The Stateflow to Lustre Translator User’s Manual

Norman Scaife
Laboratoire VERIMAG, Centre Equation,
2, avenue de Vignate, 38610 GIERES, France
Norman.Scaife@imag.fr

January 18, 2005

SF2L.US Version 0.01b
Document Revision: 1.5

Contents

1

2

8

Introduction

The sf2lus translator
2.1 A simple worked example . . .
2.2 Debugging Stateflow with sf2lus

2.2.1 Viewing the internal state
2.2.2 Even more detailed output L.
2.2.3 Setting multiple boolean inputs with Luciole
Events
3.1 Event broadcasting
3.2 Eventsending L
Junction loops
4.1 Junctions asstates L Lo
4.2 Loopunrolling
4.3 Discussion e

Observers and safety properties

5.1 Observers in Lustre
5.2 Observers in Stateflow
5.3 Types of observers
5.3.1 Parallel state confluence
5.3.2 Event stack depth . . .
5.3.3 Automatic observers . .

Using sf2lus with s2l and ss2lus

6.1 ss2lussyntax
6.2 Matlab workspace files
Miscellaneous features

7.1 Matlab revisions
7.2 Syntax control
7.3 Output formatting
7.4 Output language
7.5 Namespace management
7.6 General translator control . . .
7.7 Data management
7.8 Time
7.9 Observers
7.10 Debugging features

The display_graph utility

A sf2lus command line options

00 00 N =3 Ut %

©

10

13
13
15
17

18
18
19
19
19
21
22

24
24
24

25
25
25
25
26
26
27
28
28
29
29

31

33

B display_graph command line options

35

1 Introduction

The tool SF2LUS is an (as yet) ad hoc translation from a subset of STATEFLOW! [1] into the
synchronous language LUSTRE [2]. The technical details of the translation can be found in
the Verimag technical report [3] and in the paper published in EMSOFT’04 [1].

Here the SF2LUS program is described which is the implementation of the translator in
Objective Caml. This is designed to work with the s2L translator [5] which translates a
discrete-time subset of SIMULINK into LUSTRE. This package provides a script called ss2L.uUs
which calls the SF2LUS translator to extract the STATEFLOW component as LUSTRE nodes
and provides S2L with the information needed to incorporate the STATEFLOW LUSTRE code
into the output.

The SF2LUS program can be used in isolation, however, to extract and test the STATEFLOW
components independently of the SIMULINK. This requires a slightly different interface since
constants and data imported from SIMULINK or MATLAB have to be defined locally and
emulation is required for other features such as the time variable t.

Output from the tool is primarily LUSTRE V4. This version of LUSTRE includes bounded
iteration using the when construct in conjunction with statically-evaluated constants and
proved very useful in structuring STATEFLOW’s unbounded iterations such as event broadcasts
and junction loops. In general, however, it is intended that SF2LUS be used in conjunction
with the planned STATEFLOW analysis tool to allow the elimination of unbounded recursion
either by automated transformation or by manual editing of the STATEFLOW chart.

Other outputs include preliminary versions of SCADE [6] which allows STATEFLOW charts
to be included as source code into the SCADE suite of tools by FEsterel Technologies, Inc.,
RELUC which is a commercial version of LUSTRE also by Esterel and some minor support
required by the abstract interpretation tool NBAC (via LUS2NBAC provided in the LUSTRE
distribution). These output formats are only partially supported, however. Note that the
LUSTRE output itself can be used as input to a variety of tools including the model-checker
LESAR [7].

'Trademark of the MathWorks inc.

2 The sf2lus translator

2.1 A simple worked example

Consider the very simple Stateflow chart shown in Figure 12

Assume that the MATLAB model file is SetReset r13.mdl. Running the translator in
isolation on this model extracts the STATEFLOW component and generates a LUSTRE node
for each top-level STATEFLOW chart in the model.

% sf2lus SetReset_r13.mdl -o SetReset_ri3.lus

The LUSTRE nodes are called sf_<CID> where <CID> is the id field in the STATEFLOW
chart entry. This node looks as follows, noting that the first STATEFLOW chart in the model
almost always has number 2:

—-- graph id=11 name=22,GCTOP

node sf_2(Set, Reset: event) returns(x: int);

var ini, 1vb, 1lvb_1, 1lv6, 1lv6_1, 1lv7, 1lv7_1, ok22, ok22_1, ok22_2, ok22_3,
s3, s3_1, s3_2, s3t, s4, s4_1, s4_2, s4t, trm: bool; x_1, x_2: int;

let

This is valid LUSTRE code and can be compiled with LUSTRE:

lustre SetReset_r13.lus sf_2 -o SetReset_ri13.oc -0

poc -loop -o SetReset_rl13.c SetReset_rl3.oc

gcc —c SetReset_rl13.c -o SetReset_ri13.0

gcc —c SetReset_r13_loop.c -o SetReset_ri13_loop.o

gcc SetReset_r13.0 SetReset_ri13_loop.o -o SetReset_ri3

The resulting program can be run:

% SetReset_ri13

STEP 1 ##H###HHHHHHHHHHHEHH
Set (true=1/false=0) 7 0O

Reset (true=1/false=0) 7 0O

x =0

STEP 2 ###H##H#HEHEHEHGHEHH
Set (true=1/false=0) 7 1

Reset (true=1/false=0) 7 0

x =1

STEP 3 ####H##HSHHHHHHHHISH
Set (true=1/false=0) 7 0O

Reset (true=1/false=0) 7 1
x=0

Alternatively, we can simulate the code with LUCIOLE:

2This model can be found in the “tests” directory in the distribution

http://www-verimag.imag.fr/~scaife/tests/SetReset_r13.mdl

()
Set
(2
Feset
D
L (1)
Ot
SetReset

Reseﬂx=ﬂ}|

Figure 1: A simple Simulink/Stateflow chart

% luciole SetReset_ri13.lus sf_2

resulting in something like the following:

Files Options Clocks Tools |1_
Set |:-:
Heset | 0
Step

2.2 Debugging Stateflow with sf2lus

While this is the required behaviour from the LUSTRE code it does not say much about the in-
ternal state of the running LUSTRE program. Neither are the generated variables particularly
meaningful since states are represented simply by their id numbers.

