

var count: int;

let
level

(count > 0);

count
if set then delay
else if false -> pre(level) then pre(count)-1
else 0;
tel

Now, suppose we want the “level” to be high during “delay” seconds, instead
of “delay” cycles. The “second” will be provided as a Boolean input “second”, true
whenever a second elapses. Of course, we can write a new program which freezes the
counter whenever the “second” is not there:

Example 11 The TIME_STABLE1 node

node TIME_STABLE1(set,second:bool; delay:int) returns (level:bool);

var count: int;

let
level

(count > 0);

count
if set then delay
else if second then
if false -> pre(level) then pre(count)-1
else O
else (0 -> pre(count));
tel

We can also reuse our node “STABLE”, calling it at a suitable clock, by filtering its input
parameters. It consists of changing the execution cycle of the node, activating it only at
some cycles of the calling program. For the delay to be counted in seconds, the node
“STABLE” must be activated only when either a “set” signal or a “second” signal occurs.
Moreover, it must be activated at the initial instant, for initialization purposes. So the
activation clock is

15
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ck = true ->

set or second;

Now a call “STABLE( (set,delay) when ck)” will feed an instance of “STABLE” with
rarefied inputs, as shown by the following table:

(set,delay)
ck
(set,delay) when ck

(s1,d1)

true

(s1,d1)

(s2,d2)
false

(53/ d3)
false

(54/ d4)
true

(54,d4)

(55/ d5 )
true

(s5,ds)

(56/ d6)
false

(s7,d7)
true

(s7,d7)

According to the data-flow philosophy of the language, this instance of “STABLE”
will have a cycle only when getting input values, i.e., when ck is true. As a consequence,
the inside counter will have the desired behavior, but the output will also be delivered
at this rarefied rate. In order to use the result, we have first to project it onto the clock of
the calling program. The resulting node is

Example 12 The TIME_STABLE node

node TIME_STABLE(set, second: bool; delay: int) returns (level: bool);
var ck: bool;

let
level = current(STABLE((set,delay) when ck));
ck = true -> set or second;
tel
node STABLE (set: bool; delay: int) returns (level: bool);
var count: int;
let
level = (count > 0);
count = if set then delay else if false -> pre(level) then pre(count)-1 else O;
tel

Here is a simulation of this node:

(set,delay) | (tt,2) | (ff,2) | (ff,2) | (ff,2) | (ff,2) | (ff,2) | (ff,2) | (tt,2) | (ff,2)
(second) ff ff tt ff tt ff ff ff tt
ck tt ff tt ff tt ff ff tt tt
(set,delay) |y 9) (££,2) (££,2) (t2) | (f£.2)
when ck
STABLE ( (Set R delay tt tt ff tt tt
when ck)
current (STABLE
(Set,delay) tt tt tt tt ff ff ff tt tt
when ck))

16
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Lustre Core

2.1 Notations

In the remaining of the document, we use the following notations: The wave arrow ~
means that expression evaluates into. Grammar rule are given using an extended BNF
notation, where non-terminals are written (like_this) and terminals “1ike that”.

2.2 Lexical aspects

e One-line comments start with -- and stop at the the end of the line.

e Multi-line comments start with (* and end at the next following *). Multi-line
comments cannot be nested.

e Ident stands for identifier, following the C standard ([_a-zA-Z] [_a-zA-Z0-9]*),

e Floating and Integer stands for decimal floating point and integer notations, fol-
lowing C standard,

(Ident) (string) (Value) (comment)

2.3 Pragmas

A pragma is either empty, or an arbitrary string between “%” (no “%” inside the string,
or some escape to be defined), or a list of such things:

I (PYy == ("W (string) “h”)*

Example 13 Pragmas
% foo.lus:42:1%

17
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2.4 Identifiers

Entities are generally referred to through identifiers, but they can also depend on a pack-
age instance (like in BIN8: :binary). So we distinguish between (Ident), and (Identifier):

I (Identifier) == (Ident) | (Ident)”::”(Ident)

2.5 Types

(Type_Decl) “type” (Ident)™ (P) “;”

//typeu <Id€1’lt> “u_r <T]/]9€> <7D> II;I/

(Type) n= (Ident) | (Record_Type) | (Array_Type) | (Enum_Type)
(Record_Type) = “struct” “{” (Field List) “}”

(Field_List) = (Field) | (Field) “,” (Field_List)

(Field) n= (Ident) “:” (Type)

(Array_Type) == (Type) “~ " (Expression)

(Enum_Type) == “enum” “{” (Ident List) “}”

Example 14 Type Declarations

type alias = int;
type pair = struct { a:int; b:int };
type color = enum { blue, white, black };

node type_decl(il, i2: int) returmns (x: pair);

let
x= pair {a=il; b=i2};

2.6 Constants and Variables

(Const_Decl)
(One_Const _Decl)

“const” ( (One_Const_Decl) )™

(Ident List) “:” (Type) (P) “;”

| (Ident) “=" (Expression) (P) ;"

| (Ident) “:” (Type) “=" (Expression) (P) “3;”
(Ident List) n= (Ident) | (Ident) “,” (Ident_List)

Example 15 Constant Declarations

const x,y,z : int; verbose = true; pi:real = 3.14159265359;

18
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2.7 Functions and Nodes

The main way of structuring Lustre equations is via nodes. A memoryless node can be
declared a function. A Lustre node is made of an interface (input/output declarations)
and a set of equations defining the outputs.

