
Unité Mixte de Recherche CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

Verimag Manual

The aadl2sync User Guide

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond

Initial version: January 12, 2007
Last update: January 24, 2008

Software Version: O.31
Last svn checkin: ”2008-01-24 10:26:46 ”

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

Contents
1 Introduction 2

2 The AADL to Lustre translation scheme 2

3 The AADL component to Lustre node mapping 3
3.1 Systems . 4
3.2 Hardware components . 4

3.2.1 Devices . 4
3.2.2 Processors . 4
3.2.3 Memory . 4
3.2.4 Buses . 4

3.3 Software components . 5
3.3.1 Processes . 5
3.3.2 Threads . 5
3.3.3 Sub-programs . 5
3.3.4 Data . 6

3.4 Other concepts . 6

4 Modeling the AADL virtual machine 6
4.1 Quasi-synchronous clocks . 6
4.2 Multi-tasking/Time-sharing . 7
4.3 Activation conditions . 7
4.4 Release conditions . 8
4.5 Formal verification versus simulation . 9

5 The aadl2sync compiler 9
5.1 Installation . 9
5.2 Usage . 9

5.2.1 The aadl2sync compiler . 9
5.2.2 Fixing the OSATE aaxl generated files . 11

6 Examples XXX NOT FINISHED YET 11
6.1 Two threads, one processor . 12

6.1.1 The scheduler (schedule multitask.lus) 12
6.1.2 The scheduled top-level node (multitask.lus) 15
6.1.3 The Lucky file (multitask.luc) . 15
6.1.4 The translated components (multitask nodes.lus) 17
6.1.5 The model leaves to be Filled in (fillme multitask nodes.lus) 17
6.1.6 A filled model (fillme multitask nodes.lus) 18
6.1.7 Constants (fillme multitask const.lus) 18
6.1.8 Data types (fillme multitask types.lus) 18

6.2 Two processors . 18

7 A test session using Lurette 21

8 A formal proof session using Lesar 21

9 The currently supported AADL subset 21
9.1 Ignored concepts . 21
9.2 Not supported concepts . 21
9.3 Supported concepts . 22
9.4 Some design decisions . 22
9.5 Known limitations . 22

0/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

A A quasi-synchronous clock generator/acceptor in Lustre V4 23

Verimag Manual 1/25

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

1 Introduction
Architecture Description Languages (ADL) aim at defining systems by describing jointly software and
hardware components and their interactions. ADL can describe functional interfaces to components and
non-functional aspects (reliability, availability, timing, responsiveness, etc.). The objective is to be able
to perform various analysis (schedulability, sizing analysis, safety analysis) very early in the development
process.

AADL (Architecture Analysis and Design Language) is one such ADL, that specifically targets real
time embedded systems. It lets one describe the structure of such systems as an arborescent assembly of
software components mapped onto an execution platform. The leaves of that arborescent description are
made of component interfaces that are left un-implemented.

Given an AADL model and implementations for the component leaves, the aadl2sync allows one to
perform automatically simulation and formal verification. This is done by translating the AADL model into
the Lustre programming language, for which simulation and formal verification tools exist. This tool chain
allows one to focus on functional properties far before machine code generation and deployment phases.

The main difficulty in this translation is to model intrinsically non-deterministic and a-synchronous
AADL descriptions into a synchronous language. To do that, we use techniques based on sporadic activa-
tion condition (stuttering)[6], input addition (oracles), and quasi-synchronous clocks [1].

In this document, we explain of the translation is performed, and how the tool can be used. Please refer
to [4] for a complementary description of the process.

In the following, Lustre means either the academic Lustre, or Scade (cf Section for a description of
the various code generation options). We illustrate our presentation using the academic Lustre syntax. We
suppose the reader in familiar with the AADL concepts (cf. [2, 7]) as well as with Lustre [3].

Outline. Section 2 describes the general principles of the translation, and Section 3 how the translation
operates component by component. Section 4 describes the scheduler driving the various oracles variables
introduced during the translation. Section 5 presents the tool installation and usage and Section 6 illustrates
its use on an example. Finally, Section 9 sums up which subset of AADL is supported, as well as the
limitations of the current version of the tool.

2 The AADL to Lustre translation scheme
The objective of the translation in Lustre is to be able to use the Lustre simulation and formal verification
tools to validate AADL designs very early in the development process.

In other words, we want to define in Lustre an executable/formal semantics for a subset of AADL. Since
Lustre is a discrete-time, synchronous and deterministic language, a-synchronous and non-deterministic
aspects of AADL call for a particular attention.

From continuous to discrete time. It is not really specified in the AADL model if the time is continuous
or discrete, but what is certain is that, for Lustre, the time is discrete.

In order to discretize the time, we map the basic clock to the smallest time units that appears in the
AADL model. For example, if the smallest time units that is used in the model are the milli-seconds (Ms),
then the basic clock will be rated at 1 milli-second.

Modeling implicit non-determinism. The first source of non-determinism in AADL comes from the fact
that, when defining a set of programs/threads/processes running on different processors, the time (clocks)
when every components is activated, or deliver its output is left unspecified. In order to model uncertainty
in Lustre, a classical solution is to introduce oracles: an oracle is a Boolean variable that is added to the
program inputs. For example, here, we can add a Boolean input that is true when the thread ought to be
activated. As it is an input, formal verification tools (e.g., model checkers) would verify that the properties
one wants to check holds for all the possible values of that oracle. Note however that oracles are generally
not completely free variables; they respect some constraints such as, for example, that 2 threads can not run

2/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

together on the same process. In the following, we call oracles that control the activation of components
activation conditions.

Modeling non-instantaneous executions. In some other cases, the non-determinism is stated explicitly.
For example a thread or a sub-program may have the property that its compute execution time
ranges from 10 to 100 Ms. In such a case, we add a boolean input that controls whether to retain the
previous value of the component, or to deliver a new value. This oracle has the property to be true between
10 and 100 cycles after the thread is activated. In the following, we call oracles that control the cycle at
which the components output values are available release conditions.

Modeling a-synchronous components. Programs that try to exchange values run on different processors
migth be sensible to clock drift. One way to weaken the synchronous hypothesis to model a-synchronous
components is to use quasi-synchronous clocks [1]. Clocks are said to be quasi-synchronous (resp n quasi-
synchronous) if, between two successive activations of one clock, the other clocks are activated at most
twice (resp n times). Such an interleaving is illustrated in Figure 1. The figure pictures the timing diagram
of two quasi-synchronous clocks ck1 and ck2. The “relative advance” of ck1 over ck2 (a1) and of ck2
over ck1 (a2) are represented for clarifying the principle: whenever c1 (resp. c2) is true, a2 (resp. a1)
is reset; meanwhile, if c2 (resp. c1) is false, a1 (resp. a2) is incremented. Since, in the example, a1 and
a2 are both bounded by 2, the clocks are (so far) quasi-synchronous.

0 1 0 0 0 0 1 0 0 0 00

0 0 1 2 0 0 0 1 0 0 10

a2
ck2

ck1

a1

Figure 1: Two processes running on quasi-synchronous clocks

The important property of quasi-synchronous composition of processes is that each process is guar-
anteed to miss at most one sample of the other’s output. Hence, programs that are designed to be robust
to clock drift (if they read programs output in registers for example) have the same behavior with quasi-
synchronous or synchronous clocks. Using quasi-synchronous clocks allow one to check that robustness
for AADL models.

An AADL component to Lustre node mapping. Basically, the translation consists in mapping AADL
components to Lustre nodes, where the input/output ports of components correspond to the input/output of
nodes, and where node calls directly result from component wiring (connections).

Since we focus on functional properties, we will (safely) ignore in our translation most of the hardware
components. We also ignore most properties, as they generally concern non-functional aspects. Nodes have
additional inputs for carrying the oracles of their sub-nodes. Those oracles are controlled by a scheduler
that is described in Section 4. More details about this component to node mapping is given in the following
Section.