2.2.1 Viewing the internal state

If we wish to use SF2LUS as a means of debugging the STATEFLOW component of a SIMULINK
application then it might be useful both to give sensible names to the variables and to export
some of the internal state of the chart, for example the state variables. We can do this as
follows:

% sf2lus -names -states_visible SetReset_r13.mdl -o SetReset_r13.lus

resulting in the following LUCIOLE display:

Files Options Clocks Tools |1_

®
Set
0
Reset |

Step

Now we can see which states are active. State names are based on the node names in
STATEFLOW preceded by s for a terminal state and sg for a state containing substates when
there is hierarchy or parallel states. Note that these are abbreviated names so, for example,
“state” is shortened to “s” and “subgraph” to “sg”. Use the -long_names option to generate
the full names which results in voluminous output even for small charts. Note also that with
-long_names the chart names become stateflow_<CID>.

2.2.2 Even more detailed output

In fact, we can go further using the -temps_visible or -locals_visible options which
attempt to dump the entire internal state of the working chart®. For example:

Files Options Clocks Tools Iﬂ

Set sf 2 Iva

5T £ s0nt 5T 7 okSetReset
Reset - _D - -
| s0n

atep |

For this simple chart the output is small but the output can become prohibitively large
for even modestly-sized charts. The most useful elements of this display are the transition
validity flags (for example sf_2_1v5) which indicate which transition was traversed on the
previous step.

2.2.3 Setting multiple boolean inputs with Luciole

One problem with LUCIOLE is that it is not possible to set more than one boolean input simul-
taneously so SF2LUS provides an option —input_bools_ints which transforms input booleans
into integers. Note that this does not work for input events but STATEFLOW processes one
event at a time so this restriction is not relevant unless, for example, one is model-checking
the code. In any case, events can be turned into integers using the -sends option discussed
in Section 3:

Files Options Clocks Tools IE

et "

w |

Reset

3 At present this process is incomplete due to problems with event handling code. These options will work
more fully when SF2LUS has evolved further.

3 Events

The current version of SF2LUS has support for event broadcasts. This feature, however, is in a
state of flux engendered by the implementation of inter-level transitions. Event broadcasting
should not be used in conjunction with inter-level transitions (and are a bit “buggy” even
with confluent events).

The intended uses of SF2LUS are such that using event broadcasts is not recommended
and charts should be transformed into ones which do not require broadcasting. This results
in safer code (no unbounded behaviour), if sometimes much less readable charts.

3.1 Event broadcasting

Eile Edit gimulatinn Eiew Innls ﬁdd ﬂelp ™

,i_

G/E, G/E, E/F: E/F

G BEE|o [0

| Create | ransition

Figure 2: A Stateflow chart requiring event broadcasts

Figure 2 shows a STATEFLOW chart (Events3.mdl) with two parallel states TOP1 and
TOP2. Here, state TOP2 receives events from TOP1 but is executed before TOP1 according to
the priorities in the chart. If we naively translate this chart and send event G to it we get:

http://www-verimag.imag.fr/~scaife/tests/Events3.mdl

Files Options Cocks Tools g:‘f

Step

State A has exited and state B has entered in subgraph TOP1 but subgraph TOP2 has not
received event E and stayed in state C.

To enable event broadcasts we use the —ess <n> option where <n> is the depth of the
event stack we require. For this chart we can set the event stack size to 2 and we get the
following:

Files Options Clocks Tools ?f

This time event E has been sent to state TOP2 resulting in emission of the local event
F. Bear in mind that this mechanism is statically implemented in LUSTRE so each event
broadcast results in duplication of the entire chart at that point, up to the event depth. This
results in huge code and LUSTRE soon runs out of resources to implement the expansion. In
practice, the —ess parameter should not be set to more than about 4. Charts which require
event stacks deeper than this should be redesigned.

3.2 Event sending

STATEFLOW'’s send facility for targetting an event at a specific state is difficult to implement
in LUSTRE. In an imperative environment such as STATEFLOW this can be implemented
simply by calling a function which implements the behaviour of the state when sending the

10

event. This does not work in LUSTRE since it may result in dependency cycles. A partial
implementation has been achieved which behaves in a similar manner to STATEFLOW by
turning events into integers.

An event of 0 is inactive, an event of 1 is broadcast and any other number refers to an
event targetted at the state with that id. All events are then broadcast but only relevant
states action the event (either the event is 1 or it or one of the states’s parents has the same id
as the event). The only problem here is that passive states during the send are not completely
switched off (this would require inordinate numbers of guards in the code) so during actions
get executed event if the state is not targetted by the send.

Eile Edit ﬁimulatinn Eiew IDDlS ﬁdd ﬂelp ~

zUS| @ nH|) v =S

ﬁ'__
y
i

JJEfsendFE 55 FHF

G
Efsend(F,C)

||

I 2EK e |®

Figure 3: A chart requiring event sending

To trigger this mechanism use the -sends option. Figure 3 shows a chart which uses sends
(Events5_docs.mdl), the resulting LUCIOLE display is as follows:

http://www-verimag.imag.fr/~scaife/tests/Events5_docs.mdl

Files Options Clocks Tools |1_

E | sB__

1

N

Step

Note that we now have to set the event E to 1 to indicate a broadcast?.

4The external interface to sent events will change in the near future to allow compatibility with ss2Lus.