(Node_Decl) == (Node_Header) [ (FN_Body) ]

(Node_Header) n= |[“unsafe” ][ “extern” ] (“node” | “function”) “(” (FN_Params)“)”
“returns” “(”(FN_Params) “)” (P) “;”

(FN_Params) n= (Var_Decl_List)

(Var_Decl List) == (Var_Decl) | (Var_Decl) “;” (Var_Decl _List)

(Var_Decl) = (Ident _List) “:” (Type) [ <Declared,Clock> 1(P)

(Declared_Clock) n= “when” <Clock>

(Clock) n=  (Identifier)

(FN_Body) == ((Local_Decl) )* “1et” (Equation_List) “tel” [ “;" ]

(Local _Decl) = (Local_Var_Decl) | (Local _Const_Decl)

(Local Var_Decl) n= “var” (Var_Decl List) “;”

(Local Const_Decl) := “const” ( (Ident)[“:” (Type) 1 “=" (Expression) “3” )™

Example 16 Node

node sum(A:int) returns (S:int)
let
S=A+(0->pre(S));
tel
function plus(A,B:int) returns (X:int)
let
X=A+B;
tel

Functions and nodes can be extern, in which case they should be preceeded by the
extern keyword, and have an empty body. Of course if an extern entity is declared as
a function while it has memory, the behavior of the whole program is unpredictable.

Example 17 Extern Nodes

extern node foo_withmem(A:int, B:bool, C: real) returns (X:int, Y: real);
extern function sin(A:real) returns (sinx: real);

Extern nodes that performs side-effects should be declared as unsafe. A node that
uses unsafe node is unsafe (a warning is emitted if a node is unsafe while it is not
declared as such).

19
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Example 18 Unsafe Nodes

unsafe extern node rand() returns (R: real);
unsafe node randr(r:real) returns (R: int);
let

R = r*rand();
tel

2.8 Equations

(Equation_List) == (Eq.or_Ast) | (Eq-or_Ast) (Equation_List)

(Eq-or_Ast) == (Equation) | (Assertion)

(Equation) n=  (Left_Part) “=" (Right_Part) (P) “;”

(Left_Part) n= “(” (Left_List) “)” | (Left_List)

(Left_List) n= (Left) (“,” (Left) )*

(Left) n=  (Identifier) | (Left) (Selector)

(Selector) n= “.” (Ident) | “[” (Expression) [ (SelTrancheEnd) ] “1”
(SelTrancheEnd) == “..” (Expression)

(Assertion) n= “assert” (Expression) (P) “;”

Example 19 Equations

x = al[2]; -- accessing an array
slice = a[2..5] -- get an array slice (i.e., a sub array)

2.9 Assertions

Example 20 Assertions

node divide(il,i2:int) returns (res:int);

let
assert (12<>0);
o =1i1/1i2;

tel

Assertions takes boolean expressions. Tools that parse lustre program can use it (or
ignore it). For instance, the Lesar model-checker uses them to cut some some paths in
the state graph. Lustre interpreters generate a warning when an assertion is violated.

20
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2.10 Expressions

Lustre is a data-flow language: each variable or expression denotes a infinite sequence
of values, i.e., a stream. All values in a stream are of the same data type, which is simply
called the type of the stream. A variable X of type T represents a sequence of values
X; € Twithi € IN.

For instance, the predefined constant true denotes the infinite sequence of Boolean
values (true, true,---), and the integer constant 42 denotes the infinite sequence
(42,42, --).

Three predefined types are provided: Boolean, integer and real. All the classical

arithmetic and logic operators over those types are also predefined. We say that hey are
combinationnal in the sense that they are operating pointwise on streams.

Example 21 Expressions

X + Y denotes the stream (X; + Y;); with i € IN.
Z = X + Y defines the stream Z from the streams X and Y

(Expression) n=  (Identifier)
| (Value)
| “(” (Expression_List) “)”
| (Record_Exp)
| (Array_Exp)
| (Unary) (Expression)
| (Expression) (Binary) (Expression)
| (Nary) (Expression)
| “if” (Expression) “then” (Expression) “else” (Expression)
| (Call)
| (Expression) (Selector)
(Expression_List) == (Expression) | (Expression)“,” (Expression_List)
(Record_Exp) == (Ident) “{” (Field_Exp_List) “}”
(Field_ Exp_Listy == (Field Exp) | (Field_Exp) “;” (Field_Exp_List)
(Field_Exp) n= (Ident) “=" (Expression)
(Array_Exp) n= “[” (Expression_List) “1” | (Expression) “~ " (Expression)
(Call) n= (User_Op) (P) “(” (Expression_List) “)”
(User_Op) n= (Identifier)
| (Iterator) << (User_Op) “,” (Expression) >>
(Iterator) n= “map” | “red” | “fill” | “fillred” | “boolred”
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Example 22 Array Expressions

array2 = [1,2];

arrayl0 = 42710;
arrayl2 = array2 | arrayl0; -- concat
slice = arrayl2[1..10]; -- slice

array_sum = map<<+, 10>>(arrayl10,slice);
max_elt = red<<max, 10>>(array_sum)

Example 23 Struct Expressions

type Toto = struct

X : int = 1;

y : int = 2

[...]

s = Toto x =12; y = 13 ;
ns = Toto s with x = 42 ;

X = 8.X + ns.y,;

211 Combinational operators

An operator is a predefined Lustre node.

<unary> = “_r llnotll

<Binﬂ7‘y> = //+rl | “"_n | //*rl | II/!I | //divr/ | //mod/r
| //>r/ | //<r/ | //>=lr | //<=rl | /1<>11 | “_r
I uor/r | Iland/l | //xorl/ | 1/=>/r

<Nary> — Hlj” | unor//

2.12 Temporal operators

In addition to the combinationnal operators, Lustre provides a delay (pre) and an ini-
tialization operator (->).