3 The AADL component to Lustre node mapping
AADL components are made of a Type, and each Type is optionally associated to one (or several) Imple-
mentation(s). A component Type describes the functional interface of the component. An Implementation
inherits of the corresponding component Type attributes. It also declares the sub-components it is made of,
as well as the connections between them. Those connections are made through the sub-components input
and output ports.

An AADL model is made of an arborescent assembly of software and hardware component types or
implementations. A system is made of several devices and processors; each processor can run several

Verimag Manual 3/25

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

processes; each process can run several threads; and each thread can run several subprograms. Leaves of
the AADL model are therefore either subprograms, or component types. We need actual (Lustre) code for
those leaves to be able to perform formal verifications and simulations.

3.1 Systems
A system is the top-level component of the AADL model. It is translated into a (top-level) Lustre node.
Each input (resp output) port of the system is mapped into an input (resp output) of the node. For system
implementations, each sub-component is mapped into a Lustre node obtained by the translation. The node
calls result straightforwardly from its inner connections.

Properties. No property is taken into account for systems.

Sub-components. The sub-components of a system can be processors, processes, devices, and data. It
can also be memory and bus, but those are abstracted away by the tool. It could also be systems, but this is
not supported yet.

3.2 Hardware components
3.2.1 Devices

Device components are used to interface the AADL model with its environment. Therefore, devices are
not translated as the other components: their inputs are considered as system outputs, and their outputs as
system inputs. For simulation and verification purposes, behavioral models of devices can be provided by
the user.

Properties. No property is taken into account for devices.

Sub-components. None.

3.2.2 Processors

Processor components are an abstraction of hardware and software responsible for executing and schedul-
ing processes. Basically, each processor will have its own clock, which is the base time of the components
running on the processor. The Clock period property, that declares the processor internal clock rate, is
used in our translation to model the relations between the processors clocks. More details on this scheduler
are provided in Section 4.

Properties. The Clock period is used when the system contains several processors to generate the
quasi-synchronous clocks (cf Section 4.1).

Sub-components. The only possible sub-component for processors are memories, but those are ab-
stracted.

3.2.3 Memory

Memory components are used to specify the amount and the kind of memory that is available to other
components. We assume that enough memory is available and thus ignore everything that is related to such
components.

3.2.4 Buses

Bus components are used to exchange data between hardware components. Detailed models of specific
buses can be provided. In our prototype tool, we just consider buses as usual connections.

4/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

3.3 Software components

As for systems, each software component (except data) is mapped into a Lustre node which inputs/outputs
is made of the process input/output ports. For process implementations, the node calls result from its inner
connections.

3.3.1 Processes

Process components are an abstraction of software responsible for scheduling and for executing threads.
Processes are scheduled the same way periodic threads (see below), the main difference being that threads
(executed by a process) can share a common memory whereas processes (executed by a processor) cannot.

Properties. When several processes run on the same processor, the dispatch protocol property,
attached to each process, is used by the scheduler to activate it. It can be set to Periodic only, and the
period property must be set.

Sub-components. The sub-components of a process can be a thread or a data. Thread groups are not
supported.

3.3.2 Threads

Thread components are an abstraction of software responsible for scheduling and for executing sub-programs.
When several threads run under the same process, the sharing of the process is managed by a runtime sched-
uler.

Properties. The dispatch protocol property is used to specify the activation of a thread:
• periodic means that the thread must be activated according to the specified period;
• aperiodic means that the thread is activated via one of the other components output port, called

an event port;
• a sporadic thread is a mixture between aperiodic and periodic: it can be activated either

by events, or periodically;
• background threads are always active, but have the lowest priority.
The property compute exec time, is necessary for thread Types so that the scheduler knows when

to make the outputs available. For thread implementations, this execution time results from the compute exec time
associated to their sub-programs.

Sub-components. Thread implementations are made of sub-program calls (and data).

3.3.3 Sub-programs

Sub-program components represent elementary pieces of code that processes inputs to produce outputs.
Only their interfaces are given in the AADL model; sub-program implementations ought to be provided
in some host language. For our purpose, we require sub-programs to be given in a synchronous language
(Scade or Lustre). Moreover, sub-programs must be provided with a compute exec time property in
order to simulate accurately the time their computations take.

Properties. A sub-program must define a compute exec time property, so that the scheduler knows
when to release its outputs.

Sub-components. None.

Verimag Manual 5/25

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

3.3.4 Data

Data components are not associated to Lustre nodes, but to Lustre types. They are not handled by aadl2sync
(except for the base types bool, int, and floats) and must be set by users or a third party tool (one
such tool is developed within the ASSERT project).

Each data subcomponent is translated into a local variable of the containing component. If the contain-
ing component provides an access to that data, then its interface is modified:

• read only: one output is added

• write only: one input is added

• read write:one output and one input are added

• by method: the interface remains unchanged

3.4 Other concepts

AADL defines a concept of operational mode, that is ignored in the current version of the tool. A concept
of Flow is also introduced to allow users to declare the existence of logical flows of information between
a sequence of components. Flows are used to perform various non-functional analysis. Therefore they are
ignored in our translation too.

4 Modeling the AADL virtual machine
In order to model non-determinism, oracles are added to node inputs. Each node carries all the oracles
necessary to control its sub-nodes. The top-level node therefore potentially have quite a lot of such oracles:
two per component leave instances (one for the activation condition, and one for the release condition),
plus as many quasi-synchronous clocks as there are processors. All those oracles are controlled by a
centralized scheduler that is automatically generated. This scheduler models the behavior of the AADL
virtual machine. We describe below what this generated scheduler looks like.

4.1 Quasi-synchronous clocks

We describe in this Section a possible implementation of a Quasi-synchronous (QS) clocks generator/acceptor.
This program is parameterized by:

• n: the number of QS clocks to generate, and

• d: the maximal clock drift, i.e., the maximum number of tics that are authorized for the other clocks
between 2 tics of each clock.

The idea is, starting from a n-array of Boolean values (e.g., chosen randomly) containing candidate
values for the QS clocks, to check that no clock drift excess occurs, and to force the culprit clocks to be
false when necessary to avoid this drift excess.

More precisely, we compute the relative advance of each clock w.r.t. the (n-1) other clocks. If:

• the relative advance of a clock clk1 w.r.t. another clock clk2 is equal to d,

• clk1 is true,

• clk2 is false,

then we force clk1 to be false. Such a Lustre program (in the V4 syntax) is provided in extenso in
appendix A.

6/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

4.2 Multi-tasking/Time-sharing
Several threads that run on the same process need to share the CPU. Therefore we define one scheduler per
process that runs more than one thread.

In the current version of aadl2sync, this scheduler is quite basic: it is a Rate-monotonic scheduler
(preemptive, fix priority). Higher priority is given to threads that have the smallest period. For example, in
order to schedule 3 threads, aadl2sync would generate the following task scheduler:

A rate-monotonic scheduler for scheduling 3 threads

node cpu_from_needs_3(tick : bool; needs1, needs2, needs3 : bool)
returns (cpu1, cpu2, cpu3 : bool);
let

cpu1 = tick and needs1;
cpu2 = tick and needs2 and not cpu1;
cpu3 = tick and needs3 and not cpu1 and not cpu2;

tel

where tick is the quasi-synchronous clock of the processor, and needs1 (resp needs2, needs3) is
a boolean that indicates whether the first (resp second, third) thread claims to be active. cpu1 is true
if the control is assigned to the first (resp second, third) thread. This scheduler can straightforwardly be
generalized to n processes. The variables cpu1 and needs1 are associated to the higher priority thread,
i.e, to the thread with the smallest period.

Note that we neglect the time necessary to perform context switch between threads, but it could be
taken it into account tough quite easily.