12

4 Junction loops

Eile Edit §imu|atinn Eiew IDDlS ﬁdd ﬂelp u

>4 | BHS| 4 B

.cl’__

A

4 lol®

| LCreate | ransition

Figure 4: A Stateflow chart with a junction loop

The STATEFLOW chart shown in Figure 4 (Loopsl._docs.mdl) with an observer has a
junction loop, the transition labelled [x<2]{x++} initiates a loop in the network. Strictly
speaking, we cannot arbitrarily translate this chart into LUSTRE as it stands since LUSTRE
is compiled into a stackless machine and without a stack it is not possible to implement
arbitrary recursion within a reaction. If we try to translate this chart we get:

% sf2lus Loopsl.mdl -o Loopsl.lus
Fatal error: exception Failure("Loops found in links")

Detecting loops is trivial. There are two possibilities:

1. We could give the junction itself a state so that the loop then occurs across synchronous
reactions rather than within one.

2. If we know the loop is bounded, as is the case here, we could unfold the loop into an
equivalent one without a loop.

4.1 Junctions as states
The first option is easily implemented in the translator using the -junc_states option:

% sf2lus -names -states_visible -junc_states Loopsl.mdl -o Loopsl.lus

This results in the following sequence when simulated with LUCIOLE:

13

http://www-verimag.imag.fr/~scaife/tests/Loops1_docs.mdl

Files Options Clocks Tools ﬁ

...............................

dummy_input

Step

Files Options Clocks Tools ;ﬁw

An extra output v has been synthesized (or valid with -full_names) which indicates
when the chart is in a state and not a junction. In theory arbitrary recursion could be
implemented this way, passing the burden of termination to the client code but it is not a
very satisfactory solution.

14

4.2 Loop unrolling

The sSF2LUS translator thus supports:
e profiling of charts using the above mechanism,
e output of proof obligations to external programs and

e a (currently very primitive) form of loop unfolding to fixed bounds.
First, we add the —counters option to maintain counters on each junction:

% sf2lus -names -states_visible -junc_states -counters \
Loopsl.mdl -o Loopsl.lus

After LUCIOLE simulation we get:

Files Options Clocks Tools fﬁN

X
2
chtrja

dumm?_i"put_ 3-

Step

So junction j5 was entered 3 times during execution. We then annotate the junction in
the STATEFLOW chart with the putative loop count maximum. Right-click on the junction,
select “Properties” and enter:

cntrlim=3

in the “Description” field. With this annotation in place, the -counters option will also
cause the translator to output the following observer for the loop counters. The observer
node name is comprises loop_counters_<CID> where <CID> is the chart id number as for
the toplevel STATEFLOW:

—-- Observer for junction loop counters
node loop_counters_2(dummy_input: bool) returns(prop: bool);
var x, cntrjb: int; sA, sB, j5, v: bool;
let
x, cntrjb, sA, sB, j5, v = sf_2(dummy_input);
prop = cntrjb <= 3;
tel

15

which can be passed to NBAC for validation:

% lus2nbac Loopsl.lus loop_counters_2

--Pollux Version 2.1

start normalisation ... done

Bool optimization : 171 -> 96 nodes

start minimal network generation done (96 -> 77 nodes)
% nbacg -analysis 2 loop_counters_2.ba

SUCCESS: property proved
skk END sk

We now have confidence that junction j5 will never be visited more than three time for
any possible set of inputs. Thus we can unroll the loop three times:

% sf2lus -names -states_visible -unroll Loopsl.mdl -o Loopsl.lus

This results in the following luciole trace which is how one would expect this chart to
behave when translated into LUSTRE:

Files Options Clocks Tools |1_

=

0

dummy_input

Step

Files Options Clocks Tools IE

It is perhaps also instructive to add the —junc_states flag which show how the network
has been duplicated. Here, the duplicated network appears as junctions j19 and j23:

16

Files Options Clocks Tools IE

=

[2]

dummy_input

j23

Step

4.3 Discussion

The technique presented here is quite powerful. We used dynamic profiling (by treating
junctions as states) to guess the bounds on the loops. We could then, in theory, use static
analysis to unroll the loop into an equivalent one without loops but this is not valid until we
have a proof of the bounds on the loops. The NBAC proof bridges this gap and validates the
whole process.

However, there are very tight limits upon what can be done given finite resources for
translation, proof and static analysis. It is possible that our guessed bounds may not be
correct in which case NBAC will fail to provide a proof. It is also possible that NBAC may fail
to provide the proof simply on resource limits or the nature of the chart (in general, proofs
of this kind are undecidable). Finally, even if we have the proof it is possible that the static
analysis can fail on resource limits, for example if the loop bounds were unreasonable.

What has been presented here is simply an example of the kind of analysis available for
tackling imperative features of charts. It still depends upon the skill and experience of the
chart designer to produce a design which both meets the requirements of the application and
of abstract safety properties.

17

5 Observers and safety properties

Translating a STATEFLOW chart into LUSTRE allows the application of tools such as the
model-checker LESAR or the abstract interpretation tool NBAC to be applied to the chart.
The sF2LUS translator supports this process with several features.

5.1 Observers in Lustre

Firstly, we can pass an expression to the translator and it will build an observer for that
expression:

% sf2lus -names -states_visible SetReset_r13.mdl -o SetReset_r13.lus \
-observe "((sOn and not sO0ff) or (sOff and not sOn))"

This will result in the following node being appended to the LUSTRE output:

-— observer for expr: ((sOn and not sO0ff) or (sO0ff and not sOn))
node verif_2_1(Set, Reset: event) returns(prop: bool);
var x: int;
let
x = sf_2(Set, Reset);
prop = ((sOn and not s0ff) or (sOff and not sOn));
tel

The name of the observer node is verif_<CID>_<index> where <CID> is the chart id
as before and <index> is a unique index for the observer (verif becomes verify under
-long_names). This can then be passed to LESAR for checking:

% lesar SetReset_r13.lus verif_2_1 -v -diag
--Pollux Version 2.1

start normalisation ... done

start minimal network gemeration done (90 -> 64 nodes)
building bdds ... 6 (on 6)

computing relevant statevars ... done (3 on 3)

DONE => 3 states 5 transitions

=>total bdd memory : 59 nodes (~ 5.99 K)
TRUE PROPERTY

In fact the process can be automated somewhat since the translator automatically looks
for an observer file when a model file is translated. This file has the same name as the model
file but with .mdl replaced by .obs. The format of this file is simply one observer per line
with blank lines and LUSTRE-style comments (starting with —-) ignored. This behaviour can
be switched off using the -no_observers option.