(Unary) == “pre” | “current”
(Binary)

I 1/_>/r | //When// | ”fby”
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Example 24 Temporal operators

The equation

0 -> pre(X) + 1; —— or pre X + 1
0 fby Y + 1; -- or 0 fby(y)+1

ool
< >
nn

defines X and Y as the stream (0,1,2,3, ...)

Example 25 Operators

X_on_c = X when C;
curr_X_on_base = current(X_on_C);

2.13 Operators Priority

The list below shows the relative precedences and associativity of operators. The con-
structions with lower precedence come first.

° Ilelse”
° II_>II

e “=>" (right associative)

“" ans 7

® Or Xor

‘“

e “and

4

e 11 i AN/ ”
e KT U= =T =T T LD

1"

e “not”
“4” =" (left associative)

o “x7 /7MY “mod” “div” (left associative)
e “when”

aw

e “-” (unary minus) “pre” “current”

2.14 Clocks

It also provides a notion of clock, with a sampling operator (when) and a dual projection
operator current.
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Example 26 An example illustrating the use of clocks (cf Section

node TIME_STABLE(set, second: bool; delay: int) returns (level: bool);
var ck: bool;
let
level = current(STABLE((set,delay) when ck));
ck = true -> set or second;
tel
node STABLE (set: bool; delay: int) returns (level: bool);
var count: int;

let

level = (count > 0);

count = if set then delay else if false -> pre(level) then pre(count)-1 else O;
tel

2.15 Abstract types

At last, complex data types and functions are handled via a mechanism of abstract types
(also called imported types). An imported type is defined as a simple name. Abstract
constants and function manipulating such types can be declared. The way those exter-
nal items are effectively launched from a Lustre program depends on the back-ends of
the compiler.

2.16 Programs

A Lustre-core program is a set of constant, types, function and node Declarations.
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Chapter 3
Lustre V6

In this chapter, we present the Lustre V6 specific features, that are not part of the ba-
sic Lustre. In Section 3.1 we introduce the Lustre V6 Structured data types (records,
enumerations, arrays). In Section 3.2 we introduce array iterators. In Section 3.4 we
introduce The Lustre V6 package system which aims at introduced a new level of struc-
turation and modularity as well as namespace facilities. In Section 3.5 we provide the
predefined entities (constant, type, operator and package) of Lustre V6. In Section A.1
we provide the Lustre V6 syntax rules. In Section 3.7 we provide a complete and com-
mented program example.

3.1 User-defined data types

Structured data type are introduced in Lustre V6. We give an informal description
of them in this Section. The syntax for their declaration and used is provided in Sec-
tion A.1.

Enumerations. Enumerations are similar to enumerations in other languages.

Example 27 Enumerations

type colorl = enum { blue, white, black };
type color2 = enum { green, orange, yellow };

node enum0O(x: colorl) returns (y: color2);
let

y = if x = blue then green else if x = white then orange else yellow;
tel

Records. The declaration of a structured type is (semantically) equivalent to the decla-
ration of an abstract type, a collection of field-access functions, and a constructor func-
tion.
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Example 28 Records

type complex = { re : real ; im : real };

const j = { re = -sqrt(3)/2; im = sqrt(3)/2 }; -- a complez constant
node get_im(c:complex) returns (x:real) ;

let

X = c.im;
tel

Arrays. Here are a few examples of array declarations and definitions.

Example 29 Arrays

type matrix_3_.3 = int ~ 3 © 3 ; -- to define a type matrixz of integers
const ml1 =0 ~ 3 ~ 3; -- a constant of type matriz_3_3

const m2 = [1,2,3] ~ 3; -- another constant

const sml = m2[2] -- a constant of type int"3 (~ [1,2,3])

(Type_Decl)

“type” (Ident)™ (P) “3”
utyperl <Id€nt> " <Type> <7)> 1/;”

Type) n= (Ident) | (Record_Type) | (Array_Type) | (Enum_Type)
Record_Type) == “{” (Field List) “}”
Field List) = (Field) | (Field) “;” (Field List)

(Ident) “:” (Type)
(Type) “~ " (Expression)
//enumrl “ [ <Id€ntl;lst> //}rl

Array_Type)

(
(
(
(Field)
(
(Enum_Type)

TO DO !!!slices

3.2 Array iterators

One the main novelty of Lustre-V6 is to provide a (restricted) notion of higher-order
programming by defining array iterators to operate over arrays. Iterators replace the use
of Lustre V4 homomorphic extension [?].

Using node expressions. In Lustre V6, a node denotation is not necessarily a simple
identifier, since a node can be “built” by instantiating an iterator with static arguments.
A node expression is then defined by:
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node-exp = ident

| meta-op << static-arg{ ;static-arg }T >>
static-arg =
meta-op = map |fill |red |[fillred |boolred

val-exp |node-exp |usual-op

A static argument may be a statically evaluable expression (with the restriction that
it can be statically evaluated), or a node expression as defined below. With some restric-
tions, it is also possible to use the “usual denotation” of the predefined operators (like
+, >= etc). See ?? for a complete discusion on the use of predefined operators.

The semantics of iterators are presented in the sequel.

Using node expressions. The rules presented here complete the basic ones (chap-
ter 2?).
Node expressions can be used as static parameters (see above), in value expressions:

val-exp = node-exp( val-exp{ ,val-exp } )

Node expressions can also be used to define a node:

(node-defy == (node) (ident) = (node-exp) ;

3.2.1 From scalars to arrays: fill

The £ill iterator transforms a scalar-to-scalar node into a scalar-to-array node. The
node argument must have a single input (input accumulator), a first output of the same
type (output accumulator), and at least one another output.

The figure 3.1 shows the data-flow scheme of the fill iterator.