4.3 Activation conditions
An activation condition is added to Periodic and sporadic components (processes and threads). An activa-
tion condition is a Boolean variable that is set to true when the node needs to be activated. For a component
C of period p, the scheduler define a Boolean variable C activate clk that is true every p cycles of the
outer processor.

A periodic clock generator

node clock_of_period(period :int; qs_tick:bool)
returns (activate_clock : bool);
let

pcpt = period -> pre cpt;
cpt = if activate_clock then period else

if qs_tick then (pcpt -1) else pcpt;
activate_clock = true -> (pcpt = 1) and qs_tick;

tel

For example, suppose that we have an AADL model leaf which is a periodic thread type, and which
corresponds to the Lustre node incr that increments an integer.

Example 1 A Lustre node that increments a integer

node incr(x:int) returns (y:int)
let

y = x+1;
tel;

The components that call this thread would not call incr directly, but would call condact incr.

Verimag Manual 7/25

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

Example 2 The condact of node incr

node condact incr(clk:bool; y def:int; x:int) returns (y:int)
let

y = if clk then current(incr(x when clk)) else y def -> pre y;
tel;

The node condact incr has 2 additional inputs. A Boolean clk that is used to activate the the node
incr; when clk is true, the node incr is called, and otherwise, the node incr outputs the value, stored
in a memory, computed the last time the node was activated. The second additional input y def is used to
be able to provide an initial value to the memory.
In Scade, there exists a cond act operator that do exactly the same thing. Therefore, when generating
Scade code, we generate cond act(incr, clk, y def, x) instead of condact incr(clk,
y def,x), and we do not need to define condact incr at all.

4.4 Release conditions
In the synchronous framework, nodes compute outputs from inputs instantaneously. In order to simulate
that subprograms and threads do take time, we simply add barriers that retain the output values a certain
amount of cycles. That number of cycles is determined by the Compute Execution time property that
is associated to the corresponding component. For example, the integer output of node incr is filtered by
a node barrier incr defined as follows.

Example 3 The barrier of node incr

node barrier incr(clk:bool; y def:int; y:int) returns (y delayed:int)
let

y delayed = y def -> pre (if clk then y else y delayed);
tel;

The clock clk of that barrier is computed by the node consume. That node takes as input
• an integer in min max, which may contain any value defined by the Compute execution time

property;
• the activation condition trig and
• the cpu variable that is true when the component have the cpu.
When the activation condition trig becomes true, the in min max input is used to set the alea

local variable, and a counter cpt is set to 0. Then, each step where cpu is true, cpt is incremented.
When cpt becomes equal to alea, the release condition is emitted (i.e., becomes true for 1 cycle).

Computing the release condition

node consume(in_min_max : int; trig, cpu: bool)
returns (needs, release: bool);
var

next_needs, edge_trig : bool;
cpt, pcpt : int;
alea : int;

let
alea = if edge_trig then in_min_max else (0 -> pre alea);

needs = false -> pre next_needs;
(next_needs, edge_trig) = if needs then (not release, false)

else (trig, trig);
cpt = if needs then (if cpu then pcpt + 1 else pcpt) else 0;
pcpt = 0 -> pre cpt;
release = cpu and (cpt = alea);

tel

8/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

When a thread implementation runs several sub-programs, those are executed in sequence. The re-
lease condition of the a sub-program is therefore plugged onto the activate condition of the following
sub-program. The release condition of the last sub-program is plugged onto the release condition of the
outter thread.

4.5 Formal verification versus simulation

In order to perform formation verification (e.g., model-checking), one should take into account that the ora-
cles that have been added during the translation are not completely random. For example, The in min max
varibles ougth to be between a minimum and a maximum value. This is why an additionnal node is defined
in node schedule ex1.lus:

Oracles properties

node schedule_ex1_oracles_properties(
in_min_max11, in_min_max12, in_min_max13 : int;
in_min_max21, in_min_max22, in_min_max23 : int;
alea1, alea2 : bool)

returns (ok:bool);
let

ok =
(1 <= in_min_max11 and in_min_max11 <= 5) and
(1 <= in_min_max12 and in_min_max12 <= 5) and
(10 <= in_min_max13 and in_min_max13 <= 30) and
(1 <= in_min_max21 and in_min_max21 <= 5) and
(1 <= in_min_max22 and in_min_max22 <= 5) and
(10 <= in_min_max23 and in_min_max23 <= 30) and
true;

tel

For simulation purposes, a lucky program named ex1.luc is generated, which also take those con-
straints into account to generate random input. This generated file can serve as a basis to describe the
behavior of the AADL model environment to generate realistic input sequences.

5 The aadl2sync compiler

5.1 Installation

aadl2sync is a stand-alone executable. Therefore, one just needs to put it somewhere accessible via the
PATH environment variable.

The environment variable AADL SCHEMA DIR ought to be set to a directory containing the aaxl
schema definitions. Those can be found on the OSATE website, or in the aadl-schema directory of
the aadl2sync distribution.

The Makefile in the example directory assumes that the Lurette tools are accessible from the PATH. This
tool suite can be downloaded there: http://www-verimag.imag.fr/ synchron/index.php?page=lurette/download

5.2 Usage

5.2.1 The aadl2sync compiler

Actually, aadl2sync does not take as input aadl files, but their aaxl counter-parts. Those can be obtained via
the Eclipse plugin of OSATE. If you edit your AADL programs with an external editor (emacs, vi, etc.),

Verimag Manual 9/25

http://www-verimag.imag.fr/~synchron/index.php?page=lurette/download

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

one just needs to open the AADL file with the Eclipse/OSATE editor, and the aaxl files are automatically
generated1.

If one launches the aadl2sync compiler using the -h option, one gets:

This is aadl2sync version O.30

Usage: aadl2sync <options> <file>.aaxl+
<options> are:

--output-file <str>
-o <str>

output file base name

--lustre
Generate academic lustre code for the Verimag compiler (the default).

--scade
Generate lustre code that is compatible with Scade.

--verbosity-level <int>
-v <int>

Set the verbosity level.

--gen-fake-body
Generate a fake body to bodyless nodes

--toplevel-system
-tc

Set the top-level system (one of the system is used if left unset).

--gen-random-func
Generates random functions instead of adding oracle
variables as node inputs.

--one-file
Generates only one file (instead of 6).

--v4-arrays
Use Lustre V4 arrays in the generated code.

--check-schedulability
Add an additional boolean output (schedul_ok) that is true as long as no dead-line is missed.

--show-scheduling-vars
Add the internal scheduling variable at node outputs
(for debugging or/and to understand what’s going on).

--version
-version

Show the version.

--help
-help
-h

Display this help message

1It ought to be possible to call this aadl2aaxl translator outside, from Eclipse; if anyone knows how to do it, please let me know

10/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

For instance, the command line call aadl2sync ex1.aaxl would generate 6 files:

• ex1.lus that contains the top-level nodes ex1 simu and ex1 verif that can be respectively
used for for simulation and formal verification. It also includes the other files described below.

• ex1 nodes.lus that contains the translation in Lustre of all AADL components present in the
model.

• ex1 scheduler.lus that contains the scheduler driving all the oracles introduced during the
translation.

• fillme ex1 nodes.lus that contains the interface of nodes corresponding to leaves in the
AADL model. The bodies of such nodes need to be provided.

• fillme ex1 const.lus that contains various constants that needs to be defined, such as the
components initial values, i.e., the values they ought to output at the first cycle (values that are used
to provide default values in activation conditions).

• fillme ex1 types.lus that contains the Lustre type definitions of Data type components. This
translation is not automated by aadl2sync, but external tools exist that translate asn1 type definition
to Lustre for example.

Those last 3 files, which are prefixed by fillme , need to be filled in and renamed without the prefix.
If aadl2sync is launched with the --gen-fake-body option, fake values are provided for each of the
entity to be defined.

