
Table of contents
1Introduction...3
2Installation...3

2.1Prerequisite...3
2.2Structure of the installation...4
2.3Linux installation...4
2.4Windows/cygwin installation...4

3BIP language..4
3.1Introduction...4
3.2Basic Language Elements...5

3.2.1Identifiers...5
3.2.2Reserved Words...5
3.2.3Comments..6
3.2.4Special Pragma...6

3.3BIP types...6
3.3.1port type...6

3.3.1.1description...6
syntax...6

3.3.1.2example...7
3.3.2atomic type..7

3.3.2.1description...7
3.3.2.2syntax..7

3.3.3compound type..7
3.3.3.1description...7
3.3.3.2syntax..8

3.3.4connector type...8
3.3.4.1description...8
3.3.4.2syntax..8

3.4Atomic component description...9
3.4.1port...9

3.4.1.1description...9
3.4.1.2syntax..9
3.4.1.3example...9

3.4.2variable..9
3.4.2.1Description..9
3.4.2.2syntax..10
syntax...10

3.4.3place...10
3.4.3.1Description..10
3.4.3.2syntax..10
3.4.3.3example...10

3.4.4initial block...10
3.4.4.1Description..10
3.4.4.2syntax..10
3.4.4.3example...10

3.4.5transition..11

3.4.5.1Description..11
3.4.5.2syntax..11
3.4.5.3example...11

3.4.6Priority in atom...11
3.4.6.1Description..11
3.4.6.2syntax..12

3.4.7export port in atomic component ..12
3.4.7.1Description..12
3.4.7.2syntax..12

3.4.8atom type example..12
3.5Compound component description...13

3.5.1component instance...13
3.5.1.1Description..13
3.5.1.2syntax..13
3.5.1.3example...14

3.5.2connector instance...14
3.5.2.1Description..14
3.5.2.2syntax..14
3.5.2.3Structured Connector..14
3.5.2.4Example...14

3.5.3priority in compound..15
3.5.3.1description...15
3.5.3.2syntax..15

3.5.4export port in compound component ..15
3.5.4.1Description..15
3.5.4.2syntax..16
3.5.4.3example...16

3.6Connector description...16
3.6.1definition..16

3.6.1.1description...16
3.6.1.2syntax..17

3.6.2variables...17
3.6.2.1Description..17
3.6.2.2syntax..17

3.6.3interactions..17
3.6.3.1Description..17
3.6.3.2syntax..17

3.6.4data transfer...18
3.6.4.1Description..18
3.6.4.2syntax..18

3.6.5export port in connector ..18
3.6.5.1Description..18
3.6.5.2syntax..18

3.6.6example..19
3.7Actions..20

3.7.1.1Description..20
3.7.1.2Syntax..21

3.8Expressions...21

3.8.1.1Description..21
3.8.1.2Syntax..21

3.9Array instance...22
3.9.1.1description...22

Array of Component..22
Array of Connector..22

3.10Timed models..22
3.10.1.1Description..22
3.10.1.2Urgency semantics..23

Eager...23
Delayable..23
Lazy...23

3.10.1.3Recommendation...23
3.10.1.4Syntax..24

3.11Package and system...24
3.11.1package declaration ..24

description..24
3.11.1.1syntax..25

3.11.2system declaration...25
3.11.2.1description...25
3.11.2.2syntax..25

3.11.3The use policy..25
3.11.3.1description...25
3.11.3.2syntax..25

3.11.4the root definition...25
3.11.4.1Description..25
3.11.4.2Syntax..26

3.12Syntax summary...26
4Engine feature...29

4.1Running an example...29
4.1.1Analyze source and generate code..29
4.1.2Link with the engine...30
4.1.3Run the example..30
4.1.4The interactive mode...31

4.1.4.1example...32

1 INTRODUCTION

2 INSTALLATION

2.1 Prerequisite

The toolset is available for Linux (Debian family) PC's.

The executable needs java 1.4 (or above) and gcc 4.x.

The BIP parser may work on command line with a java 1.4 or upper, or
under eclipse version 3.1 or upper.

The BIP command line is only available under Windows/cygwin.

2.2 Structure of the installation

The archive obtained in the download page on extraction gives the following
structure under folder BIP:

• bin contains the BIP to C++ code generator command line

• plugins contains specific BIP plugins

• importedplugins contains the libraries needed for BIP

• include contains BIP specific header files

• lib contains the BIP engine library

• util contains the Makefile for building the application

• examples contains the prodcons example

• aadl contains library used by AADL to BIP translation

2.3 Linux installation

● Fill the BIP2 load form at the address :

http://www-verimag.imag.fr/~async/bip2Download.php

and follow instructions to load the archive.

● Untar the archive at the installation place.

● Define the environment variable BIP2_HOME to the expended directory.

● to use BIP in eclipse environment, copy the plugins of directories
“importedplugins” (if not already installed) and “plugins” to the eclipse
plugin directory. Restart your eclipse environment, and define the
BIP2_HOME in the BIP preference window.

2.4 Windows/cygwin installation

BIP platform is not totally enable on windows/cygwin system.

3 BIP LANGUAGE

3.1 Introduction

The BIP language provides syntactic constructs for describing systems . It is
a co-ordination language, and is an extension of the C programming language. It
leverages on C style variables and data type declarations, expressions and
statements, and provides additional structural syntactic constructs for defining
component behavior, specifying the co-ordination between components and

http://www-verimag.imag.fr/~async/bip2Download.php

describing the priorities. The language enables us to express the concurrent and
sequential behavior of systems, as an interconnection of components. A system
can be described hierarchically, and timing can also be explicitly modeled in the
same description.

The principal constructs are:
● port: to specify data associated with a port type
● atom: to specify behavior, with an interface consisting of ports. Behavior is

described as a set of transition. Transitions are labeled by ports.
● connector: to specify the co-ordinations between the ports of components,

and the associated guarded actions.
● priority: to restrict the possible interactions, based on conditions depending

on the state of the integrated components.
● compound: to specify systems hierarchically, from other atoms or

compounds, with connectors and priorities.
● package : to specify reusable BIP types.
● model : to specify the entire system, encapsulating the definition of the

components, and specify the top level instance of the system.