Definition 1: fill

For any integer constant n and any node N of type:
T—TX0X...x0

fill<<N; n>> denotes a node of type:

T—o>TX0™mXx...x0/n
such that

(aout»Y1,--+,Yp) = £ill<<N; n>>(a;,)
if and only if, Ja, - - - a,, such that ag = a;,, ay, = apur and
Vi=0---n—1, (ajy1,Y1 0, - -, Y [i]) = N(ap)
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[t

Figure 3.1: A node N (1 input, 1+2 outputs), and the node fil1<<N; 4>>

[©

[¢

[¢

Example 30 fill

fill<<incr; 4>>(0) ~~ (4, [0,1,2,3])
with:

node incr(ain : int) returns (aout, z : int);
let

Z = ain; aout = ain + 1;
tel

3.2.2 From arrays to scalars: red

The red iteretor transforms a scalar-to-scalar node into an array-to-scalar node. The
node argument must have a single output, a first input of the same type, and at least
another input.

The figure 3.2 shows the data-flow scheme of the reduce iterator.

=0—

s

L

Figure 3.2: A node N (1+3 inputs, 1 output), and the node red<<N; 4>>
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Definition 2: red

For any integer constant n and any node N of type:
TXT X...XT —7T,

red<<N; n>> denotes a node of type:

TXTNX...XTG'n—T
such that

aout = red<<N; n>>(aj,,X1, --,X)
if and only if, Jag, - - - a,, such that ag = a;,, ay = apur and
Vi=0---n—1,a;41 = N(a;, X [1],-- -, X, [1])

Example 31 red

red<<+; 3>>(0, [1,2,3]) ~ 6

3.2.3 From arrays to arrays: fillred

The fillred iterator generalizes the £i11 and the red ones. It maps a scalar-to-scalar
node into a “scalar and array”-to-“scalar and array” node. The node argument must
have a (first) input and a (first) output of the same type, and at least one more input and
one more output. The degenerated case with no other input (resp. output) corresponds
to the £i11 (resp. red) iterators.

The Figure 3.3 shows the data-flow scheme of the fillred iterator.

—_ <

Figure 3.3: A node N (1+3 inputs, 1+2 outputs), and the node +fillred<<N; 4>>

Definition 3: fillred

For any integer constant n and any node N of type:
TXTX...XTp = TX0 X...x0),
where k and ¢ > 0; fillred<<N; n>> denotes a node of type:
TXTNX...XT'n—=>TX0™"mXx...x0,/n
such that
(aout Y1, - +,Yp) = fillred<<N; n>>(a;;,X1, - -,Xk)
if and only if, Jag, - - -, a;, such that ag = a;,, ay = agu, and
Vi=0---n—1, (ajp1,Y1 0, -, Yo [i]) = N(a;, X1 ], - -, X [11)
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Example 32 fillred

A classical exemple is the binary adder, obtained by mapping the “full-adder”. The un-
signed sum Z of two bytes X and Y, and the corresponding overflow flag can be obtained
by:

(over, Z) = fillred<<fulladd, 8>>(false, X, Y)
where:

node fulladd(cin, x, y : bool) returns (cout, z : bool);
let

Z = cin Xor X Xor y;

cout = if cin then x or y else x and y;
tel

3.2.4 From arrays to arrays, without an accumulator: map

The map iterator transforms a scalar-to-scalar node into an array-to-array node. The
tigure 3.4 shows the data-flow scheme of the map iterator.

=t —

K>

—=0< [H

[¥

gé/ / gé/ gé/

[¥

Figure 3.4: A node N (3 inputs, 2 outputs), and the node map<<N; 4>>

For any integer constant n and any node N of type:
T X...XT — 01 X...x80,
map<<N; n>> denotes a node of type:
TnX...Xxgn—0mx...x0,/n
such that
(Y1,---,Yp) = map<<N; n>>(Xq,---,X)
if and only if
Vi=0---n—1, (Y; [, ---,Y,[]) = NXq[2],---, % [i1)

Example 33 map

map <<+; 3>>([1,0,2],[3,6,-1]) ~» [4,6,1]
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3.2.5 From Boolean arrays to Boolean scalar: boolred

This iterator has 3 integer static input arguments:
boolred<<i; j; k>>

suchthat0 <i <j<kandk > 0.

It denotes a combinational node whose profile is bool“k—bool, and whose semantics
is given by: the output is true if and only if at least i and at most j elements are true in
the input array.

Note that this iterator can be used to implement efficiently the diese and the nor
operators :

Example 34 boolred

#(al, ..., an) ~» boolred<<0,1,n>>(al, ..., an)
nor(al, ..., an) ~» boolred<<0,0,n>>(al, ..., an)

3.2.6 Lustre iterators versus usual functional languages ones.

Note that those iterators are more general than the ones usually provided in functional
language librairies. Indeed, the arity of the node is not fixed. For example, in a usual
functional language, you would have map and map2 with the following profile:

map : (a -> ’b) -> (a’ array) -> (b’ array)

map2 : (’a -> ’b => ’c) -> (a’ array) -> (b’ array) -> (¢’ array)

whereas the map iterator we define here would have the following profile in the func-
tional programming world :

mapn : (’a; => ’ap -> ... -> ’a;) -> (a;’ array) -> (ap’ array) -> ...
-> (ay_1’ array) —-> (a,’ array)

Note that it even note possible to give a milner-style type to describe this iterator.
Indeed, the type of the node depends on the size of the array; it would therefore require
a dependant-type system.
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3.3 Parametric nodes

node can be parametrised by constants, types, and nodes.