The content of those 6 files is illustrated and described further in Section 6.

5.2.2 Fixing the OSATE aaxl generated files

As any xml document, aaxl files ought to define in their header (second tag) the URI where to find
the xml schema they are supposed to conform to. However, the aaxl files generated by OSATE defines
to a wrong URI (http:///AADL/2). In order to turn around this problem, aadl2sync copies those
schema files in the /tmp/aadl-schema/ directory (using the AADL SCHEMA DIR environment vari-
able). Therefore, one just needs to fix the aaxl file (e.g., with sed) so that it points to this directory. The
purpose of the fix aaxl rule of the Makefile provided in the examples directory of the distribution,
is precisely to automate this boring process.

6 Examples XXX NOT FINISHED YET

THIS SECTION IS NOT FINISHED YET, SORRY.
We demonstrate in this section the use of the tool on two (a bit silly) examples that ougth illustrate most

of the AADL features we take into account. The first one is an AADL program that uses two threads of
different periods that run on a single processor. The second one is made of 2 processors; each processor is
running one process; each process is running 2 periodic threads: a (slow and low-priority) thread type, and
(fast and high-priority) thread implementation that runs 2 sub-programs.

very simple exemple to illustrate - what file are generated - how thread are simulates

2it might be possible to say to the OSATE plugin of eclipse how to redefine that; please tell me (jahier@imag.fr) if you know how.

Verimag Manual 11/25

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

6.1 Two threads, one processor

Here is an AADL program that runs two periodic threads running on a single processor. The first thread,
of period 16 ms, returns its value betwenn 6 and 8 ms (of cpu time) after it has started. The second thread,
of period 4 ms, returns its value after betwenn 1 and 2 ms. Each thread exchanges an integer value. The
top-level system has no input, and returns the output value of the first thread.

The multitask.aadl file

system multitask end multitask;

system implementation multitask.IMPL
subcomponents
slow_cmd : device An_Actuator;
fast_cmd : device An_Actuator;
a_processor : processor A_Processor.IMPL;
a_process : process A_Process.IMPL;

connections
data port a_process.O1 -> slow_cmd.I;
data port a_process.O2 -> fast_cmd.I;

properties
Actual_Processor_Binding =>

reference a_processor applies to a_process;
end multitask.IMPL;

device An_Actuator
features
I: in data port int;

end An_Actuator;

processor A_Processor end A_Processor;
processor implementation A_Processor.IMPL
end A_Processor.IMPL;

process A_Process
features
O1 : out data port int;
O2 : out data port int;

end A_Process;

process implementation A_Process.IMPL

subcomponents
s : thread SlowThread;
f : thread FastThread;

connections
data port f.O -> s.I;
data port s.O -> f.I;
data port s.O -> O1;
data port f.O -> O2;

end A_Process.IMPL;

thread SlowThread
features
I: in data port int;
O: out data port int;

properties
Dispatch Protocol => Periodic;
Period => 15 ms;
Compute Execution Time => 1 ms .. 12 ms;

end SlowThread;

thread FastThread
features
I: in data port int;
O: out data port int;

properties
Dispatch Protocol => Periodic;
Period => 10 ms;
Compute Execution Time => 1 ms .. 6 ms;

end FastThread;

data int end int;

This file can be found in the examples/multitask directory of the distribution.
Launch "make demo" to generate a executable simulation of it.

Figure 2 illustrates XXX...
Note that thr1 activate is true every 4 tics, whereas thr2 activate is not always true every

10 tics. It is because a thread is activated after period tics as soon as it has the cpu. And since thr2 is not
the most prioritary thread, sometimes it is activated a little bit later than its period, i.e. once thr1 release
the CPU.

Here are the files generated by aadl2sync to obtain that simulation are described in the sequel.

6.1.1 The scheduler (schedule multitask.lus)

The file named schedule multitask.lus defines the node schedule multitask that schedules
the top-level system The inputs named in min max <i><j> are used to simulate the compute execution
time of the two threads (<i> refers to the processor number, and<j> refers to the thread number of pro-
cessor i). Their values are set by the (generated) program Lucky file multitask.luc 6.1.3) described
below.

This node outputs the various scheduling variables that indicate when a thread is activated (thr<j> activate clk),
when its output should be made available to other components (thr<j> release clk). need<i><j>
is true when the jth thread of the ith processor ask for the CPU. cpu<i><j> is true when the jth thread
of the ith processor has the CPU.

12/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

slow cmd I

fast cmd I

s activate clk

s release clk

f activate clk

f release clk

needs a processor s

needs a processor f

cpu a processor s

cpu a processor f

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

27

27

28

28

29

29

30

30

31

31

32

32

33

33

34

34

35

35

36

36

37

37

38

38

39

39

40

40

1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-2 -2

0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2: A timing diagram obtained from a simulation of multitask.aadl

The scheduler (schedule multitask.lus)

-- This file was generated by aadl2sync version O.28.
-- ../../bin/aadl2sync --show-scheduling-vars --gen-fake-body -o
--multitask multitask.aaxl
-- on peouvou the 29/6/2007 at 14:50:11

include "fillme_multitask_types.lus"
include "fillme_multitask_const.lus"

-- interuption generator
node timer(const period : int; qs_tick:bool) returns (trig: bool);
var cpt, pcpt:int;
let
pcpt = period -> pre cpt;
cpt = if trig then period

else if (qs_tick) then pcpt -1 else pcpt;
trig = true -> (pcpt = 1) and qs_tick;

tel

node rising_edge(x:bool) returns (y:bool);
let
y = false -> x and not (pre x);

tel

node first_rising_edge(x,reinit:bool) returns (y:bool);
-- y is true when x becomes true for the first time
-- since the beginning or the last reinit
var
-- this var is used to encode a 2-state automaton
y_has_been_emitted : bool;

let
y = false ->

if ((not pre y_has_been_emitted) and rising_edge(x)) then true
else if (pre y_has_been_emitted and reinit) then false
else false ;

y_has_been_emitted = false ->
if ((not pre y_has_been_emitted) and rising_edge(x)) then true
else if (pre y_has_been_emitted and reinit) then false
else pre y_has_been_emitted;

tel

-- cpu time counter
node consume(in_min_max : int; activate, cpu: bool)
returns (next_needs, term: bool);
var
needs, edge_activate : bool;
cpt, pcpt : int;
alea : int;

let
-- in_min_max is ignored, except when activate becomes true
alea = if edge_activate then in_min_max else (0 -> pre alea);
needs = false -> pre next_needs;
next_needs, edge_activate =

if needs then (not term, false) else (activate, activate);
cpt = if needs then (if cpu then pcpt + 1 else pcpt) else 0;
pcpt = 0 -> pre cpt;
term = cpu and (cpt = alea);

tel

-- Compute the relative advance of clk1 w.r.t. clk2
node compute_advance(clk1, clk2 : bool) returns (c : int);
var pc : int;
let
pc = 0 -> pre c;
c = if clk2 then 0 -- reset the advance of clk1

else if clk1 then pc + 1 -- clk1 got ahead of one tic
else pc;

tel
-- A fix priority scheduler for 2 threads.
node cpu_from_needs_2(qs_tick, needs1, needs2 : bool)
returns (cpu1, cpu2 : bool);

let
cpu1 = qs_tick and needs1;
cpu2 = qs_tick and needs2 and not cpu1;

tel

node schedule_a_processor_threads(
in_min_max1, in_min_max2 : int;
qs_tick : bool)

returns(
_s_activate_clk, _s_release_clk : bool;
_f_activate_clk, _f_release_clk : bool;
needs2 : bool;
needs1 : bool;
cpu2 : bool;
cpu1 : bool);

var
_s_activate_clk_candidate : bool;
_f_activate_clk_candidate : bool;
next_needs1, next_needs2 : bool;

let
_s_activate_clk_candidate = timer(15, qs_tick);
_f_activate_clk_candidate = timer(10, qs_tick);
next_needs2, _s_release_clk = consume(
in_min_max1, _s_activate_clk_candidate, cpu2);

next_needs1, _f_release_clk = consume(
in_min_max2, _f_activate_clk_candidate, cpu1);

needs1 = false -> pre next_needs1;
needs2 = false -> pre next_needs2;
cpu1, cpu2 = cpu_from_needs_2(qs_tick, needs1, needs2);