The language allows defining types for port, atom, connector, and
compound, defining priorities, and instantiating objects of the defined types.
Every instantiated object has a scope. The scope in a BIP description are:

● atom
● compound
● model (global)
● package

3.2 Basic Language Elements

3.2.1 Identifiers

An identifier is composed of a sequence of one or more characters. A legal
character is an upper case letter (A . . . Z), a lower-case letter (a . . . z), a digit (0 .
. . 9) or the underscore (_) character. The first character of an identifier may be a
letter. Identifiers are case sensitive.

3.2.2 Reserved Words

The following identifiers are reserved words in the language (also called
keywords), and therefore cannot be used as basic identifiers in a BIP description.

atomic clock component compound connector data
define delayable do down eager else
end export extern from header if
in is initial lazy model multishot
on package place port priority provided
reset singleshot to type unit use
up when

3.2.3 Comments

The language supports C style comments. Single line comments begin with
two consecutive front slashes (//) and extends until the end of the line. Multi-line
comments can be enclosed between a pair of /* and */. Examples are:

// This is a single line comment
/* This is a
multi line
comment */

3.2.4 Special Pragma

A description enclosed within the character pairs {# and #} is treated
specially for code generation purpose. It acts as a special directive for the BIP
compiler to pass the description as it is to the code generator. This is useful for
enclosing standard C header files, arbitrary C type and function definition, or to
specify any arbitrary C code. For example:
{# #include<stdarg.h>
typedef char* String; #}

3.3 BIP types

3.3.1 port type

3.3.1.1 description

Ports define the interaction points between components. They are used to
synchronize components, and have associated data.

Ports in BIP are typed. The language allows the definition of typed ports, i.e.,
ports associated with typed variables. A port type definition is characterized by
the number, the name and the type of its associated variables. These data, and
only these ones, will be accessible in the data transfer defined in connectors using
the ports.

The port type is used:

• to declare ports in atomic component,

• to define a connector type profile

• to export a port from a component.

A default port type named “Port” without any associated data is
predeclared.

syntax

<port type> ::= port type <port type name> ([<data parameter>]

 (,<data parameter>)*)

<data parameter> ::= <data type> <data name>

<port type name> ::= <identifier>

<data type> ::= <identifier>

<data name> ::= <identifier>

3.3.1.2 example

The intPort declare a port type associated with an integer variable
accessible with the name x.
port type intPort(int x)

3.3.2 atomic type

3.3.2.1 description

Atomic components are the leaves of the components hierarchy. Their types
define the interaction points between them and their environment. An atomic
type defines an atom. An atomic type is characterized by:

• its name

• the exported ports (name and type)

• the parameters.

The atomic type defines also the component behavior as an automaton or a
Petri net.

3.3.2.2 syntax

<atomic type> ::= atomic type <atomic type name> [<component parameters>]

[<component_activation>]

[<header code>]

[<body code>]

(<data definition> | <clock definition> | <port definition> |
<place definition>)+

[<initial block>]

(<transition definition> | <priority definition>)+

(<export definition>)*

end

<atomic type name> ::= <identifier>

<component activation> ::= singleshot | multishot

3.3.3 compound type

3.3.3.1 description

A compound type defines a new component type from existing components

(atom or compound) by creating their instances, instantiating connectors between
them and specifying the priorities.

Hence it defines a structural model from existing components. A compound
offers the same interface as an atom, hence externally, there is no difference
between a compound and an atom.

Inner ports can be exported, to complete the component profile. Inner ports
that are not exported are not visible elsewhere.

3.3.3.2 syntax

<compound type> ::= compound type <compound type name> [<component
parameters>]

[<component_activation>]

[<header code>]

[<body code>]

(<component definition> | <connector definition> | <priority
definition>)+

(<export definition>)*

end

<compound type name> ::= <identifier>

3.3.4 connector type

3.3.4.1 description

Connectors define the synchronization protocol (rendez-vous, broadcast, ...)
between ports, and the data transfers associated with them. The connector type
is characterized by :

• its name

• the support set of ports (name and type)

• the exported port, if any (used to build hierarchical connectors)

3.3.4.2 syntax

<connector type definition> ::= connector type <connector type name>

<port type profile> [<data type profile>]

[<header code>]

[<body code>]

<define connector type>

< export connector port definition>

end

<define connector type> ::= <define connector expression>

(<data definition> | <interaction definition>)*

3.4 Atomic component description

3.4.1 port

3.4.1.1 description

Ports define events which trigger transitions between two states. Implicitly,
a port is internal, i.e., representing an internal action which does not need explicit
synchronization for its triggering. However, a port may be exported by the
keyword export to make it visible in the component interface. Exporting a port has
an option to specify the exported name of the port, i.e., a name by which a port is
known in the component interface. Moreover, internal ports have by default
priority over exported ports.

3.4.1.2 syntax

<port definition> ::= export port <port type reference> <port name> [<data port>]

 [= <export name>]

<data port> ::= (<data name> (,<data name>)*)

<export name> ::= <identifier>

<port type reference> ::= [<library name> .] <port type name>

3.4.1.3 example

For example, the port p associated with an integer variable x can be
exported with a name out as:
export port intPort p(x) = out

3.4.2 variable

3.4.2.1 Description

Variables used in an atom are declared as data objects. They are typed, as
in the C language. They may have initial values. A variable may be qualified as
extern if its definition is in an opaque C code. A variable may be exported to be
visible outside of the component (in particular in priority definition).