Example 35 Parametric Node

node mk_tab<<type t; const init: t; const size: int>>
(a:t) returns (res: t~size);
let
res = init ~ size;
tel
node tab_int3 = mk_tab<<int, 0, 3>>;
node param_node2 = mk_tab<<bool, true, 4>>;

Example 36 Parametric Node

node toto_n<<
node f(a, b: int) returns (x: int);
const n : int
>>(a: int) returms (x: int~n);
var v : int;

let
v = f(a, 1);
X = Vv ~ n;
tel

node param_node = toto_n<<Lustre::iplus, 3>>;

nodes can even be defined recursively using the “with” construct

Example 37 Recursive Node

node consensus<<const n : int>>(T: bool"n)
returns (a: bool);

let
a = with (n = 1) then TI[O]
else T[0] and consensus << n-1 >> (T[1 .. n-1]);
tel

node consensus2 = consensus<<8>>;

3.4 Packages and models

A lustre V6 program is a list of packages, models (generic packages), and model
instances.
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Basic lustre programs are still accepted by the lustre V6 compiler, which consider
implicitely that a program without package annotations :

e uses no other package
e provides all the package parameters it defines

e is part of a package that is made of the file name

I (Program) == ({Package) | (Model) | (Model_Instance) )*

A package is made of:

e a header, which gives the name of the package, the entities exported by the pack-
age, and the packages and models used by the package;

e and an optional body which consists of the declarations of the entities defined by
the package. When the body is not given, the package is external.

(Package) n= (Package Header) [ (Package_Body) ] “end”
(Package _Header) “package” (Ident) (P)

[ “uses” (Ident_List) ]

“provides” (Package_Params)

(Package _Params) := ({Package Param))*

(Package Param) = “const” (Ident) “:” (Type_ Identifier) (P) “;”
| “type” (Type Ident List) (P) “;”
| (Function_Header)
| (Node_header)

(Type_Identifier) == (Identifier)

(Type Ident List)y == (Ident) “;” | (Ident) “,” (Type_Ident List)

The output parameters of packages can be constants, types, nodes, or functions.

Example 38 Package

package pack
uses packl, pack2;

provides
const pi,e:real;
type t1,t2;

function cos(x:real) returns (y:real);
node rising edge(x:bool) returns (re:bool);
body

end
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Example 39

package complex
provides
type t; —— Encapsulation
const i:t;
node re(c: t) returns (r:real);
body
type t = struct { re : real ; im : real };
const i:t =t { re = 0. ; im = 1. };
node re(c: t) returns (re:real);
let re = c.re; tel;
node complex = re;
end

A model has an additional section (needs ...) in its header which declares the formal
parameters of the model. A model is somehow a parametric package.

(Model) (Model Header) [ (Body) ] “end”
(Model_Header) := “model” (Ident) (P)
“uses” (Ident_List) ]
“needs” (Package_Params)
“provides” (Package Params)

Example 40 Model

model model_example

needs
type t;
const pi;
provides
node n(init, in : t ) returns (res : t);
body
node n(init, in: t) returns (res: t);
let
res = init -> pre in;
tel
end

A model instance defines a package as an instance of a model by providing input
parameters. It declares the list of packages it uses. It provides all objects exported by
the model and its effective parameters.
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(Model _Instance)

“package” (Ident)
“uses” (Ident List) ]
“is” (Ident) “(” (Model Actual List) “)” (P) “3”
(Model Actual) | (Model Actual) “,” (Model _Actual List)
(Identifier) (P) | (Expression) (P)

(Model Actual List)
(Model Actual)

The user decide which node is the main one at compile time, following the Lustre V4
tradition. For example the node bar of package p in file foo.lus will be used as main
node if the following command is launched: 1v6 foo.lus -main p::bar.

Example 41 Model instance

Here is how to obtain packages by instanciating the model given in Example 40:

package model_instance_examble_bool is model_example(t=bool,pi=3.14);
package model_instance_examble_int is model_example(t=int,pi=3.14);

In this way, model_instance_examble_bool is a package that provides the node:

n(init, in : bool) returns (res : bool)

3.4.1 Package body

(Package_Body)
(Entity_Decl)

[ “body” ] (Entity Decl)™
= (Const_Decl)
| (Type_Decl)
| (Model_Instance)
| (Function_Decl)
| (Node_Decl)

Example 42 Package body
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3.5 Predefined entities

a package is a set of definitions of entities: types, constants and operators (nodes or

functions).
a model can have as parameters a type, a constant, or a node.
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3.6 The Merge operator

Example 43 The Merge operator

type piece = enum { Pile, Face, Tranche };
node test_merge(clk: piece; il, i2, i3 : int)
returns (y: int);
let
y = test_merge_clk(clk, il when Pile(clk),
i2 when Face(clk),
i3 when Tranche(clk));
tel
node test_merge_clk(clk: piece;
il : int when Pile(clk) ;
i2 : int when Face(clk);
i3 : int when Tranche(clk))
returns (y: int);

let
y = merge clk
( Pile -> (0->i1))
( Face -> i2)
( Tranche —> i3);
tel
node merge_bool_alt(clk : bool ;
il : int whem clk ;
i2 : int when not clk)
returns (y: int);
let
y = merge clk (true -> il) (false-> i2);
tel
node merge_bool_ter(clk : bool ;

il : int whemn clk ;
i2 : int when not clk)
returns (y: int);
let
y = merge clk (false-> i2) (true -> il) ;
tel

clk || Pile | Pile | Face | Tranche | Pile | Face
il 1 2 3

i2 1 2

i3 1

y 1 2 1 1 3 2
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3.7 A complete example

Example 44 Detecting the stability of a flow

—— Time-stamp: <modified the 18/12/2017 (at 15:20) by Erwan Jahier>

—-— Computes the speed (of some wvehicle with wheels) out of 2 sampled tinputs:
-— + Rot, true iff the wheel has performed a complete rotation