-- We read inputs when the thread starts having the cpu
_s_activate_clk = first_rising_edge(cpu2, not needs2);
_f_activate_clk = first_rising_edge(cpu1, not needs1);

tel
node schedule_multitask(

_s_release_clk_min_max:int;
_f_release_clk_min_max:int) returns (
_s_activate_clk : bool;
_s_release_clk : bool;
_f_activate_clk : bool;
_f_release_clk : bool;
needs11, needs12 : bool;

cpu11, cpu12 : bool);

let

_s_activate_clk,
_s_release_clk,
_f_activate_clk,
_f_release_clk,
needs11, needs12,
cpu11, cpu12

= schedule_a_processor_threads(
_s_release_clk_min_max,

_f_release_clk_min_max,
true
);

tel

-- to be used for formal verification
node schedule_multitask_oracles_properties(
_s_release_clk_min_max:int;
_f_release_clk_min_max:int)

returns (ok:bool);
let
ok =
(1 <= _s_release_clk_min_max and _s_release_clk_min_max <= 12) and
(1 <= _f_release_clk_min_max and _f_release_clk_min_max <= 6) and
true;

tel

Verimag Manual 13/25

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

slow cmd I

fast cmd I

s activate clk

s release clk

f activate clk

f release clk

needs a processor s

needs a processor f

cpu a processor s

cpu a processor f

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

27

27

28

28

29

29

30

30

31

31

32

32

33

33

34

34

35

35

36

36

37

37

38

38

39

39

40

40

1 1 1 1 1 1 1

0 0

-2 -2 -2 -2 -2 -2 -2 -2 -2

0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2

0 0

-4 -4 -4

Figure 3: Another timing diagram obtained from a simulation of multitask.aadl the second activation of the
fast thread was able to read the result of the slow thread at step 7, whereas in previous diagram, this result
is only available at step 21

14/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

6.1.2 The scheduled top-level node (multitask.lus)

The scheduled top-level node

-- This file was generated by aadl2sync version O.28.
-- ../../bin/aadl2sync --show-scheduling-vars --gen-fake-body -o
--multitask multitask.aaxl
-- on peouvou the 29/6/2007 at 14:50:11

include "schedule_multitask.lus"
include "multitask_nodes.lus"

--
-- scheduled version of node multitask__multitask_IMPL

node multitask(_s_release_clk_min_max:int;
_f_release_clk_min_max:int)

returns (slow_cmd_I : multitask__int;
fast_cmd_I : multitask__int;

-- we output the scheduler clocks to see what is going on (cf --show-scheduling-vars option).
_s_activate_clk : bool;
_s_release_clk : bool;
_f_activate_clk : bool;
_f_release_clk : bool;
needs_a_processor_s, needs_a_processor_f : bool;

cpu_a_processor_s, cpu_a_processor_f : bool);

let
_s_activate_clk,
_s_release_clk,
_f_activate_clk,
_f_release_clk,
needs_a_processor_s,
needs_a_processor_f,cpu_a_processor_s,
cpu_a_processor_f
= schedule_multitask(_s_release_clk_min_max,

_f_release_clk_min_max
);

slow_cmd_I,
fast_cmd_I
= multitask__multitask_IMPL

(
_s_activate_clk,

_s_release_clk,
_f_activate_clk,
_f_release_clk

);

tel;

This node outputs various internal scheduling variables that are there to illustrate the behavior of the
scheduler. Without the --show-scheduling-vars option, this node would have no output. The
inputs for that node are generated by the stochastic Lucky program of Section 6.1.3.

6.1.3 The Lucky file (multitask.luc)

This Lucky program only generates values for the in min max <i><j> variables. But if the top-level
component had input, then this program would have them in its output interface. It would be up the user
to define constraints over those variables. The internal variables are there because the compiler has been
invoked with the --show-scheduling-vars options, and because lucky imposes that the set of inputs
(resp outputs) matches exactly the set of outputs (resp inputs) of the node its generates inputs for (cf the
Lucky manual [5]).

Verimag Manual 15/25

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

The Lucky file

-- to be used for simulation
inputs {

slow_cmd_I : int;
fast_cmd_I : int;

_s_activate_clk : bool;
_s_release_clk : bool;
_f_activate_clk : bool;
_f_release_clk : bool;
needs_a_processor_s : bool;
needs_a_processor_f : bool;
cpu_a_processor_s : bool;
cpu_a_processor_f : bool

}

outputs {
_s_release_clk_min_max:int;
_f_release_clk_min_max:int}

states { loop : stable }
start_state { loop }

transitions {
loop -> loop ˜cond
1 <= _s_release_clk_min_max and _s_release_clk_min_max <= 12 and
1 <= _f_release_clk_min_max and _f_release_clk_min_max <= 6 and
true

}

16/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

6.1.4 The translated components (multitask nodes.lus)

The translated components

-- This file was generated by aadl2sync version O.28.
-- ../../bin/aadl2sync --show-scheduling-vars --gen-fake-body -o
--multitask multitask.aaxl
-- on peouvou the 29/6/2007 at 14:50:11

include "fillme_multitask_nodes.lus"

--
----- multitask__A_Process_IMPL
node multitask__A_Process_IMPL(_s_activate_clk : bool;

_s_release_clk : bool;
_f_activate_clk : bool;
_f_release_clk : bool) returns (O1 : multitask__int;
O2 : multitask__int);

var
f_O_condact : multitask__int;
f_O : multitask__int;
s_O_condact : multitask__int;
s_O : multitask__int;

let
f_O =
barrier_multitask__FastThread(_f_release_clk,
multitask__FastThread_O_dft ,f_O_condact

);
f_O_condact =
condact_multitask__FastThread(_f_activate_clk,s_O,
multitask__FastThread_O_dft

);
O2 = f_O;
s_O =
barrier_multitask__SlowThread(_s_release_clk,
multitask__SlowThread_O_dft ,s_O_condact

);
s_O_condact =
condact_multitask__SlowThread(_s_activate_clk,f_O,
multitask__SlowThread_O_dft

);
O1 = s_O;

tel;

--
----- multitask__multitask_IMPL
node multitask__multitask_IMPL(_s_activate_clk : bool;

_s_release_clk : bool;
_f_activate_clk : bool;
_f_release_clk : bool) returns (slow_cmd_I : multitask__int;
fast_cmd_I : multitask__int);

var
a_process_O1 : multitask__int;
a_process_O2 : multitask__int;

let
fast_cmd_I = a_process_O2;
slow_cmd_I = a_process_O1;
a_process_O1,a_process_O2 = multitask__A_Process_IMPL(_s_activate_clk,
_s_release_clk,
_f_activate_clk,
_f_release_clk
);

tel;

--
---------- Barrier of multitask__SlowThread
node barrier_multitask__SlowThread(

clk:bool; def1:multitask__int;
x1:multitask__int)

returns (y1:multitask__int);
let
y1 = def1 -> pre (if clk then x1 else y1);

tel;
-- End of node barrier_multitask__SlowThread
--
---------- Condact multitask__SlowThread
node condact_multitask__SlowThread(clk:bool; x1:multitask__int;

def1:multitask__int)
returns
(y1:multitask__int);

var
x1_when_clk : multitask__int when clk;

let
x1_when_clk = x1 when clk;

y1 =
if clk then current(multitask__SlowThread(x1_when_clk))
else ((def1)

-> pre (y1));
tel;
-- End of node condact_multitask__SlowThread

--
---------- Barrier of multitask__FastThread
node barrier_multitask__FastThread(

clk:bool; def1:multitask__int;
x1:multitask__int)

returns (y1:multitask__int);
let
y1 = def1 -> pre (if clk then x1 else y1);

tel;
-- End of node barrier_multitask__FastThread
--
---------- Condact multitask__FastThread
node condact_multitask__FastThread(clk:bool; x1:multitask__int;

def1:multitask__int)
returns
(y1:multitask__int);

var
x1_when_clk : multitask__int when clk;

let
x1_when_clk = x1 when clk;

y1 =
if clk then current(multitask__FastThread(x1_when_clk))
else ((def1)

-> pre (y1));
tel;
-- End of node condact_multitask__FastThread

This file contains the lustre translation od AADL components, as described in Section 4. The node
activations and the variables releases are controlled by the scheduler variables.