Data variables are defined by their name and type. Additional information
may be added on the variable:

• extern variable: declared elsewhere in C code

• initial value for the variable

3.4.2.2 syntax

syntax

<data definition> ::= [export] [extern] data <data type name>

<data name> [= <expression>] (,<data name> [= <expression>])*

3.4.3 clock

3.4.3.1 Description

Clocks are non-negative integer variables used in an atom to measure time
elapsed between the execution of two transitions: the first one reset a given
clock, and the second one is guarded by a condition depending on the value of
the clock. They cannot be exported like variables. Clocks increase synchronously
in the system. You can also stop increasing of a clock using freeze and let it
increasing again using resume.

A clock can be tested against a lower bound and an upper bound for the
execution of a transition, and urgency types are used to give more priority for
transition execution against time progress. Transitions are assumed
instantaneous, meaning that time can only progress in states. Transitions can also
reset clocks when executed, and all clocks are reset synchronously at
initialization.

You can associate to a clock a time unit which is used when no time unit is
provided for time value associated to a clock, e.g. a lower or and upper bound in a
guard involving the clock. When no time unit is associated to a time value (no
time unit provided and no time unit is provided for its associated clock), the
default time unit is millisecond. You can also provide an initial time value (by
default it is zero).

3.4.3.2 syntax

<clock definition> ::= clock <clock name> [=<time value>]

(,<clock name> [=<time value>])* [<clock unit>]

<clock unit> ::= unit { <integer> | <time unit> | <integer> <time unit> }

<time unit> ::= second | millisecond | microsecond

3.4.4 place

3.4.4.1 Description

The component behavior is either a state machine, or a one-safe Petri net.
The places represents the control-states for the automata, or places for the petri-
net.

In the first case, the places represent component control states. In the
second case, the places are Petri net places. At initialization, a token exists in

each place marked as initial.

3.4.4.2 syntax

<place definition> ::= place (<place name>)*

3.4.4.3 example

As an example, to describe three places idle, empty and full, we write the
following,
place idle empty full

3.4.5 initial block

3.4.5.1 Description

The initial block defines the actions to be done to initialize the atomic
component (variable initialization), as well as the set of its initial places.

3.4.5.2 syntax

<initial block> ::= to <places>

[do <action>]

<places> ::= <place name> (, <place name>)*

3.4.5.3 example

As an example, we can specify idle as the initial place, and initialize an
integer variable as follows:

initial to idle do x=0;

3.4.6 transition

3.4.6.1 Description

The behavior is given by a set of transitions modeling atomic computation
steps.

A transition is specified by a label (a port name) following the keyword on.
The source(s) of a transition follow the keyword from, while the destination(s)
follows to. The untimed part of the guard of the transition is specified after the
provided keyword. It corresponds to a boolean expression of the atomic
variables. Timed part of a guard specified after the keyword when are expression
involving clocks of the atom (see Section 3.10). You can also provide an urgency
which can be either lazy (which is the default value), delayable, or eager (see
Section 3.10). They are useful for modeling timed systems. The guard of a
transition is optional, and if not provided, it is assumed to be true.

A list of clock specified after the keyword reset take value zero after the
execution of the transition. You can also stop a list of clocks increasing using

freeze, or let a list of clocks increasing again using resume (see Section 3.10).
The (untimed) action statements of the transition are specified following the do.

3.4.6.2 syntax

<transition definition> ::= on port_expression from <places> to <places>

[provided <expression>]

[<time constraint>]

[<urgency>]

(<clock action>)*

[do <action>]

<places> ::= <place name> (, <place name>)*

3.4.6.3 example

The action statements are C statements. An example of a transition from
the place empty to full is

on in
from empty to full
provided 0<x
when clk in [50,_]
eager
reset clk
do y=f(x);
We assume that the C expressions and statements used in the provided and

do sections are adequately restricted to respect the atomicity assumption for
transitions e.g., no side effects, guaranteed termination.

3.4.7 Priority in atom

3.4.7.1 Description

The language offers the option for specifying priority between the ports of
an atom.

The priority defines scheduling constraints between ports and associated
transitions: if the atom is in a state where two transitions are enabled, the higher
priority port transition is preferred, while the lower port transition is disabled.
Remark 1: the priority rule is applied locally and may lead to deadlocks due to
outer synchronization constraints. For example, if the higher priority port cannot
be triggered because of external interactions (it is not connected, or connected
with a strong synchronization not yet ready), the lower port will be disabled
anyway.

Remark 2: Internal ports have by default higher priority than exported ports.

Important restriction: Priorities in atoms are not supported yet when using time
constraints!

3.4.7.2 syntax

<atom priority definition>::= priority <priority name> <port name> < <port name>

[provided <expression>]

3.4.8 export port in atomic component

3.4.8.1 Description

The port export may be done either in the port declaration, or with an
additional export directive. In order to be triggered, an exported port must be
connected outside of the component within at least one connector.

3.4.8.2 syntax

<export definition> ::= export port <port type reference> <export name> is

<port name> (, <port name>)*

<port type reference> ::= [<library name> .] <port type name>

3.4.9 atom type example

Figure 3.1 shows an atomic reactive component with three ports in, out,
awake, variables x, y, and control states Idle, Empty and Full. The automaton is
initialized to control state Idle, from which it can move to Empty by the internal
transition awake. At Empty, the transition labeled in is possible if 0<x. When an
interaction through in takes place, the variable x is eventually modified and a new
value for y is computed. From Full, the transition out can occur. The omission of
guard and function for this transition means that the associated guard is true and
the internal computation step is empty.

The BIP description of the reactive component of figure 3.1 is:

figure 3.1: An atomic type

atomic type Reactive
data int x, y
export port intPort in(x) = in
export port intPort out(y) = out
port ePort awake
place Idle, Full, Empty
initial to Idle do x=0;
on awake

from Idle to Empty
on in

from Empty to Full provided 0<x do y=f(x);
on out

from Full to Idle
end

The variables associated with a port may be modified on executing the the
transfer function of an interaction, in which the port participates. A pure event
port does not have any associated variables, and provides the mechanism for
event synchronization only (i.e., without any data transfer). The port type ePort
used in the code-sample above is an example of a pure event port.