We can build complex safety properties using this mechanism but it is a bit inconvenient
having to develop the observers in LUSTRE.

18

5.2 Observers in Stateflow

We can, however, build observers in STATEFLOW by providing parallel states at the toplevel
which have one boolean free value.

Eile Edit gimulatinn Eiew IDDIS ﬁdd ﬂelp ~
9 | FEHS| 4 R

:.. M_DdE|% ..
@I . [Off Set Jn
1l
~a]| - Reset
g 9522990522095520299390009030000033009032329093225005220995902090¢
- Oh =(in(Cff)&&liniondi||...
§ SEET brop Eli?wlimn%&&!limmﬂzﬂjﬂl}!
Al O
e . :

| Lreate |ransition

Figure 5: A Stateflow chart with an observer node

Figure 5 shows a STATEFLOW chart (SetResetV.mdl) with an observer implemented in
STATEFLOW. If a toplevel node called “Observer” exists in the chart with a boolean output
called “prop” (or “property” with -long_names) then a LUSTRE observer node for prop is
automatically appended to the translated output. We can thus use all of STATEFLOW’s action
language to build observers which means that the designer does not have to learn LUSTRE
and that the observed property is visible in the STATEFLOW chart.

5.3 Types of observers

We can write observers for application-specific safety properties in either LUSTRE or STATE-
FLOW. The EMSOFT’04 paper [1] describes a simple safety observer and how it was used to
debug a STATEFLOW model (taxi verif sf2.mdl). However, we can also use these observers
to help translate imperative features such as event broadcasting or parallel state confluence.

5.3.1 Parallel state confluence

Consider the chart in Figure 6 (Parallel6V.mdl). This contains two copies of a subchart with
parallel states which are identical apart from the order in which the parallel states are visited.

19

http://www-verimag.imag.fr/~scaife/tests/SetResetV.mdl
http://www-verimag.imag.fr/~scaife/tests/taxi_verif_sf2.mdl
http://www-verimag.imag.fr/~scaife/tests/Parallel6V.mdl

File Edit Simulation “iew Tools Add Help u

Obsenier o {prop=(in(P1.M1)==infP2.N1j && in(P1.N2Z)==in(P2.N2)..
& infPT.NT . A)==in(P2.N1.8) && in(P1.Nz. ;|==m|:P2 MNZ.CI..
)i && infF1.N1.Bj==in(P2.N1.BY && in(P1.N2.Dj==in(P2.N2.Dj);}

¢

| Create |ranszition

Figure 6: An observer for parallel state confluence

20

The observer simply compares, state by state, the two parallel machines. If we translate the
chart into LUSTRE and run LESAR on it:

% sf2lus Parallel6V.mdl -o Parallel6V.lus -names -states_visible
% lesar Parallel6V.lus verif_2_1
—--Pollux Version 2.1

TRUE PROPERTY

We get a TRUE property showing that the two versions of the subchart are indeed equivalent
and thus their parallel states are confluent.

The above chart implemented the observer in STATEFLOW but we may also wish to keep
two copies of the chart and compare them externally. The problem here is that the namespaces
of the two translated charts would be identical so SF2L.US allows the visible node names to be
prefixed, for example:

% sf2lus Parallel6_12.mdl -o Parallel6_12A.lus -prefix A -names -states_visible
% sf2lus Parallel6_21.mdl -o Parallel6_21B.lus -prefix B -names -states_visible

This allows a comparative observer to be built in LUSTRE, as follows:

include "Parallel6_12A.1us";
include "Parallel6_21B.lus";

node verif(S1, R1, S2, R2: bool) returns(prop: bool)
AsgN1l, AsB, AsA, AsgN2, AsD, AsC,
BsgN1l, BsB, BsA, BsgN2, BsD, BsC: bool;
let
AsC, AsD, AsA, AsB, AsgN2, AsgNl = Asf_2 (S1, R1, S2, R2);
BsA, BsB, BsC, BsD, BsgN1l, BsgN2 Bsf_2 (S1, R1, S2, R2);
prop = AsgNl1l = BsgN1l and AsgN2 = BsgN2 and
AsA = BsA and AsB BsB and
AsC BsC and AsD BsD;

tel

This simply includes both versions of the chart with alternate parallel state order and
compares the outputs. The strange ordering of the output variables is due to the fact that
inputs and outputs are indexed according to the id numbers of the data, events, states and
junctions. STATEFLOW orders these according to its internal priorities.

In theory, these observers could be built automatically but for now they have to be built
by hand.

5.3.2 Event stack depth

When the event stack mechanism is used there is an implicit assumption that the STATEFLOW
model is bounded in its event stack. To support this the translator can add an additional
output err (or error in -long_names format) which is set to true if there is an attempt to
broadcast an event at the lowest level of the event stack. Consider again the chart in Figure 2.
If we translate the chart with an event stack of 1 and run LESAR on the output:

21

% sf2lus Events3.mdl -o Events3.lus —-errstate -ess 1
% lesar Events3.lus verif_2_1
—--Pollux Version 2.1

FALSE PROPERTY

We get a FALSE property because we tried to broadcast the F output event while processing
the E event at level 1 of the event stack. For this chart we actually need an event stack of 2:

% sf2lus Events3.mdl -o Events3.lus -errstate -ess 2
% lesar Events3.lus verif_2_1
—--Pollux Version 2.1

TRUE PROPERTY

Beware, however, that the —errstate variable is not set if you do not define an event
stack, a false positive will result. The SF2LUS translator assumes that you know the chart is
confluent if you do not use an event stack.