-— + Tic, true iff some external clock has emitted a signal indicating that
- some constant amount of time elapsed (e.g., 100 ms)

-— This exzample was inspired from a real program in a train regulating system
const period = 0.1; -- %n seconds
const wheel_girth = 1.4; -—- in meter
const size = 20; -- size of the sliding window used to compute the speed
node compute_speed(Rot, Tic: bool) returns (Speed:real);
var d,t,dx,tx:real;
let
dx = if Rot then wheel_girth else 0.0;
tx = if Tic then period else 0.0;
d = sum<<size,0.0>>(dx);
t = sum<<size,period>>(tx);
-—- the speed ts actually the average speed during the last "size*period" seconds
Speed = (d/t);
-- nb : yes there can be some division by zero! For instance if the wehicle
-- overtakes the speed of size*wheel_girth/period
—-— (i.e., with size=20, period=0.1, wheel_girth=1.4, if the speed is > 1008km/h)
—-— This means that for high-speed vehicle, one needs to increase "size".
tel
-— The idea %s to call the node that do the computation only when needed, %.e.,
-— when Tic or Rot s true.
node speed(Rot, Tic: bool) returns (Speed:real);
var
TicOrRot : bool;
NewSpeed : real when TicOrRot;

let
TicOrRot = Tic or Rot;
NewSpeed = compute_speed(Rot when TicOrRot, Tic when TicOrRot);

Speed = current (NewSpeed) ;
tel
-- computes the sum of the last d values taken by s
node sum<<const d: int; const init:real>>(s: real) returns (res:real);
var

a,pre_a: real”d; -- circular array
i: int;
let

i=01fby i+ 1;
pre_a = (init~d) fby a;
a = assign<<d>>(s, i mod d, pre_a); 40
res =red<<+; d>>(0.0, a);
tel
-- assign the jth element of an array to a wvalue. v.(j) <- 1
type update_acc = { i: int; j: int; v: real };
function update_cell_do<<const d: int>>(acc: update_acc; cell: real)
returns (nacc: update acc: ncell: real):



Appendix A

Appendix

A.1 The syntax rules summary

I <P> = ( 1/%// <Sti’ing> //o/.n ) *

I (Identifier) == (Ident) | (Ident)”::”(Ident)

(Type_Decl) “type” (Ident)™ (P) “;”

//typen <Id€1’lt> " <TyP€> <7)> //;rl

(Type) = (Ident) | (Record_Type) | (Array_Type) | (Enum_Type)
(Record_Type) == “struct” “{” (Field List) “}"”

(Field_List) = (Field) | (Field) “,” (Field_List)

(Field) = (Ident) “:” (Type)

(Array_Type) == (Type) “~ " (Expression)

(Enum_Type) = “enum” “{” (Ident List) “}”

(Const_Decl)
(One_Const_Decl)

“const” ( (One_Const_Decl) )™

(Ident_List) “:” (Type) (P) “;”

(Ident) “=" (Expression) (P) “3”

(Ident) “:" (Type) “=" (Expression) (P) “;"
(Ident) | (Ident) “,” (Ident List)

(Ident List) =

41



42/52

Table of contents

{
{

{
{
(
{
(
{
{
{
{

Node_Decl)
Node_Header)

FN_Params)
Var_Decl _List)

Declared. Clock)
Local Decl )

Local _Var_Decl)
Local_Const_Decl)

(Node_Header) [ (FN_Body) ]
[ “unsafe” | [ “extern” | (“node”
“returns” “(”(FN_Params) “)” (P) “3;”
(Var_Decl _List)
(Var_Decl) | (Var_Decl) “;” (Var_Decl_List)
(Ident _List) “:” (Type) | <Declared,Clock> 1{P)
“when” <Clock>
(Identifier)
( (Local_Decl) )* “1et” (Equation_List) “tel” [ “;" ]
(Local Var_Decl) | (Local_Const_Decl)
“var” (Var_Decl List) “;"”
“const” ( (Ident) [ “:” (Type) 1 “=" (Expression) “3” )"

“function”) “(” (FN_Parn

ams> //)I!

{
(
(
{
{
{
(
{
{

Equation_List)
Eq_or_Ast)
Equation)
Left_Part)

Left List)

Left)

Selector)
SelTrancheEnd)
Assertion)

(Eq-or_Ast) | (Eq-or_Ast) (Equation_List)

(Equation) | (Assertion)

(Left_Part) “=" (Right_Part) (P) “;”

“” (Lefthst) “)” | (Left_List)

(Left) (", (Left) )

(Identiﬁer) | (Left) (Selector)

“."” (Ident) | “[” (Expression) [ (SelTrancheEnd) ]“1”
“..” (Expression)

“assert” (Expression) (P) “;”
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(Expression) =8

Expression

Array_Exp) n= “[” (Expression_List) “1” | (Expression)

Call)

(

(

(
(Field_Exp)
(

(
(User_Op)

(

(

Listy == (
Record_Exp) n= (Ident) “{” (Field_Exp_List) ”}”

Field Exp_List) ==

=

(Identifier)
(Value)

“(” (Expression_List) “)”
(Record_Exp)

(Array_Exp)

(Unary) (Expression)

(Expression) (Binary) (Expression)
(Nary) (Expression)

“if” (Expression) “then” (Expression) “else” (Expression)
Call)

Expression) (Selector)
Expression) | (Expression)

Il 7

(Expression_List)

Field Exp) | (Field_Exp) “;” (Field_Exp_List)
Ident) “=" (Expression)
“~ " (Expression)
(User_Op) (P) “(” (Expression_List) “)”
n= (Identifier)
(Iterator) << (User_Op) “,” (Expression) >>