3.5 Compound component description

3.5.1 component instance

3.5.1.1 Description

A component to be instantiated must be first defined, either as an atomic
type or a compound type.

The compound component represents an assembly of elements:
• sub-components

• connectors

The component instance represents a sub-component.

Using compound components, BIP models become hierarchical. The
compound components may be used in the same way as atomic components.

As for atomic components, inner ports (ports of subcomponents, or
connectors) must be exported in order to be used in outer compositions. There is
no difference between exported inner port of compound components and
exported port of atomic components.

3.5.1.2 syntax

<component definition> ::= component <component type name>

<component name> (index)*

 [<parameters>]

<parameters> ::= (<expression> (, <expression>)*)

<index> ::= [<expression>]

3.5.1.3 example

To instantiate a component of type Reactive, we would write:
component Reactive R1

which creates an instance of Reactive named R1.

3.5.2 connector instance

3.5.2.1 Description

Connectors are used to define the interactions between components.
Connector types define the number and type of ports interacting.

A connector instance associates the ports of instantiated components
through the interactions defined by the connector type. The ports specified in the
connector instantiation are mapped positionally to the port parameters in the
connector type definition. Each connector port parameter must be mapped to a
component port of the same type.

3.5.2.2 syntax

<connector definition> ::= connector <connector type name>

<connector name> (index)*

 (<instance port reference> (, <instance port reference>)*)

 [<parameters>]

<parameters> ::= (<expression> (, <expression>)*)

<instance port reference> ::= <connector name> [.<port name>] |

<component name>.<port name> |

(<expression>?<true instance port reference>:<false instance
port reference>)

3.5.2.3 Structured Connector

Structured connectors are created by the combined mechanism of exporting
port from a connector and instantiating connectors, where a port of the connector
is an exported port of another instantiated connector.

3.5.2.4 Example

As an example, an instance C0 of connector type Broadcast, parameterized
by the ports out and in of the components R1 and R2 respectively, is written as:

connector Broadcast C0(R1.out, R2.in)

3.5.3 priority in compound

3.5.3.1 description

Priority rules in compound components have the same intuitive meaning as
priority rules in atomic component. Here, the priority rules are used to select

among two enabled interactions or two enabled connectors. In the second case, it
prefers all interactions of one connector to all interactions of the other.

As usual, the lower priority interaction is inhibited if a higher interaction is
locally possible.

When connector type is used, the priority is defined for all interactions of all
connectors of the referenced type instantiated in the compound component of the
priority.

Remark: as for atomic components, the choice is made locally and may lead to
deadlocks.

3.5.3.2 syntax

<compound priority definition> ::= priority <priority name> <index>*

 <priority element> < <priority element>

[provided <expression>]

<priority element> ::= <interaction> | <connector type name>

<interaction> ::= <connector reference> [: <port reference>*]

<connector reference> ::= <connector name> (<index>*)

<port reference> ::= <subcomponent reference>.<port name>

<subcomponent reference> ::= <subcomponent name> (<index>*)

3.5.4 export port in compound component

3.5.4.1 Description

The language allows a compound to export a connector as a port, similar to
exporting ports from atoms. Exporting makes the port (and hence the connector)
visible in the compound interface, and hence allows for its further synchronization
with other components. This also provides a homogeneous interface for both
atoms and compounds, facilitating their seamless usage.

In order to export a connector as a port, the connector itself must have an
exported port.

The type of this port will be the type of the compound port.
If a port is exported, it must be connected to at least one connector,

otherwise it will never be triggered. If a connector port is exported, the connector
becomes a sub-connector of a hierarchical connector.

3.5.4.2 syntax

<export definition> ::= export port <port type reference> <export name> is

<port reference> (, <port reference>)*

<port type reference> ::= [<library name> .] <port type name>

<port reference> ::= <connector name>[.<port name>] |

<component name> . <port name>

3.5.4.3 example

We provide an example (figure 3.2) of exporting a connector as a port from
a compound component.

The connector C0 in the compound SendRecv is exported as a port named
sr1, of type intPort. The BIP description is:
compound type XXXX

component Reactive Sender
component Reactive Receiver1
connector Broadcast C0 (Sender.s, Receiver1.r1)
export intPort sr1 is C0

end

3.6 Connector description

3.6.1 definition

3.6.1.1 description

The port expression defines the set of legal interactions of the connector

• port1 port2 means that the connector has a legal interaction if both port1
and port2 are active

• port1' means that the connector has a legal interaction if port1 is active, the
other ports being optional

• port1 + port2 means that the connector has a legal interaction if either
port1 or port2 are active

For more details, see the algebra of connectors in [1].

figure 3.2: Exporting connector as
compound port

3.6.1.2 syntax

<define connector expression> ::= define <port expression>

<port expression> ::= <port name> |

<port expression> ' |

<port expression> (+ <expression>)*
|

<port expression> (<port expression>)* |

[<port expression>]

3.6.2 variables

3.6.2.1 Description

Data variables are used in connectors to store temporary values during the
connector execution, for data transfer, or guard computation. They are transient –
their values should not change the state of system, from one interaction to
another.

3.6.2.2 syntax

<data definition> ::= data <data type name>

<data name> = <expression> (,<data name> = <expression>)*

3.6.3 interactions

3.6.3.1 Description

The interaction definition is used to describe the specific guard and behavior
for each possible interaction (list of active port). For a rendez-vous connector,
there is only one possible interaction with all ports.

3.6.3.2 syntax

<interaction definition> ::= on (<port name>)+ [provided <expression>]

<data transfer>

3.6.4 data transfer

3.6.4.1 Description

For every interaction, the data transfer is specified by an up{} and a
down{} method. The method up{} is supposed to update the local variables of
the connector, from the values of variables associated with the ports. This
function must not have side-effects on data associated to ports. Conversely, the
method down{} is supposed to update the variables associated with the ports,
from the values of the connector variables. The down function is called on

successful execution of the interaction. Notice that the up function may be called
more often than the down action.
Restriction: Do not combine a connector with several behaviors for up{} and a
transition labeled by a port involved in the connector and that has a condition on
a clock. This may lead to unexpected and incorrect system execution!