5.3.3 Automatic observers

The observer in Section 5.2 is a simple internal consistency check upon the state variables. In
fact, we can automate the generation of such an observer by scanning the chart and building
an expression for each subgraph. For exclusive (OR) states there should be either no active
state if the subgraph is inactive or one and only one active state if the subgraph is active.
For parallel (AND) states there should be no active state if the subgraph is inactive or all the
states should be active simultaneously. The -consistency option triggers the generation of
just such an observer (called consistency_<CID>).

22

For example, the model in Figure 3 generates the following observer:

—-- Observer for state consistency
node consistency_2(E: event) returns(prop: bool);
var y, x, z: real; sB, sC, sA, sE, sD, sgTop2, sgTopl: bool;
let
y, X, z, sB, sC, sA, sE, sD, sgTop2, sgTopl = sf_2(E);
prop =
((sgTopl and sgTop2) and
(if sgTopl
then ((sD and ((not sE) and (not sA))) or
(((not sD) and (sE and (not sA))) or
((not sD) and ((not sE) and sA))))
else (not (sD or (sE or sA))) and
if sgTop2 then ((sC and (not sB)) or ((not sC) and sB))

else (not (sC or sB))));
tel

Observers for junction entry counters are discussed in Section 4.2.

23

6 Using sf2lus with s21 and ss2lus

The SS2LUS script is a simple program which allows SIMULINK models with STATEFLOW
components to be translated into a monolithic LUSTRE program. The process is very simple,
SF2LUS is called to translate the STATEFLOW component into a temporary file, the name of
which is then passed to s2L which translates the SIMULINK component generating calls to the
SF2LUS-generated nodes. The entire temporary STATEFLOW LUSTRE file is then appended to
the translated SIMULINK. In practice, however, this interface is still in its infancy and only
fairly simple and regular SIMULINK/STATEFLOW combinations are supported. For example,
we do not handle callbacks from STATEFLOW to SIMULINK as yet, although this is possible
and may be implemented in future.

6.1 ss2lus syntax

The sytax of the SS2LUS command is very simple:
% ss2lus SetReset_r13.mdl --monoperiodic

This translates the given model file and combines the two components. Some of the op-
tions to SF2LUS are mandatory and set by SS2LUS. If you wish to pass options to S2L they
can be passed on the sS2LUS command line. Both S2L and SF2LUS can receive additional ar-
guments in the S2LOPTS and SF2LUSOPTS environment variables, respectively. Be careful with
SF2LUS options, however, since they may invalidate the interface between S2L and SF2LUS.
In particular, do not set -names or -states_visible, or any options which generate addi-
tional inputs or outputs. In fact, some of the features of SF2LUS which allow management
of STATEFLOW charts in isolation should also not be used. For instance, you need to ensure
that all STATEFLOW components have at least one input and one output to ensure that the
dummy arguments generated to allow legal POLLUX output are not triggered.

6.2 Matlab workspace files

To assist in building the interface, a file describing SF2LUS’s view of the MATLAB workspace
is generated in a .mws file. This contains a list of MATLAB workspace variables used by the
SF2LUS code and which have to be declared in the S2L output. It also contains information
about any pseudo-variables generated by SF2LUS (currently only the t time variable). Note
that the .mws file is not deleted by either SF2LUS or SS2LUS since constants are read from
this file. It is up to the programmer to maintain this file with respect to the current MATLAB
workspace. It may be possible, in future, to generate this file from MATLAB automatically.

24

7 Miscellaneous features

Here we describe some features of SF2LUS which can be used to help debugging STATEFLOW
charts. Most of these are more useful for debugging the translator itself, however.

7.1 Matlab revisions

-r13,-r14 Currently, only MATLAB revisions r13 and r14 are supported. These are controlled
by the -r13 and -r14 options (-r14 is the default).

7.2 Syntax control

STATEFLOW has a number of features which make it difficult to translate verbatim into LUs-
TRE without complex (and probably unreliable) compilation support. The following options
have been implemented to help with compatibility:

-kw,-nkw Add/remove a keyword to/from the list of keywords allowed as identifiers. STATE-
FLOW allows keywords to be used as identifiers which is difficult to handle with a
lex/yacc-style parser. These options allow the use of some selected keywords to be in-
cluded or excluded from the syntax. Use these with care, strictly-speaking you should
eliminate keywords from the chart altogether.

-paths Use full path names for states. This triggers the mechanism which allows full path-
names to be use in action code. This is not on by default, however, since it slows down
the translator and pollutes the namespace since all variables have to be in long format,
for example, the node reference “A.B.C” would probably become sA_B_C throughout
the code. Note that local data is not supported yet.

This option is automatically set if more than one STATEFLOW chart is found in a model.
This is to prevent name clashes between different STATEFLOW charts with identical state
names. There is no check, as yet, for such states, in future this mechanism may only be
triggered when such states exist.

-no_paths Do not automatically set -paths. If you know that there are no state name
conflicts between the STATEFLOW charts in a model then this allows processing of
multiple-STATEFLOW charts without full path names.

7.3 Output formatting

These are some options to control the format of the output LUSTRE file. You can actually
find some of these documented in the OCAML manual under the Format library.

-margin Set the margin for formatted output.
-max_indent Set the maximum indent for formatted output.

-text_limit Limit output strings to this number of characters. This is not a Format library
variable but is used to limit the amount of text copied into the LUSTRE file from STATE-
FLOW sources, for example when creating comments from state or transition labels.

25

http://pauillac.inria.fr/ocaml/htmlman/libref/Format.html

7.4

Output language

Four output languages are currently supported, triggered by the following options:

-pollux Generate LUSTRE V4 output. This is the default mode and the most fully supported.

-nbac Generate NBAC output. NBAC is almost completely compatible with LUSTRE V4

via the LUS2NBAC utility supplied with the LUSTRE distribution. This option simply
triggers emulation of the integer modulus function which seems to be missing from
NBAC.

-reluc Use RELUC modifications. Again, since the SF2LUS translator uses only a small subset

of LUSTRE the output is almost compatible with RELUC. Currently, this option triggers
some additional parenthesization which seems to be needed. Currently, arrays and the
event stack are not supported since RELUC does not have LUSTRE’s static recursion
mechanism.