(Iterator) n= “map” | “red” | ”f111” | “fillred” | “boolred”
(Unary) == “=" | “not”
<Binary> = 1/+// | “_r | 1/ 7 | 1//1/ | udiv” | /lmodu
| II>/I | II</I | 1/>=// | /1<_” | ll<>ll | "
| uor// | ”and” ‘ /1xor// ‘ 1/=>//
<Nﬂry> = Ilﬁﬂ //norn
(Unary) “pre” | “current”
(Binary) ==

| //_>lr | ”When” | //fbyrl

(Type_Decl)

Type)

Field_List)
Field)
Array_Type

PN

Record_Type)

Enum_Type)

“type” (Ident)™ (P) “3”

“sype’ (Ident) “=" (Type) (P) “3"

n= (Ident) | (Record_Type) | (Army Type) | (Enum_Type)
“{” (Field_List) “}"

(Field) | (Field) “;" (Field_List)

n= (Ident) “:” (Type)

(Type) “~ " (Expression)

“enum” “{” (Ident List) “}"”

)
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node-exp = ident
| meta-op << static-arg{ ;static-arg }T >>
static-arg =
meta-op = map |[fill |red |fillred |boolred
val-exp |node-exp |usual-op
(node-defy == (node) (ident) = (node-exp) ;
(Program) = ({Package) | (Model) | (Model Instance) )*
(Package) = (Package_Header) [ (Package_Body) ] “end”
(Package_Header) := “package” (Ident) (P)
[ “uses” (Ident_List) ]
“provides” (Package Params)
(Package _Params) := ({Package Param))*
(Package Param) = “const” (Ident) “:” (Type_Identifier) (P) “;”
| “type” (Type_ldent List) (P) “3;”
|  (Function_Header)
| (Node_header)
(Type_Identifier) = (Identifier)
(Type_Ident Listy == (Ident)“;” | (Ident) “,” (Type_ldent List)
(Model) = (Model Header) [ (Body) ] “end”
(Model_Header) := “model” (Ident) (P)
“uses” (Ident List) ]
“needs” (Package_Params)
“provides” (Package Params)
(Model Instance) = “package” (Ident)
[ “uses” (Ident _List) ]
“is” (Ident) “(” (Model_Actual List) “)” (P) “3”
(Model _Actual List) == (Model Actual) | (Model Actual) “,” (Model Actual List)
(Model Actual) == (Identifier) (P) | (Expression) (P)
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(Package_Body)
(Entity_Decl)

[ “body” ] (Entity Decl)™*
(Const_Decl)
(Type_Decl)
(Model Instance)
(Function_Decl)
(Node_Decl)

A.2 The syntax rules (automatically generated)

Lexical rules:

e Ident is an identifier, following the C standard.

e IdentRef is either an identifier, or a long identifier, that is an two identifiers sepa-
rated by a double colon (Ident: : Ident).

e IntConst is a integer notation, following the C standard.

e RealConst is a floating-point notation, following the C standard.

program
PackList

OnePack

Include
Provides
Provide

ModelDecl

PackDecl
Uses
Eq_or_Is

PackEq

PackBody

{ Include } ( PackBody | PackList )
OnePack { OnePack }
ModelDecl | PackDecl | PackEq

= 1include "<string>"
= | provides Provide ; { Provide ; } |
= const Lv6ld : Type [ = Expression |
| unsafe node Lv6ld StaticParams Params returns

Params )
| node Lv6ld StaticParams Params returns Params

| unsafe function Lv6ld StaticParams Params returns

Params ,
function Lv6ld StaticParams Params returns Params

type OneTypeDecl

model Lv6ld Uses needs StaticParamList 3 Provides
body PackBody end

= package Lv6ld Uses Provides body PackBody end
[uses Lv6ld { , Lv6ld } ; |

is
package Lv6ld Eq_or_Is Lv6ld ( ByNameStaticArgList )

’

OneDecl { OneDecl }
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OneDecl =
ConstDecl | TypeDecl | ExtNodeDecl | NodeDecl
TypedLv6ldsList =
TypedLv6lds { ; TypedLv6lds }
TypedLv6lds =
Lv6ld { , Lv6ld } : Type
TypedValuedLv6lds BES
TypedValuedLv6ld { ; TypedValuedLv6ld }
TypedValuedLv6Id =
Lvéld ( : Type | , Lv6ld { , Lv6ld } : Type | : Type =
Expression )
ConstDecl == const ConstDeclList
ConstDeclList =
OneConstDecl 3 { OneConstDecl ; }
OneConstDecl =
Lvéld ( : Type | , Lv6ld { , Lv6ld } : Type | : Type =
Expression | = Expression )
TypeDecl == type TypeDeclList
TypeDeclList =
OneTypeDecl 3 { OneTypeDecl ; }
OneTypeDecl =
Lo6ld [ = ( Type | enum { Lv6ld { , Lv6ld } } | | struct
| € TypedValuedLo6lds [ 5 ]} ) |
Type = (bool|int | real | Lv6ldRef ) { = Expression }
ExtNodeDecl = ( extern function |unsafe extern function |
extern node | unsafe extern node ) Lv6ld Params
returns Params | ; |
NodeDecl =
LocalNode
LocalNode = node Lv6ld StaticParams Params returns Params | ; |
LocalDecls Body ( . | [ 3] )
| function Lv6ld StaticParams Params returns Params
[ 5 | LocalDecls Body (. | [ ])
| node Lv6ld StaticParams NodeProfileOpt = EffectiveNode
5]
| function Lv6ld StaticParams NodeProfileOpt =
EffectiveNode | ; |
| unsafe node Lv6ld StaticParams Params returns
Params | 3 | LocalDecls Body ( . | [ ])
| unsafe function Lv6ld StaticParams Params returns
Params | 3 | LocalDecls Body ( . | [ ])
| unsafe node Lv6ld StaticParams NodeProfileOpt =
EffectiveNode | ; |
| unsafe function Lv6ld StaticParams NodeProfileOpt =
EffectiveNode | ; |
NodeProfileOpt = | Params returns Params |
StaticParams = [ << StaticParamList >> |
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StaticParamList = _ )
StaticParam { ; StaticParam }
StaticParam = type Lvb6ld
| comst Lv6ld : Type
| node Lv6ld Params returns Params
| function Lv6ld Params returns Params
| unsafe node Lv6ld Params returns Params
| unsafe function Lv6ld Params returns Params
Params = (| VarDeclList [ ;] ])
LocalDecls = [ LocalDeclList |
LocalDeclList =
OneLocalDecl { OneLocalDecl }
OneLocalDecl =
LocalVars
| LocalConsts
LocalConsts = const ConstDeclList
LocalVars — var VarDeclList ;
VarDeclList =
VarDecl { 3 VarDecl }
VarDecl =
TypedLv6Ids
| TypedLv6lds when ClockExpr
| ( TypedLv6ldsList ) when ClockExpr
Body = let | EquationList | tel
EquationList = ) )
Equation { Equation }
Equation — (assert | Left = ) Expression ;
Lot  LeftltemList
| ( LeftltemList )
LeftltemList =
Leftltem { , Leftltem }
Leftltem = 6l
| FieldLeftItem
| TableLeftltem
FieldLeftltem  Leftltem . Lo6ld
TableLeftItem = .
Leftltem [ ( Expression | Select ) ]
Expression =
Constant
| Lv6ldRef
| not Expression
| = Expression
|