3.6.4.2 syntax

<data transfer> ::= [up <action>] [down <action>]

3.6.5 export port in connector

3.6.5.1 Description

A connector has an option to define a port and export it. This allows a
connector to be used as a port in other connectors, and create structured
connectors. Local variables of the connector can be associated with its exported
port. This allows to manage hierarchical data transfer mechanism.

For a connector type definition, the type of its exported port forms an
integral part of its signature, in addition to the list of its ports along with their
types, and the C parameters.

3.6.5.2 syntax

<connector export definition> ::= export port <port type reference> <export name>
[<data port>]

<port type reference> ::= [<library name> .] <port type name>

3.6.6 example

Illustration 3.3: connector types

Figure 3.3 shows graphically, examples of simple connector types. The
connector type named Rendezvous (figure 3.3(a)) is parameterized by three
ports, p1, p2, and p3. p1 and p2 are of type intPort, whereas p3 is of type
int2Port, which associates a port with two integer variables. The connector type
defines a rendez-vous between the ports, specified by the expression p1p2p3,
with associated guard and transfer functions as described below:

connector type Rendezvous (intPort p1, intPort p2, int2Port p3)
define [p1 p2 p3]
data int x
on p1 p2 p3 provided (p1.i + p2.i != p3.i1 + p3.i2)
up {x = MAX(p1.i, p2.i, p3.i1, p3.i2);}
down {p1.i = p2.i = p3.i1 = p3.i2 = x;}
end

The connector declares a local integer variable x. The interaction involving
the three ports can occur only when the guard expression (p1.i + p2.i != p3.i1 +
p3.i2) is true. The data transfer consists of the combined effect of the up and
down methods. In the up method, the MAX of the variables associated with the
ports is computed and stored in the connector variable x. In the down method, the
value of x is assigned to each port variable. As a result of the data transfer, the
variables associated with the ports are set to the maximum of their values.

The second example (figure 3.3(b)) defines a connector type named
Broadcast, between two intPorts, p1 and p2. p1 is the trigger of the broadcast,
defined by the expression p10p2. The BIP description is:
connector type Broadcast (intPort p1, intPort p2)
define [p10 p2]
data int x
on p1
up {x = p1.i;}
down {}
on p1 p2
up {x = p1.i;}
down {p2.i = x;}
end

The data transfer methods describe transfer of value from the variable
associated with the trigger p1 to the variable associated with the synchron p2.
Also in this example, as no guards are provided with the interactions, they are, by
default, taken as true. Notice that contrary to other formalisms, BIP does not allow
explicit distinction between input and output ports. For simple data flow relation,
variables can be interpreted as inputs or outputs. For instance, in the connector
type Broadcast, p1 can be thought as an output port and p2 as an input port.

The third example (figure 3.3(c)) illustrate the export of port in connector.
Consider the connector type definition of Broadcast, which consists of two intPorts
and exports an intPort.

connector type Broadcast (intPort p1, intPort p2)
define [p10 p2]
data int x
on p1
up {x = p1.i;}
down {}
on p1 p2
up {x = p1.i;}
down {p2.i = x;}
export intPort p(x)
end

The export statement creates a port p of type intPort, and associates the
connector variable x with it. This leads to two possibilities: 1) a connector of type
Broadcast can be used as an intPort in another connector, leading to a structured
connector, 2) it can be exported as a port of type intPort in a compound type.

3.7 Actions

3.7.1.1 Description

The actions are used to describe the data transformations associated with
the transitions, and the data transfer associated with interactions on connectors.
The actions are a subset of C++ instructions. The variables used in the actions
must be declared as BIP data or as external data. External functions or methods
can be called in the BIP action. In this case the BIP parser does not check the
function profiles. The check is postponed to the C++ compiler at the C++ compile
step.

3.7.1.2 Syntax

<action> ::= <expression> [= <expression>] ; |

if (<expression>) action [else <action>] |

{# <any C++ code> #} |

{ {<action>} }

3.8 Expressions

3.8.1.1 Description

Expressions may appear within guards, component or connector
parameters, or within actions.

3.8.1.2 Syntax

<expression> ::= [<unary operator>] <postfix expression> [<binary operator> <
expression>]

<unary operator> ::= + | - | not | * | &

<binary operator> ::=

* | / | % |

+ | - |

< | <= | > | >= |

== | != |

or |

and

<postfix expression>::= <literal expression> |

<primary expression> {

[<expression>] |

.<identifier> |

-> <identifier> |

(<expression> {, <expression>)}

}

<literal expression> ::= <integer> | <float> | <string> | <index reference>

<index reference>::= $<0-9>

Index expressions can only be used to refer multiple element instances
(component or connector) – as usual to represent the nth element of the multiple
instance.

3.9 Array instance

3.9.1.1 description

The language allows to create static arrays of component and connector.
This is similar to defining arrays, as in the C language, by specifying a static
dimension. Individual elements of the array can be accessed by indexing.

Array of Component

The syntax for creating an array of component instance is:
component component-type-name component-instance-name [dimension]

[(component-parameter-list)]

Below we define a compound type named System that instantiates an array
of Reactive components.
compound type System (int length)
component Reactive R[length]
· · ·
export port intPort input is R[0].in
export port intPort output is R[length-1].out
end

It also exports port in and out of the 0th and length−1th instance
respectively as ports of the compound, named input and output.

Array of Connector

connector connector-type-name connector-instance-name [dimension]

(component-port-list) [(connector-parameter-list)]

We also introduce a macro notation, denoted as $ which refers to all the
instances of the array obtained by substituting $ by indices of the array
dimension. This is useful to specify the component port instances for the
connectors. An example of an array of Broadcast connectors is:
compound type System (int length)
component Reactive R[length]
connector Broadcast Cnx[length-1] (R[$].out, R[$+1].in)
· · ·
end

Here Cnx is an array of Broadcast connector, where the ith connector
associates the ports R[i].out and R[i+1].in.