6.1.5 The model leaves to be Filled in (fillme multitask nodes.lus)

The model leaves to be Filled in

node multitask__SlowThread(I : multitask__int) returns (O : multitask__int);
let

O = I - 2 ;
tel;

node multitask__FastThread(I : multitask__int) returns (O : multitask__int);
let

O = I * 2;
tel;

When invoked with the "--gen-fake-body" option, the compiler put default arbitrary values to
unknown entities such as undefined output variables (but also to data types, and constant values, as illus-

Verimag Manual 17/25

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

trated below). One have to search for the string "XXX" all through the generated files, in order to check
whether those arbitrary values are correct.

6.1.6 A filled model (fillme multitask nodes.lus)

Here is a possible way to fill the file above

node multitask__SlowThread(I : multitask__int) returns (O : multitask__int);
let

O = I - 2 ;
tel;

node multitask__FastThread(I : multitask__int) returns (O : multitask__int);
let

O = I * 2;
tel;

6.1.7 Constants (fillme multitask const.lus)

Constants

-- This file was generated by aadl2sync version O.28.
-- ../../bin/aadl2sync --show-scheduling-vars --gen-fake-body -o
--multitask multitask.aaxl2
-- on peouvou the 27/6/2007 at 16:54:17

const multitask__SlowThread_O_dft = 1 ;
const multitask__FastThread_O_dft = 0 ;

All constants are defined in this file. Default values are provided when the compiler in invoked with
the "--gen-fake-body" option.

6.1.8 Data types (fillme multitask types.lus)

Data types

-- This file was generated by aadl2sync version O.28.
-- ../../bin/aadl2sync --show-scheduling-vars --gen-fake-body -o
--multitask multitask.aaxl
-- on peouvou the 29/6/2007 at 14:50:11

{type} multitask__int = int; -- XXX Fix me?

Data types are defined in this file. Here, the compiler guessed it was an integer because "int"
is a sub-string of "multitask int". This guess is only done if the compiler in invoked with the
"--gen-fake-body" option.

6.2 Two processors

Here is an AADL program that illustrates the translation of a model with several processors.
We only show the scheduler, as the other generated files are very similar to the ones of the first example.

One can have a look a all the generated files in the examples/twoproc directory of the distribution after
launching the "make demo command".

18/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

The twoproc.aadl file

system twoproc
end twoproc;

system implementation twoproc.IMPL
subcomponents
t1 : device A_Sensor;
t2 : device A_Sensor;
cmd1_1 : device An_Actuator;
cmd1_2 : device An_Actuator;
cmd1_3 : device An_Actuator;
cmd2_1 : device An_Actuator;
cmd2_2 : device An_Actuator;
cmd2_3 : device An_Actuator;

processor1 : processor A_Processor.IMPL;
processor2 : processor A_Processor.IMPL;
process1 : process A_Process.IMPL;
process2 : process A_Process.IMPL;

-- so that the 2 processes can communicate
System_bus : bus A_Bus;
memo : memory Some_Memory;

connections
bus access System_bus -> processor1.proc_bus;
bus access System_bus -> processor2.proc_bus;
bus access System_bus -> memo.mem;

data port process1.O1 -> cmd1_1.I;
data port process1.O2 -> cmd1_2.I;
data port process1.O3 -> cmd1_3.I;
data port process2.O1 -> cmd2_1.I;
data port process2.O2 -> cmd2_2.I;
data port process2.O3 -> cmd2_3.I;
data port t1.O -> process1.I;
data port t2.O -> process2.I;

properties
Actual_Processor_Binding =>

reference processor1 applies to process1;
Actual_Processor_Binding =>

reference processor2 applies to process2;
end twoproc.IMPL;

Data int end int;

device A_Sensor
features
O: out data port int;

end A_Sensor;

device An_Actuator
features
I: in data port int;

end An_Actuator;

bus A_Bus end A_Bus;

memory Some_Memory
features
mem : requires bus access A_Bus;

end Some_Memory;

processor A_Processor
features
proc_bus : requires bus access A_Bus;

end A_Processor;

processor implementation A_Processor.IMPL
end A_Processor.IMPL;

process A_Process

features
I : in data port int;
O1 : out data port int;
O2 : out data port int;
O3 : out data port int;

end A_Process;

process implementation A_Process.IMPL
subcomponents
thr1 : thread Thread1;
thr2 : thread Thread2.IMPL;

connections
data port I -> thr1.I;
data port I -> thr2.I1;
data port thr1.O -> thr2.I2;
data port thr1.O -> O1;
data port thr2.O1 -> O2;
data port thr2.O2 -> O3;

end A_Process.IMPL;

thread Thread1
features
I: in data port int;
O: out data port int;

properties
Dispatch Protocol => Periodic;
Period => 100 ms;
Compute Execution Time => 10 ms .. 30 ms;

end Thread1;

thread Thread2
features
I1: in data port int;
I2: in data port int;
O1: out data port int;
O2: out data port int;

properties
Dispatch Protocol => Periodic;
Period => 20 ms;

end Thread2;

thread implementation Thread2.IMPL
calls {
add : subprogram ADD;
mult : subprogram MULT;

};
connections

parameter I1 -> add.I1;
parameter I2 -> add.I2;
parameter I1 -> mult.I1;
parameter I2 -> mult.I2;
parameter add.O -> O1;
parameter mult.O -> O2;

end Thread2.IMPL;

subprogram ADD
features
I1: in parameter int;
I2: in parameter int;
O: out parameter int;

properties
Compute Execution Time => 1 ms .. 5 ms;

end ADD;

subprogram MULT
features
i1: in parameter int;
i2: in parameter int;
O: out parameter int;

properties
Compute Execution Time => 1 ms .. 5 ms;

end MULT;

Verimag Manual 19/25

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

The scheduler

-- This file was generated by aadl2sync version {O.27}.
-- ../../bin/aadl2sync --show-scheduling-vars --gen-fake-body -o
--twoproc twoproc.aaxl
-- on peouvou the 12/6/2007 at 11:19:31

include "fillme_twoproc_types.lus"
include "fillme_twoproc_const.lus"

-- We skip definitions provided in the previous example
-- timer definition skipped ...
-- rising_edge definition skipped ...
-- first_rising_edge definition skipped ...
-- consume definition skipped ...