-scade Use SCADE modifications. There are some syntactic differences between SCADE

7.5

and LUSTRE, some of which can be ironed out by a simple transformation on the output.
These involve constructs such as:

(x,y) = if p then f(a,b) else (c,d);
which are not supported by SCADE. Again, there are no arrays or event stack.

Namespace management

Namespace management in the SF2LUS translator is not fixed, for several reasons:

There is the tension between providing human-readable LUSTRE output without making
the code too verbose.

Different users may have different preferences as to what is readable, depending upon
their intended usage of the resulting code.

It is difficult to translate namespaces accurately between two such widely differing
languages as STATEFLOW and LUSTRE. It is simple to convert names from one syntax
space to another but doing so while retaining the flavour of the original language is
difficult.

It is possible that different translations may have to coexist in the same context which
will inevitably result in namespace collisions. This is exacerbated by the fact that
LusTRE V4 has no concept of modularity.

For these reasons, SF2LUS supports several options controlling the way the output names-
pace is generated:

-names Use state names in variables. So, for example, a state called A generates a variable

sA (or state_A).

-ids Use state ids in variables. A state with id 3 will be referenced by s3 (state_3).

26

-names_ids Use both names and state ids in variables. For example s3_A (state_3_A).

-long_names Use unabrreviated names in the output. Currently, the complete list of abbre-
viations is:

_point action a after aft at at
before bfr | call ca change ch condition ¢
count cnt | counter cntr | counts cnts | during du
end end | enter ent | entry en error err
event ev events evs every evry | exit ex
flag flg | graph g history h in in
increment inc | init ini inners ins | junction j
link 1 okay ok out 0 pre p
print pr | property prop | state S stateflow sf
stub st subgraph sg term trm | tmp t
transition tr update u valid v verify verif

-varprefix Prefix all variables (for namespace conflict avoidance). Do not use this, it is
present for debug purposes only.

-prefix,-suffix Prefix/suffix all toplevel names. This is used, for instance, when one wishes
to compare the output from two different translations. All the visible identifiers in the
output code are prefixed by the given string, for example, “~prefix A” might give:

type Aevent = bool;
const Aset = true; Aclr = false;
node Asf_2(Set, Reset: Aevent) returns(sOff, sOn: bool);

7.6 General translator control

These options control the translation process at the most basic level. Some of these are
discussed in the preceding sections. The effect of others is described in the associated papers.

-no_self_init Top level graph does not provide initialization. Normally, the init and term
flags are automatically set to:

init = true -> false;
term false;

at the top level of the code. This option disables this behaviour but is only present for
debugging the translator.

-ess Event stack size. This sets the depth of the event stack, see Section 3 for usage infor-
mation and caveats.

-sends Enable sends to specific states. This option triggers some additional processing which
allows STATEFLOW’s send function to be implemented. Note that events become in-
tegers which may affect subsequent analysis and that currently this feature is only
partially implemented. See Section 3.2.

27

-junc_states Treat junctions as states. When this is set junctions are given a physical state
(called j<ID> or junction_<ID>) and the chart can stay in a junction after a reaction.
An additional output boolean (v or valid) is generated which is true if and only if the
current state is not a junction. See Section 4.1.

-errstate Add error processing to event broadcasts. This generates an extra output boolean
variable (err or error) which is set to true if an event is broadcast at the lowest
level of the event stack. This logic is switched off if the event stack size is zero. See
Section 5.3.2.

-unroll Unroll loops according to loop counters. Using the annotations in the STATEFLOW
chart described in Section 4.2 transition networks involving loops are unfolded a fixed
number of times resulting in a loop-free chart. The unrolling algorithm is currently very
primitive and has complexity problems.

7.7 Data management

Handling MATLAB’s workspace is complicated by the fact that it is stored in a binary format
which external tools cannot read. Hence, the translator has to make some assumptions about
the workspace which it communicates via the .mws file. These options allow some additional
control over workspace values:

-create_missing Add missing data to data dictionary. If a chart contains a reference to a
variable not in STATEFLOW’s data dictionary then it can be automatically created. All
such variables have to have the same scope and type, however.

-missing_scope Scope for missing data (default: INPUT_DATA). Recognized values are:

r13/r14 INPUT_EVENT OUTPUT_EVENT LOCAL_EVENT
OUTPUT_DATA INPUT_DATA LOCAL_DATA
TEMPORARY_DATA CONSTANT_DATA

rl4 FUNCTION_INPUT_DATA FUNCTION_OUTPUT_DATA PARAMETER_DATA

-missing_datatype Data type for missing data (default: double). Known values are (not
all are supported):

double single 1int8 int16
int32 uint8 uintl6 uint32
boolean fixpt ml

-no_constants Omit workspace constants from output. This is used by SS2LUS and prevents
SF2LUS from including constants defined in the MATLAB workspace file from being in-
cluded. The output is not legal LUSTRE since the constants are expected to be provided
by s2L.

7.8 Time

The STATEFLOW implicit time variable t is slightly problematical since LUSTRE does not
have any notion of absolute time. For stand-alone STATEFLOW-generated LUSTRE code the
following options allow t to be generated automatically assuming a fixed time difference
between reactions. If time is not emulated here then it is assumed to be an input to the
chart. The MATLAB workspace file contains an entry indicating whether t is an input or not.

28

-emulate_time Provide internal time value. References to STATEFLOW’S time value are
implemented internally in the LUSTRE code according to the following two options.

-start_time Start time for emulated time (default: 0.0). The value of t at reaction zero.

-time_increment Time increment for emulated time (default: 1.0). The t variable is incre-
mented by this amount at the start of each reaction.

7.9 Observers

One of the main uses of the SF2LUS translator is in the proof of safety properties. The
following options support this activity:

-observe Add observer node for given expression. Generate a single LUSTRE node observing
the expression given as a string of LUSTRE code. State variables can be observed
provided the -states_visible option is set.