3.10 Timed models

3.10.1.1 Description

Timed systems are modeled as automata extended with non-negative
integers variables (clocks) measuring the time elapsed since their last reset. Time
can progress only at a control state (i.e. transition execution is timeless), and only
if there no transition is urgent. Time progression corresponds to synchronous
increasing of all clocks in the system. As soon as a transition become urgent, time
cannot progress anymore, that is, the system cannot wait, and the execution of a
transition is enforced. A transition can have conditions on clocks specifying
intervals of clocks values for which it is enabled (all values by default), and
specifying an urgency type, that is, lazy, delayable, or eager (lazy by default).

3.10.1.2 Notion of urgency

Urgency types are used to limit time progression, that is, provide upper
bounds on waiting times for the system as follows.

● A lazy transition is never urgent, meaning it never constrains waiting
times. This is the default urgency for a transition.

● A delayable transition is urgent only for the upper bound of its clock
condition. If this upper bound is reached, the system cannot wait more and
a transition must be taken. This corresponds to the notion of deadline.

● An eager transition is urgent as it is enabled, that is, the system cannot
wait whenever it is enabled.

3.10.1.3 Clock actions

When a transition is fired, it may executes several actions for clocks. For a
subset of clocks, actions reset, freeze and resume are respectively used for
reset clocks (set to zero), stop clocks increasing, and let clocks increasing again.

3.10.1.4 Execution times

Ideal behavior of the system is achieved for instantaneous execution of
transitions (timeless execution). However, this assumption is never valid when
considering the actual execution of an application running on given hardware
platform using a real-time clock (using option --realtime). To reconcile both ideal
and actual behavior of a system, transition execution is modeled by its timeless
execution followed by a waiting time enforced in order to take into account its
possibly non null execution time. Notice that if a transition reset clocks, the
system behaves as all this clocks were reset exactly at the ideal time for the
execution of the transition, that is, no clock drift can be encountered.

Since execution times corresponds to lower bounds on waiting times for the
system, we consider that an urgency is violated if such a lower bound is not
compatible with upper bounds defined by urgency types. That is, execution times
cannot lead to an execution sequence specified by the ideal behavior.

model example
atom type sender
 export port Port comm = communicate
 port Port work
 clock x
 place working, communicating
 initial to working
 on work from working to communicating when x in [2,5] delayable
 on comm from communicating to working eager reset x
end
atom type receiver
 export port Port comm = communicate
 port Port work
 clock x
 place working, communicating
 initial to working
 on work from working to communicating when x in [4,5] delayable
 on comm from communicating to working eager reset x
end

connector type rendezvous(Port p1, Port p2)
 define p1 p2
end

compound type example
 component sender s
 component receiver r
 connector rendezvous myconnector(s.communicate, r.communicate)
end

component example root
end

3.10.1.5 Syntax

<time constraint> ::= when <clock constraint> (&& <clock constraint>)*

<clock constraint>::= <clock name> [- <clock name>]

in {] | [} <time value> , <time value> {] | [}

<urgency> ::= eager | delayable | lazy

<clock name> ::= <identifier>

<time value> ::= { <expression> | _ } <time unit>

<time unit> ::= second | millisecond | microsecond

<clock action> ::= { reset | freeze | resume } <clock name> (, <clock name>)*

3.11 Package and system

3.11.1 package declaration

description

The package is used to declare BIP types to be shared by several systems.
The package declaration may declare any BIP type.

Remark: two types with the same name and profile declared in two different
package are not compatible.

3.11.1.1 syntax

<package declaration> ::= package <package name>

{<use package> }

 {<bip_definition> | <opaque_code> }

 end

<bip definition> ::= <port type definition> |

<connector type definition> |

<component type definition>

<opaque code> ::= [header] {# <any C++ code> #}

3.11.2 system declaration

3.11.2.1 description

System declaration allows to define a BIP model, including the top level
component defined as root definition.

3.11.2.2 syntax

<system declaration> ::= model <model name>

{<use package> }

 {<bip definition> | <opaque code> }

<root definition>

 end

3.11.3 The use policy

3.11.3.1 description

The use directive allows to import the BIP types declared in a package. The
BIP parser looks for a model file of name <lib name>.model (generated by the BIP
compilation of a <lib name>.bip source) in the include directories specified on the
command line.

3.11.3.2 syntax

<use package> ::= use <lib name>

3.11.4 the root definition

3.11.4.1 Description

The root definition defines the top level of the BIP model.

3.11.4.2 Syntax

<root definition> ::= <component definition>

3.12 Syntax summary

Here is the syntax rules in the alphabetic order.

<action> ::= <expression> [= <expression>] ; |

if (<expression>) action [else <action>] |

{# <any C++ code> #} |

{ {<action>} }

<atomic type> ::= atomic type <atomic type name> [<component parameters>]

[<component_activation>]

[<header code>]

[<body code>]

(<data definition> | <clock definition> | <port definition> | <place
definition>)+

[<initial block>]

(<transition definition> | <priority definition>)+

(<export definition>)*

end

<atomic type name> ::= <identifier>

<atom priority definition> ::= priority <priority name> <port name> < <port
name>

[provided <expression>]

<binary operator> ::=

* | / | % |

+ | - |

< | <= | > | >= |

== | != |

or |

and

<bip definition> ::= <port type definition> |

<connector type definition> |

<component type definition>

<clock action> ::= { reset | freeze | resume } <clock name> (, <clock name>)*

<clock constraint>::= [<clock name> [- <clock name>]

in {] | [} <time value> , <time value> {] | [}

<clock definition> ::= clock <clock name> [= <time value>]

(, <clock name>=<time value>)* [<clock unit>]