-- Compute the relative advance of clk1 w.r.t. clk2
node compute_advance(clk1, clk2 : bool) returns (c : int);
var pc : int;
let
pc = 0 -> pre c;
c = if clk2 then 0 -- reset the advance of clk1

else if clk1 then pc + 1 -- clk1 got ahead of one tic
else pc;

tel
-- A fix priority scheduler for 3 threads.
node cpu_from_needs_3(qs_tick, needs1, needs2, needs3 : bool)
returns (cpu1, cpu2, cpu3 : bool);
let
cpu1 = qs_tick and needs1;
cpu2 = qs_tick and needs2 and not cpu1;
cpu3 = qs_tick and needs3 and not cpu1 and not cpu2;

tel

node schedule_processor1_threads(
in_min_max1, in_min_max2, in_min_max3 : int;
qs_tick : bool)

returns(
_add_activate_clk, _add_release_clk : bool;
_mult_activate_clk, _mult_release_clk : bool;
_thr1_activate_clk, _thr1_release_clk : bool;
needs1, needs2, needs3 : bool;
cpu1, cpu2, cpu3 : bool);

var
_add_activate_clk_candidate : bool;
_mult_activate_clk_candidate : bool;
_thr1_activate_clk_candidate : bool;
next_needs1, next_needs2, next_needs3 : bool;

let
_add_activate_clk_candidate = timer(20, qs_tick);
_mult_activate_clk_candidate = _add_release_clk;
_thr1_activate_clk_candidate = timer(100, qs_tick);
next_needs1, _add_release_clk = consume(
in_min_max1, _add_activate_clk_candidate, cpu1);

needs1 = false -> pre next_needs1;
next_needs2, _mult_release_clk = consume(
in_min_max2, _mult_activate_clk_candidate, cpu2);

needs2 = false -> pre next_needs2;
next_needs3, _thr1_release_clk = consume(
in_min_max3, _thr1_activate_clk_candidate, cpu3);

needs3 = false -> pre next_needs3;
cpu1, cpu2, cpu3 = cpu_from_needs_3(qs_tick, needs1, needs2, needs3);

-- We read inputs when the thread starts having the cpu
_add_activate_clk = first_rising_edge(cpu1, not needs1);
_mult_activate_clk = first_rising_edge(cpu2, not needs2);
_thr1_activate_clk = first_rising_edge(cpu3, not needs3);

tel

node schedule_processor2_threads(
in_min_max1, in_min_max2, in_min_max3 : int;
qs_tick : bool)

returns(
_add_activate_clk_2, _add_release_clk_2 : bool;
_mult_activate_clk_2, _mult_release_clk_2 : bool;
_thr1_activate_clk_2, _thr1_release_clk_2 : bool;
needs1, needs2, needs3 : bool;
cpu1, cpu2, cpu3 : bool);

var
_add_activate_clk_2_candidate : bool;
_mult_activate_clk_2_candidate : bool;
_thr1_activate_clk_2_candidate : bool;
next_needs1, next_needs2, next_needs3 : bool;

let
_add_activate_clk_2_candidate = timer(20, qs_tick);
_mult_activate_clk_2_candidate = _add_release_clk_2;
_thr1_activate_clk_2_candidate = timer(100, qs_tick);
next_needs1, _add_release_clk_2 = consume(
in_min_max1, _add_activate_clk_2_candidate, cpu1);

needs1 = false -> pre next_needs1;
next_needs2, _mult_release_clk_2 = consume(
in_min_max2, _mult_activate_clk_2_candidate, cpu2);

needs2 = false -> pre next_needs2;
next_needs3, _thr1_release_clk_2 = consume(
in_min_max3, _thr1_activate_clk_2_candidate, cpu3);

needs3 = false -> pre next_needs3;
cpu1, cpu2, cpu3 = cpu_from_needs_3(qs_tick, needs1, needs2, needs3);

-- We read inputs when the thread starts having the cpu
_add_activate_clk_2 = first_rising_edge(cpu1, not needs1);
_mult_activate_clk_2 = first_rising_edge(cpu2, not needs2);
_thr1_activate_clk_2 = first_rising_edge(cpu3, not needs3);

tel

-- A quasi synchronous scheduler for 2 processors.
node quasi_synchronous_scheduler(alea_1, alea_2 : bool)
returns (qs_1, qs_2 : bool);
var
advance_max_is_reached_1_2 : bool;
advance_max_is_reached_2_1 : bool;
problems_1_2 : bool;
problems_2_1 : bool;
filter_1 : bool;
filter_2 : bool;
advance_1_2 : int;
advance_2_1 : int;
padvance_1_2 : int;
padvance_2_1 : int;

let
-- We compute the relative advance of various processors
advance_1_2 = compute_advance(qs_1, qs_2);
advance_2_1 = compute_advance(qs_2, qs_1);

padvance_1_2 = 0 -> pre advance_1_2;
padvance_2_1 = 0 -> pre advance_2_1;
-- Is the maximum advance reached?
advance_max_is_reached_1_2 = (padvance_1_2 >= 2);
advance_max_is_reached_2_1 = (padvance_2_1 >= 2);

-- there is a problem if the maximum advance is reached
and no tic occurs

problems_1_2 = advance_max_is_reached_1_2 and alea_1;
problems_2_1 = advance_max_is_reached_2_1 and alea_2;

-- we force the tic for clocks that are d tics late
filter_1 = (not problems_1_2);
filter_2 = (not problems_2_1) and true;
qs_1 = alea_1 and filter_1;
qs_2 = alea_2 and filter_2;

tel

node schedule_twoproc(
in_min_max11, in_min_max12, in_min_max13 : int;
in_min_max21, in_min_max22, in_min_max23 : int;
alea1, alea2 : bool) returns (
_add_activate_clk : bool;
_add_activate_clk_2 : bool;
_add_release_clk : bool;
_add_release_clk_2 : bool;
_mult_activate_clk : bool;
_mult_activate_clk_2 : bool;
_mult_release_clk : bool;
_mult_release_clk_2 : bool;
_thr1_activate_clk : bool;
_thr1_activate_clk_2 : bool;
_thr1_release_clk : bool;
_thr1_release_clk_2 : bool;
qs_tick1, qs_tick2 : bool;
needs11, needs12, needs13 : bool;
cpu11, cpu12, cpu13 : bool;
needs21, needs22, needs23 : bool;
cpu21, cpu22, cpu23 : bool);

let
_add_activate_clk,
_add_release_clk,
_mult_activate_clk,
_mult_release_clk,
_thr1_activate_clk,
_thr1_release_clk,
needs11, needs12, needs13,
cpu11, cpu12, cpu13

= schedule_processor1_threads(
in_min_max11, in_min_max12, in_min_max13,

qs_tick1
);
_add_activate_clk_2,
_add_release_clk_2,
_mult_activate_clk_2,
_mult_release_clk_2,
_thr1_activate_clk_2,
_thr1_release_clk_2,
needs21, needs22, needs23,
cpu21, cpu22, cpu23

= schedule_processor2_threads(
in_min_max21, in_min_max22, in_min_max23, qs_tick2);

qs_tick1, qs_tick2 = quasi_synchronous_scheduler(alea1, alea2);
tel

-- to be used for formal verification
node schedule_twoproc_oracles_properties(

in_min_max11, in_min_max12, in_min_max13 : int;
in_min_max21, in_min_max22, in_min_max23 : int;
alea1, alea2 : bool)

returns (ok:bool);
let
ok =
(1 <= in_min_max11 and in_min_max11 <= 5) and
(1 <= in_min_max12 and in_min_max12 <= 5) and
(10 <= in_min_max13 and in_min_max13 <= 30) and
(1 <= in_min_max21 and in_min_max21 <= 5) and
(1 <= in_min_max22 and in_min_max22 <= 5) and
(10 <= in_min_max23 and in_min_max23 <= 30) and
true;

tel

20/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

7 A test session using Lurette

8 A formal proof session using Lesar

9 The currently supported AADL subset
Not all AADL concepts are supported. Here is an (hopefully) exhaustive list of concepts that are supported
and not supported by the current version of aadl2sync.

As the terms of components and features have a precise meaning in AADL, we use in the following the
(hazy) term of concept to distinguish what is and what is not supported by the tool.

9.1 Ignored concepts
Some concepts are ignored in the translation (which means that they can appear in the AADL model
without breaking the tool):

• processors (the fact that several processes run on the same processor is taken into account though);

• memory;

• buses †;

• flows;

• most properties (except the ones cited above) †;

• the base literal for integers (base 10 is assumed) †;

• the time unit (i.e., one should not use different time units) †.