-no_observers Don’t read observer file. By default, SF2LUS looks for a file <file>.obs
when given a model file <file>.md1l. If it exists it is assumed to be a file containing
observable expressions, one per line. LUSTRE-style comments (--) are permitted.

-consistency Add a state consistency observer. This option causes an observer for the state
variables to be generated. The observer is called consistency_<CID> and is mostly
used to verify the translation process, see Section 5.3.3. The -states_visible option
is set automatically.

-counters Add loop counters to junction networks. An additional integer output for each
junction in the chart is generated. The counters are called cntrj<ID> where <ID>
is the id number for the junction. Each counter is incremented when its junction is
entered during transition path analysis. Currently, maximum values are not maintained
so the values have to be checked after each reaction. In addition, an observer (called
loop_counters_<CID>) is generated for all the junctions annotated as in Section 4.2.
The -junc_states option is set automatically.

7.10 Debugging features

These are some miscellaneous options used to help in debugging the translator. Some may
be of use in debugging STATEFLOW charts, however.

-trace Add trace output. Generates a print function for each node generated. These are
supported by external C functions in a file <file>_ext.c which print out the arguments
and results of each node as it is processed. Some effort is made to defeat demand-driven
computation which can elide operations which are pure side-effects.

-trace_inputs Number of inputs to add to trace output. These seems to be a resource limit
of the nummber of arguments which can be passed to C functions through LUSTRE’s
FFI. This sets the number of inputs to print for each function.

-trace_locals Number of locals to add to trace output. The number of locals to print for
each node during a trace.

29

-states_visible Make state variables visible for toplevel graph. States are named as in Sec-
tion 7.5.

-temps_visible Make temporary variables visible for toplevel graph. Currently, this is not
complete since there are problems with the event stack due to inter-level transitions.

-stubs_visible Make stub nodes visible in output. When the event stack is implemented a
skeleton node is generated at the start of translation as a pro forma event broadcast
node. The output will not be legal LUSTRE if this option is set.

-locals_visible Make chart locals outputs. Again, only works for a subset of local values.

-no_typecheck Do not typecheck generated nodes. If the typechecker fails, this can either
help debug the typechecker or generate partial output which can be hand-edited to give
legal code.

-no_sequence Do not sequence generated nodes. Another debugging feature, sequencing
refers to the generation of intermediate flows to force the evaluation order of imperative
actions in LUSTRE. Output will not be legal LUSTRE.

-no_normalize Do not normalize generated nodes. Normalization refers to sequencing, type-
checking and some other small transformations applied to the generated LUSTRE.

-input_bools_ints Transform input booleans into integers. Used to allow LUCIOLE to set
more than one boolean input simultaneously, see Section 2.2.3.

-write_now Write output as generated. Normally, the LUSTRE code is built up in memory
and then dumped at the end of translation. This is a debug feature which allows
inspection of partial code when the translator crashes.

-g,-gp,-v Enable debug printouts. Enables debug printouts. Normally, these are disabled
when the distribution is made.

-help,—help Display the list of options.

30

8 The display_graph utility

The sr2Lus distribution includes a utility program called display_graph. This parses a
STATEFLOW model file exactly as SF2LUS itself and dumps out the internal data structure as
a dot file. This is useful to help understanding the LUSTRE output from SF2LUS since it can
annotate the states and links with id numbers.

The potentially unlimited complexity of STATEFLOW charts and the nature of GRAPHVIZ’S
plotting algorithms limits the size of chart which can be displayed. Also, GRAPHVIZ cannot
implement inner transitions so they are represented by synthesized nodes standing for the
parent node.

Figure 7 (DisplayGraphi.mdl) shows a sample output from display_graph for a simple
test model. This shows most features of the output, dotted boxes are parallel states, solid
boxes exclusive states, circles are junctions and points are the tails for default transitions.
The transition labelled dummy has been synthesized by the parser and the diamond-shaped
node labelled C is the proxy for the inner transition. Inter-level transitions are handled by
GRAPHVIZ. The command line options are reasonably self-explanatory, see Appendix B.

31

http://www.research.att.com/sw/tools/graphviz
http://www-verimag.imag.fr/~scaife/tests/DisplayGraph1.mdl

Chart(27,26)

TOP2(4,21)
............................... C(8,20)
TOP1(3,21) :
(12) (14)
y
A(5) C1(9)
[x==0](16)
B(6,18)
1](13) dummy (2 2)
B1(7)
tests/DisplayGraphl.mdl

Figure 7: Sample output from display_graph

32

A sf2lus command line options

The following are the currently supported options which can be viewed using sf21lus --help:

Stateflow to Lustre (c) VERIMAG 2004

Convert Stateflow into Lustre.

Syntax:

sf2lus <options> file.mdl

Bug reports and enquiries to: "Paul Caspi" <Paul.Caspi@imag.fr>

Options:
-rl3
-rld
-kw <str>
-nkw <str>
-paths
-no_paths
-I <dir>
—include <file>
-0 <file>
-mws <file>
-margin <int>
-max_indent <int>
—text_limit <int>
-pollux
-nbac
-reluc
—-scade
-names
—-ids
-names_ids
-long_names
-no_self_init
-ess <int>
—-sends
—errstate
-junc_states
-create_missing
-missing_scope <scope>
-missing_datatype <type>
-no_constants
—emulate_time
-start_time <float>
—-time_increment <float>
-real_time
-varprefix <str>
-prefix <str>
-suffix <str>
-observe <expr>

Matlab version 13

Matlab version 14 (default)

Add a keyword to the keyword identifier list
Remove a keyword from the keyword identifier list
Use full path names for states

Do not set -paths automatically

Append a directory to the search path

Add a file to be included

Name of output file, (default: stdout)

Name of Matlab workspace emulation file

Set the margin for formatted output

Set the maximum indent for formatted output

Limit output strings to this number of characters
Use Pollux modifications (default)