<clock name> ::= <identifier>

<clock unit> ::= unit {<integer> | <time unit> | <integer> <time unit> }

<component activation> ::= singleshot | multishot

<component definition> ::= component <component type name>

<component name> (index)*

 [<parameters>]

<compound priority definition> ::= priority <priority name> <index>*

 <interaction> < <interaction>

[provided <expression>]

<compound type> ::= compound type <compound type name> [<component
parameters>]

[<component_activation>]

[<header code>]

[<body code>]

(<component definition> | <connector definition> | <priority
definition>)+

(<export definition>)*

end

<compound type name> ::= <identifier>

<connector definition> ::= connector <connector type name>

<connector name> (index)*

 (<instance port reference> (, <instance port reference>)*)

 [<parameters>]

<connector export definition> ::= export port <port type reference> <export name>
[<data port>]

<connector reference> ::= <connector name> (<index>*)

<connector type definition> ::= connector type <connector type name>

<port type profile> [<data type profile>]

[<header code>]

[<body code>]

<define connector type>

< export connector port definition>

end

<data definition> ::= [export] [extern] [timed] data <data type name>

<data name> [= <expression>] (,<data name> [= <expression>])*

<data name> ::= <identifier>

<data parameter> ::= <data type> <data name>

<data port> ::= (<data name> (,<data name>)*)

<data transfer> ::= [up <action>] [down <action>]

<data type> ::= <identifier>

<define connector expression> ::= define <port expression>

<define connector type> ::= <define connector expression>

(<data definition> | <interaction definition>)*

<export definition> ::= export port <port type reference> <export name> is

<port name> (, <port name>)*

<export name> ::= <identifier>

<expression> ::= [<unary operator>] <postfix expression> [<binary
operator> < expression>]

<index> ::= [<expression>]

<index reference>::= $<0-9>

<initial block> ::= to <places>

[do <action>]

<instance port reference> ::= <connector name> [.<port name>] |

<component name>.<port name> |

(<expression>?<true instance port reference>:<false instance
port reference>)

<interaction> ::= <connector reference> [: <port reference>*]

<interaction definition> ::= on (<port name>)+ [provided <expression>]

<data transfer>

<literal expression> ::= <integer> | <float> | <string> | <index reference>

<opaque code> ::= [header] {# <any C++ code> #}

<parameters> ::= (<expression> (, <expression>)*)

<place definition> ::= place (<place name>)*

<places> ::= <place name> (, <place name>)*

<port definition> ::= export port <port type reference> <port name> [<data port>]

 [= <export name>]

<port expression> ::= <port name> |

<port expression> ' |

<port expression> (+ <expression>)*
|

<port expression> (<port expression>)* |

[<port expression>]<port reference>
::= <connector name>[.<port name>] |

<component name> . <port name>

<package declaration> ::= package <package name>

{<use package> }

 {<bip_definition> | <opaque_code> }

 end

<port type> ::= port type <port type name> ([<data parameter>]

 (,<data parameter>)*)

<port type name> ::= <identifier>

<port type reference> ::= [<library name> .] <port type name>

<postfix expression> ::= <literal expression> |

<primary expression> {

[<expression>] |

.<identifier> |

-> <expression> |

(<expression> {, <expression>)}

}

<reset> ::= reset <clock name> (,<clock name>)*

<root definition> ::= <component definition>

<subcomponent reference> ::= <subcomponent name> (<index>*)

<system declaration> ::= model <package name>

{<use package> }

 {<bip definition> | <opaque code> }

<root definition>

 end

<time constraint> ::= when <clock constraint> (&& <clock constraint>)*

<time unit> ::= second | millisecond | microsecond

<time value> ::= {<expression> | _ } [<time unit>]

<transition definition> ::= on port_expression from <places> to <places>

[provided <expression>]

[<time constraint>]

[<urgency>]

(<clock action>)*

[do <action>]

<unary operator> ::= + | - | not | * | &

<urgency> ::= eager | delayable | lazy

<use package> ::= use <lib name>

4 ENGINE FEATURE

4.1 Running an example

4.1.1 Analyze source and generate code

There are two possibilities to analyze BIP source, and generate code for the
BIP engine:

● call BIP command line with options

● in the eclipse environment, activate the compile and generate command
through BIP menu

The BIP command line options are:

● --genC-execute : generate code for simulation only

● --genC-explore : generate code for simulation and state exploration

● -I <directory location> : add a directory to look for imported library

● -g : generate debug function to display state variables when running

interactive simulation

● -f <source fine name> : specify the source file

● -m or –model : read a model instead of e BIP source file

● -r or –reverse <destination name>

4.1.2 Link with the engine

During the generation phase, the BIP parser generate a makefile to compile
and link the C code generated. The makefile name is “<source file name>.mk”.
The command :
make -f <source file name>.mk [debug=yes]
will generate the executable.

4.1.3 Run the example

The generated executable have the following option in the command line:

● --execute: simulate the model (single trace)

● --explore: explore the model states (all traces)

● --realtime: real-time execution of the model (single trace)

● --random: simulate with random choices (single trace)

● --quiet: do not print interaction trace

● --trace: generate the trace of visited states (in simulation mode)

● --dfs: order of state exploration, go to deep first

● --bfs: order of state exploration, go to different branches first

● --interactive: in execution mode, stop at each interaction, and let user
choose the interaction to execute

● --opt1: optimization mode

● --opt2: optimization mode

● --disable-output: do not generate output files

● --output / -o <name>: specify the root name of generated files

● --limit / -l <number>: limit the number of step (number of executed
interactions)

● --help / -h: get the executable options

● --simout / -s:

● --seed / -r <number>: use a particular seed for random selection. Default is
1. several run with the same seed will produce the same behavior.