pre Expression
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current Expression
int Expression
real Expression

Expression when ClockExpr
Expression £by Expression
Expression => Expression
Expression and Expression
Expression or Expression
Expression xor Expression
Expression => Expression
Expression = Expression
Expression <> Expression
Expression < Expression
Expression <= Expression
Expression > Expression
Expression >= Expression
Expression div Expression
Expression mod Expression
Expression - Expression
Expression + Expression
Expression / Expression

Expression * Expression

if Expression then Expression else Expression
with Expression then Expression else Expression
# ( ExpressionList )

nor ( ExpressionList )

CallByPosExpression
[ ExpressionList ]

Expression = Expression
Expression | Expression

Expression [ Expression ]
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Expression [ Select ]
Expression . Lv6ld

|

|

| CallByNameExpression

| ( ExpressionList )

| merge Lv6ld MergeCaseList

MergeCaseList | MergeCase | { MergeCase }
MergeCase = | ( ( LvbIdRef | true | false ) => Expression ) |
ClockE =
oCERIpr Lo6IdRef ( Lo61d )
| Lo6ld
| not Lv6ld
| mnot ( Lv6ld)
PredefOp = not |fby | pre | current |->|and |or |xor |=>|=|
<> < [<=|>]>=|div |mod |- |+ |/ |*|if
CallByPosE ] =
AEBYEOSEIpTESSION EffectiveNode ( ExpressionList )
EffectiveNode = . ,
Lv6ldRef | << StaticArgList >> |
StaticArgList = _ _
StaticArg { (', | 3 ) StaticArg }
StaticArg = type Type
| const Expression
| node EffectiveNode
| function EffectiveNode
| PredefOp
| SimpleExp
| SurelyType
| SurelyNode
ByNameStaticArgList 1= , ,
ByNameStaticArg { ( , | 5 ) ByNameStaticArg }
ByNameStaticArg type Lvbld = Type

| comst Lv6ld = Expression
| node Lv6ld = EffectiveNode
| function Lv6ld = EffectiveNode
|
|
|
|

Lvéld = PredefOp
Lv6ld = SimpleExp
Lvéld = SurelyType
Lvéld = SurelyNode
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SurelyNod n=
uretyiNodae Lv6ldRef << StaticArgList >>

SurelyType 2= (bool|int | real ) { ~ Expression }

SimpleExp o Constant

Lv6ldRef

SimpleTuple
not SimpleExp
- SimpleExp

SimpleExp and SimpleExp
SimpleExp or SimpleExp
SimpleExp xor SimpleExp
SimpleExp => SimpleExp
SimpleExp = SimpleExp
SimpleExp <> SimpleExp
SimpleExp < SimpleExp
SimpleExp <= SimpleExp
SimpleExp > SimpleExp
SimpleExp >= SimpleExp
SimpleExp div SimpleExp
SimpleExp mod SimpleExp
SimpleExp - SimpleExp
SimpleExp + SimpleExp
SimpleExp / SimpleExp

SimpleExp * SimpleExp

if SimpleExp then SimpleExp else SimpleExp
SimpleTuple : | ( SimpleExpList ) |
SimpleExpList n= )
SimpleExp { , SimpleExp }

CallByNameExpression ::= | Lv6ldRef{ | [ Lv6ldRef with | CallByNameParamList |

3113
CallByNameParam { ( ; | , ) CallByNameParam }

CallByNameParamList

CallByNameParam = .
Lv6ld = Expression
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struct, enums, packages, genericity, ...

arrays

homomorphic
extension

array iterators

Figure A.1: Lustre potatoes

ExpressionList == | Expression | { , Expression }
Constant = true | false | IntConst | RealConst
Select BES , ,

Expression .. Expression Step
Step = | step Expression |
Pragma = { % TKIDENT : TKIDENTY }

A.3 Lustre History

Lustre V1, v2,v3, ..., v6

A4 Some Lustre V4 features not supported in Lustre V6
- recursive arrays slices : use iterators instead

[int, real] -> use structures instead

[int, int] -> use int~2 instead
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