Use Nbac modifications

Use Reluc modifications

Use Scade modifications

Use state names in variables

Use state ids in variables

Use both names and state ids in variables

Use unabrreviated names (eg. "s" -> "state")

Top level graph does not provide initialization
Event stack size

Enable sends to specific state (events become ints)
Add error output variable

Treat junctions as states

Add missing data to data dictionary

Scope for missing data (default: INPUT_DATA)

Data type for missing data (default: double)

Omit workspace constants from output

Provide internal time value

Start time for emulated time

Time increment for emulated time

Provide real time value (in external C code)
Prefix all variables (for namespace conflict avoidance)
Prefix all names (used for comparisons with lesar)
Suffix all names (used for comparisons with lesar)
Add observer node for given expression

33

-no_observers
-consistency
—counters
-unroll
-trace

-trace_inputs <int>
-trace_locals <int>

—export_cvs
-states_visible
-temps_visible
-stubs_visible
-locals_visible
-no_typecheck
-no_sequence
-no_normalize
-input_bools_ints
-write_now

-g

—gpP

-v

-help

--help

Don’t read observer file

Add state consistency observer (sets -states_visible)
Add loop counters to junctions (sets -—junc_states)
Unroll loops according to loop counters

Add trace output

Number of inputs to add to trace output

Number of locals to add to trace output

Export condition variables (set if function call events)
Make state variables visible for toplevel graph
Make temporary variables visible for toplevel graph
Make stub nodes visible in output (won’t compile)
Make chart locals outputs

Do not typecheck generated nodes

Do not sequence generated nodes

Do not normalize generated nodes

Transform input booleans into ints (for luciole)
Write output as generated (debug)

Enable debug printouts

Enable parser debug printouts

Set debug level

Display this list of optiomns

Display this list of options

34

B display_graph command line options

The following are the options supported by display_graph which can be viewed using
display_graph --help:

Display Stateflow Graphs (c) VERIMAG 2004
Display the internal structure used by sf2lus.
Syntax:
display_graph <options> file.mdl

Bug reports and enquiries to: "Paul Caspi" <Paul.Caspi@imag.fr>

Options:
-rl3 Matlab version 13
-ri4 Matlab version 14 (default)
-kw <str> Add a keyword to the keyword identifier list
-nkw <str> Remove a keyword from the keyword identifier list
-paths Use full path names for states
-no_paths Do not set -paths automatically
-I <dir> Append a directory to the search path
-include <file> Add a file to be included
-0 <file> Name of output file, (default: stdout)
-mws <file> Name of Matlab workspace emulation file
-margin <int> Set the margin for formatted output
-max_indent <int> Set the maximum indent for formatted output
-text_limit <int> Limit output strings to this number of characters
-names Use state names in variables
-ids Use state ids in variables
-names_ids Use both names and state ids in variables
-long_names Use unabrreviated names (eg. "s" -> "state")
-string_escape_subgraph string escape subgraphs for "string_of_graph"
-colours Use colours in graph plotting
-link_ids Include link ids in dot output
-node_ids Include node ids in dot output
-display_pointers Display root, parent and this pointers
-display_fromto Display from, to and sublink pointers
-display_local_data Display local data attached to nodes
—-display_ids Display ids only for "display_graph"
—-display_names Display names only for "display_graph"
-display_intermediates Display intermediate graphs
-display_wait Wait for viewer after display
-viewer <str> Viewer for dot output files (default: ghostview)

-dot_output_type <str> Dot output type (dot -Ttype, default: ps)
-dot_output_size <str> Dot output size (dot -Gsize=<str>, default: 11,8)

-dot_simulink Include Simulink in dot output
-dot_boxes Include boxes in dot output

-g Enable debug printouts

-gp Enable parser debug printouts
-V Set debug level

-help Display this list of options

35

--help Display this list of optiomns

36

References

1]

2]

The MathWorks. Stateflow and stateflow coder, user’s guide. Available at
http://www.mathworks.com/products/stateflow/. 4

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow program-
ming language LUSTRE. Proceedings of the IEEE, 79(9):1305-1320, September 1991. 4

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining and translating
a “safe” subset of Simulink/Stateflow into Lustre. Technical Report TR-2004-16, Labora-
toire VERIMAG, Centre Equation, 2, avenue de Vignate, 38610 GIERES, France, 2004.
http://www-verimag.imag.fr. 4

N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining and translating
a “safe” subset of Simulink/Stateflow into Lustre. In Proc. EMSOFT 2004, Pisa, Italy,
Sep 2004. Springer. 4, 19

P. Caspi, A. Curic, A. Maignan, C. Sofronis, and S. Tripakis. Translating discrete-time
simulink to lustre. In R. Alur and I. Lee, editors, EMSOFT’03, Lecture Notes in Computer
Science. Springer Verlag, 2003. 4

Esterel Technologies, Inc. SCADFE Language - Reference Manual 2.1. 4

N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time systems by
means of the synchronous data-flow programming language Lustre. IEEE Transactions
on Software Engineering, Special Issue on the Specification and Analysis of Real-Time
Systems, September 1992. 4

37

http://www.mathworks.com/access/helpdesk/help/pdf_doc/stateflow/sf_ug.pdf

	Introduction
	The sf2lus translator
	A simple worked example
	Debugging Stateflow with sf2lus
	Viewing the internal state
	Even more detailed output
	Setting multiple boolean inputs with Luciole

	Events
	Event broadcasting
	Event sending

	Junction loops
	Junctions as states
	Loop unrolling
	Discussion

	Observers and safety properties
	Observers in Lustre
	Observers in Stateflow
	Types of observers
	Parallel state confluence
	Event stack depth
	Automatic observers

	Using sf2lus with s2l and ss2lus
	ss2lus syntax
	Matlab workspace files

	Miscellaneous features
	Matlab revisions
	Syntax control
	Output formatting
	Output language
	Namespace management
	General translator control
	Data management
	Time
	Observers
	Debugging features

	The display_graph utility
	sf2lus command line options
	display_graph command line options