4.1.4 The interactive mode

In the interactive mode (with --execute --interactive options), at each step

the user have the list of candidate interactions, and may chose a command:

● <n>: chose to execute the interaction number <n>

● r: chose a random interaction to execute

● p <name>: print a state variable. The variable name is :

{<component name>.}<component name>.<variable name>

where the first component name is a component of the root component type

and the variable name is a place name, a user data name, or BIP_STATE

4.1.4.1 example

for the source:
model prodcons
header {# typedef char* String; #}

/* definition of a port type */
port type IntPort(int x)

/* definition of a connector type */
connector type SendRec(IntPort s, IntPort r)(int p1, int p2)
 define [s r]
 data int val
 on s r provided true down {val = s.x; r.x = s.x;}
 export IntPort p(val)
end

/* definition of an atomic component type */
atomic type Worker(String cname)
 data int value = 0
 export port IntPort comm(value) = communicate
 port IntPort work(value)

 place working
 place sending

 initial to working do printf("init\n");
 on work
 from working to sending
 provided true do {
 printf("working %s\n", cname) ;
 value = (value+1) % 3 ;
 }
 on comm
 from sending to working
 provided true do printf("comm %s\n", cname) ;
end

/* definition of a compound component */
compound type Team
 component Worker producer("producer")
 component Worker consumer("consumer")
 connector SendRec c(producer.communicate, consumer.communicate)(1,2)
end

/* instantiation of the root component */
component Team t

end

Here is the execution trace:
$./ex.bip.x --interactive --execute

 * BIP Engine (Version 1.0) *
 * Verimag, France *
 (www-verimag.imag.fr/~async/BIP/bip.html)

init
init
working producer
working consumer
List of legal connectors are :
[1] BIP_Top/c/producer:comm|consumer:comm
Enter connector number (Hit 0 to exit) : 1
scheduler : BIP_Top/c/producer:comm|consumer:comm
comm producer
working producer
comm consumer
working consumer
List of legal connectors are :
[1] BIP_Top/c/producer:comm|consumer:comm
Enter connector number (Hit 0 to exit) : p producer.BIP_STATE
producer.BIP_STATE = sending
Enter connector number (Hit 0 to exit) : p producer.sending
producer.sending = true
Enter connector number (Hit 0 to exit) : p producer.value
producer.value = 2
Enter connector number (Hit 0 to exit) :

	1 Introduction
	2 Installation
	2.1 Prerequisite
	2.2 Structure of the installation
	2.3 Linux installation
	2.4 Windows/cygwin installation

	3 BIP language
	3.1 Introduction
	3.2 Basic Language Elements
	3.2.1 Identifiers
	3.2.2 Reserved Words
	3.2.3 Comments
	3.2.4 Special Pragma

	3.3 BIP types
	3.3.1 port type
	3.3.1.1 description
	syntax

	3.3.1.2 example

	3.3.2 atomic type
	3.3.2.1 description
	3.3.2.2 syntax

	3.3.3 compound type
	3.3.3.1 description
	3.3.3.2 syntax

	3.3.4 connector type
	3.3.4.1 description
	3.3.4.2 syntax

	3.4 Atomic component description
	3.4.1 port
	3.4.1.1 description
	3.4.1.2 syntax
	3.4.1.3 example

	3.4.2 variable
	3.4.2.1 Description
	3.4.2.2 syntax
	syntax

	3.4.3 clock
	3.4.3.1 Description
	3.4.3.2 syntax

	3.4.4 place
	3.4.4.1 Description
	3.4.4.2 syntax
	3.4.4.3 example

	3.4.5 initial block
	3.4.5.1 Description
	3.4.5.2 syntax
	3.4.5.3 example

	3.4.6 transition
	3.4.6.1 Description
	3.4.6.2 syntax
	3.4.6.3 example

	3.4.7 Priority in atom
	3.4.7.1 Description
	3.4.7.2 syntax

	3.4.8 export port in atomic component
	3.4.8.1 Description
	3.4.8.2 syntax

	3.4.9 atom type example

	3.5 Compound component description
	3.5.1 component instance
	3.5.1.1 Description
	3.5.1.2 syntax
	3.5.1.3 example

	3.5.2 connector instance
	3.5.2.1 Description
	3.5.2.2 syntax
	3.5.2.3 Structured Connector
	3.5.2.4 Example

	3.5.3 priority in compound
	3.5.3.1 description
	3.5.3.2 syntax

	3.5.4 export port in compound component
	3.5.4.1 Description
	3.5.4.2 syntax
	3.5.4.3 example

	3.6 Connector description
	3.6.1 definition
	3.6.1.1 description
	3.6.1.2 syntax

	3.6.2 variables
	3.6.2.1 Description
	3.6.2.2 syntax

	3.6.3 interactions
	3.6.3.1 Description
	3.6.3.2 syntax

	3.6.4 data transfer
	3.6.4.1 Description
	3.6.4.2 syntax

	3.6.5 export port in connector
	3.6.5.1 Description
	3.6.5.2 syntax

	3.6.6 example

	3.7 Actions
	3.7.1.1 Description
	3.7.1.2 Syntax

	3.8 Expressions
	3.8.1.1 Description
	3.8.1.2 Syntax

	3.9 Array instance
	3.9.1.1 description
	Array of Component
	Array of Connector

	3.10 Timed models
	3.10.1.1 Description
	3.10.1.2 Notion of urgency
	3.10.1.3 Clock actions
	3.10.1.4 Execution times
	3.10.1.5 Syntax

	3.11 Package and system
	3.11.1 package declaration
	description
	3.11.1.1 syntax

	3.11.2 system declaration
	3.11.2.1 description
	3.11.2.2 syntax

	3.11.3 The use policy
	3.11.3.1 description
	3.11.3.2 syntax

	3.11.4 the root definition
	3.11.4.1 Description
	3.11.4.2 Syntax

	3.12 Syntax summary

	4 Engine feature
	4.1 Running an example
	4.1.1 Analyze source and generate code
	4.1.2 Link with the engine
	4.1.3 Run the example
	4.1.4 The interactive mode
	4.1.4.1 example