Among those ignored concepts, note that taking into account processors, memory, flows, and most
properties would definitely be useless for our purposes (validating the functional part of the model via
simulation and formal verification). Concerning the other items (flagged by a †) in the contrary, some
could be taken into account, at least partially, in future versions of the tool.

9.2 Not supported concepts
The following concepts could prevent the translation to occur if used in the AADL model:

• port groups mixing input and output ports (in out) †;

• systems as sub-component of systems †;

• thread groups †;

• modes †;

• sporadic, aperiodic and background threads; execution fault handling in threads †;

• event ports: since event (data) ports are used to trigger non periodoc thread or or to cause a mode
switch, it would be meaningless to take them into account yet †;

• subprograms as features (remote procedure calls) †;

• subcomponent accesses (outside their containment hierarchy) †.

All those concepts could be supported by the tool one day.

Verimag Manual 21/25

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

9.3 Supported concepts

The translation of those concepts was described in Section ??. We simply recall them here for the sake of
completeness.

• systems;

• devices;

• processes;

• periodic and sporadic threads;

• sub-programs, sub-programs calls, sub-program parameters;

• data ;

• ports and port groups;

• some properties:

– compute exec time, an interval associated to threads and subprograms;

– Period, associated to processes and threads

– dispatch protocol, which must be equal to Periodic or Sporadic.

9.4 Some design decisions

• If a component implementation exists, no node is generated for the corresponding component Type.

• Devices are not translated into a Lustre node as other components; instead, their inputs are considered
as system outputs, and their outputs are considered as system inputs.

• In AADL, it is possible to have several wires that comes into the same port. The AADL standard says
that the messages are queued in such a case. For Data ports, I don’t know what it means. Probably
it is only allowed for event ports in AADL. Anyway, we reject such programs (when several wires
target the same data port). For event port, we perform a logical and between the several wires (event
port = Boolean variable).

• A bus is translated into a unit delay. That modelisation could be refined.

9.5 Known limitations

• Only Ms are taken into account as time unit.

• The inverse of a port group should be defined after the port group.

• The character ’>’ in comment kills the xml parser (e.g., if you comment a line like “Period => 15
ms;” ...). This is due to a bug in the OSATE eclipse plugin which outgh to escape the ‘>’ character
(i.e., it should generate ’>’ instread of ’>’).

• the .xsd files directory is wrong in the aaxl (cf fix aaxl rule in examples/Makefile)

22/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

A A quasi-synchronous clock generator/acceptor in Lustre V4

We give below a Lustre V4 implementation of the quasi-synchronous clock generator/acceptor discussed
in Section 4.1. We first define intermediary nodes. compute advance computes the relative advance of
ck1 w.r.t. ck2. ba fill creates an array of size n filled with x. ba none checks if all elements of the
array are false.

qs is main node of the quasi-synchronous scheduler for processors with the same clock rate. It is
paramaterized by:

• n is the number of clocks to generate;

• d is the maximal authorized clock drift, i.e., the maximum number of tics authorized for the other
clocks between 2 tics of each clock;

• alea is an array of random values (n clock candidate values);

• select is the same alea, except for clocks that are d tics late, that are forced to false.

Verimag Manual 23/25

Erwan Jahier, Louis Mandel,
Nicolas Halbwachs, Pascal Raymond The aadl2sync User Guide

A quasi-synchronous clock generator/acceptor in Lustre V4

-- Compute the relative advance of clk1 w.r.t. clk2
node compute_advance(clk1, clk2 : bool) returns (c : int);
var pc : int;
let

pc = 0 -> pre c;
c = if clk2 then 0 -- reset the advance of clk1

else if clk1 then pc + 1 -- clk1 got ahead of one tic
else pc;

tel

-- Create an array of size n filled with x
node ba_fill(const n: int; x : bool) returns (t: boolˆn);
let

t = xˆn;
tel

-- Check if all elements of the array are false
node ba_none(const n : int; I : boolˆn) returns (ok : bool);
var

Nor : boolˆn;
let

Nor = [not I[0]] | (Nor[0..n-2] and not I[1..n-1]);
ok = Nor[n-1];

tel

node qs(const n:int; const d:int; alea:boolˆn) returns (select:boolˆn);
var

advance_max_is_reached, problems : boolˆnˆn;
filter : boolˆn;
advance, padvance : intˆnˆn;

let
advance_max_is_reached = padvance >= dˆnˆn;
-- there is a problem if the max advance is reached and no tic occurs
problems = advance_max_is_reached and not aleaˆn;
-- we force the tic for clocks that would be more than d tics late
filter = ba_none(nˆn, problems);
select = alea and filter;
advance = compute_advance(ba_fill(nˆn, select), selectˆn);
padvance = 0ˆnˆn -> pre advance;

tel

That program can be used to perform formal verification (e.g., model-checking) of the corresponding
AADL model. In order to be able to perform simulations, the only thing that remains to be done is to
generate arrays of random values.

Note that this program is used if aadl2sync is launched with the --v4-arrays options. Otherwise,
it is an array-expanded version of it (less readable) that is generated.

References

[1] P. Caspi, C. Mazuet, and N. Reynaud Paligot. About the design of distributed control systems, the
quasi-synchronous approach. In SAFECOMP’01. LNCS 2187, 2001. 1, 2

24/25 Verimag Manual

The aadl2sync User Guide
Erwan Jahier, Louis Mandel,

Nicolas Halbwachs, Pascal Raymond

[2] P. H. Feiler, D. P. Gluch, J. J. Hudak, and B. A. Lewis. Embedded system architecture analysis using
SAE AADL. Technical note cmu/sei-2004-tn-005, Carnegie Mellon University, 2004. 1

[3] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming language
Lustre. Proceedings of the IEEE, 79(9):1305–1320, September 1991. 1

[4] N. Halbwachs and L. Mandel. Simulation and verification of asynchronous systems by means of
a synchronous model. In Sixth International Conference on Application of Concurrency to System
Design, ACSD 2006, Turku, Finland, June 2006. 1

[5] E. Jahier and P. Raymond. The Lucky Language Reference Manual. Technical Report TR-2004-6,
Verimag, 2004. www-verimag.imag.fr/∼synchron/tools.html. 6.1.3

[6] R. Milner. Calculi for synchrony and asynchrony. TCS, 25(3), July 1983. 1

[7] SAE. Architecture Analysis & Design Language (AADL). AS5506, Version 1.0, SAE Aerospace,
November 2004. 1

Verimag Manual 25/25

	Introduction
	The AADL to Lustre translation scheme
	The AADL component to Lustre node mapping
	Systems
	Hardware components
	Devices
	Processors
	Memory
	Buses

	Software components
	Processes
	Threads
	Sub-programs
	Data

	Other concepts

	Modeling the AADL virtual machine
	Quasi-synchronous clocks
	Multi-tasking/Time-sharing
	Activation conditions
	Release conditions
	Formal verification versus simulation

	The aadl2sync compiler
	Installation
	Usage
	The aadl2sync compiler
	Fixing the OSATE aaxl generated files

	Examples XXX NOT FINISHED YET
	Two threads, one processor
	The scheduler (schedule_multitask.lus)
	The scheduled top-level node (multitask.lus)
	The Lucky file (multitask.luc)
	The translated components (multitask_nodes.lus)
	The model leaves to be Filled in (fillme_multitask_nodes.lus)
	A filled model (fillme_multitask_nodes.lus)
	Constants (fillme_multitask_const.lus)
	Data types (fillme_multitask_types.lus)

	Two processors

	A test session using Lurette
	A formal proof session using Lesar
	The currently supported AADL subset
	Ignored concepts
	Not supported concepts
	Supported concepts
	Some design decisions
	Known limitations

	A quasi-synchronous clock generator/acceptor in Lustre V4

