dUERROCS

Vérification de propriétés quantitatives et fonctionnelles
Analysis and VERification for the Reliability Of Embedded Systems

Lot 5

Technologie de vérification

Description d’une méthode de preuve
pour les inductifs du premier ordre

Auteur(s) :
Référence :
Date :
Statut :

Version :

Description :

Ce rapport présente un calcul de séquents sans contraction pour un fragment
du Calcul des Constructions Inductives correspondant & la logique intuitionniste
du premier ordre. Nous montrons qu’il s’agit d’une extension naturelle du calcul
LJT de Dyckhoff et nous démontrons qu’il satisfait les propriétés d’élimination
des coupures et des contractions, étendant ainsi les résultats obtenus par Dyck-
hoff, afin de justifier son utilisation comme base pour des procédures de recherche
de preuves. Enfin, nous décrivons les tratégies mises en ceuvre dans I’implantation
d’une tactique Coq basée sur ce calcul.

Pierre CORBINEAU

AVERROES / Lot 5 / Fourniture 5.3.2 / V1.0
3 décembre 2003

validé

1.0

Réseau National des Technologies Logicielles
Projet subventionné par le Ministére de la Recherche et des Nouvelles Technologies

CRIL Technology, France Télécom R&D, INRIA-Futurs, LaBRI (Univ. de Bordeaux — CNRS),
LIX (Ecole Polytechnique, CNRS) LORIA, LRI (Univ. de Paris Sud — CNRS), LSV (ENS de
Cachan — CNRS)

Contents

1

2

Introduction 3
A sequent calculus with inductive formulae 4
2.1 Introducing inductive formulae oL oo 4
2.2 The LJTI sequent calculus 5
Properties of the LJTI calculus 6
3.1 Inversion lemmata 6
3.2 Admissibility of contraction 7
3.3 Cut-Elimination theorem 11
Embedding our calculus in a proof-search procedure 16
4.1 Basicstrategy 16
4.2 Instantiation strategy 17
4.3 The firstordertactic L 18
Conclusion & Future Work 18

1 Introduction

Standard logical languages always use connectives such as A, V, —. Works abouts classical logic
are very often concerned with conjunctive or disjunctive normal forms, seeing A—B as —A V
B. Conversely, in intuitionistic logic, the implication plays a crucial role, especially when we
examine the differences between the boolean models of classical logic and the Kripke semantics
of intuitionistic logic. Moreover, with the Curry Howard isomorphism, implication is the logical
conterpart of the types of A-calculus abstractions, where as A and V formulae are the types of
pairs and disjoint sums that are constructions added to the A-calculus with their constructors and
destructors.

The Calculus of Inductive Constructions follows this principle : we keep the — (and V) prim-
itive but we allow the definition of arbitrarily complex inductive constructions, provided certain
regularity condictions. The usual logical connectives can be expressed in terms of those inductive
constructions, and their introduction and elimination rules are defined uniformly.

This provides the user with a language as powerful as usual, except that now he will be able to
extend his language with more complex connectives that he will be able to introduce or eliminate
in one step, resulting in smaller and simpler proofs than those using many nested connectives. On
the other side, the meta-theoretical properties of the system will not have to be proved considering
every connective, but only considering one generic inductive definition, providing us with simpler
proofs about smaller inference systems.

Most basic intuitionistic predicate calculi using sequents [8, 3] include the structural rule of
contraction or a left-introduction rule for the arrow in which the principal formula stays in the
left premise :

T A AFG T,ASBFA T,B-G
TAFG Comr TLASBFG

Those rules have obvious bad properties if we use them in a bottom-up proof-search procedure
since they can lead to loops in the proof-search process if not restricted.

In [4], Roy Dyckhoff described LJT, a calculus for the intuitionistic propositional logic without
contraction. Instead he put forward that contraction could be shown admissible, i.e. it could be
seen as an implicit rule in his system. Furthermore, he split the L— rule in several subcases
depending on the formula being on the left of the arrow, and that way avoided the repetition of
the principal formula in the premise.

In [5], together with Sara Negri he gave a direct proof of cut-elimination for this system, and
for its extension to first-order quantifiers V and 3. Of course this extension did not have any
termination property similar to that of LJT because of the rules about the universal quantifier.

The propositional part of the LJT sequent calculus has been implemented in the Coq proof
assistant as a proof-search procedure : the tauto tactic [11]. This procedure performs depth-first-
search of proofs with optimization of search using reversibility of rules in the calculus. This tactic
is also used as a goal simplification procedure called intuition. The approach used was successful
so we wanted to extend it to first-order reasoning.

Moreover, two attempts at automating the predicate calculus in Coq were previously made :
the first one was the implantation of a decision procedure for the direct predicate calculus [7, 1],
a decidable restriction of the predicate calculus to its linear fragment, it led to the linear tactic
[6] which was implemented in early versions of Coq. It has been discontinued since, because this
fragment is not powerful enough.

The second attempt has been the port of the jprover module [12] from the Nuprl prover [9] to
Coq. It is basically made of a classical tableau prover packed with a constraint solver to restrict
it to intuitionistic logic. Similarly to linear this tactic behaves has a black box constructing a
complete proof in one step. But it doesn’t handle the case of Vz.P [z] F Jy.P [y] where the domain
must be inhabited, and it has a very restricted view of logical connectives. Moreover its black-box
behavior forbids its use as a goal simplification procedure.

Our purpose was to adapt Dyckhoff’s system so that it could be used in a natural way for
first-order intuitionistic proof-search in Coq. In order to do that we had to cope with the fact

L—

that in Coq only the implication — and the universal quantification V are primitive constructions
— they are two forms of dependent products — whereas standard logical connectives A,V, 1 and
even the existential quantifier 3 can be defined in terms of inductive definitions.

So we propose here a variant of Dyckhoff’s LJT calculus where the primitive logical connec-
tives are V,— and inductive definitions, viewing other connectives as particular cases of inductive
definitions, but also allowing many more possible constructions.

In section 2, we first present our inductive definitions and the corresponding notion of first-
order formula, and we show how this notion gives a natural extension of Dyckhoff’s calculus. Then
in section 3 we prove that our calculus enjoys both contraction- and cut-elimination properties.
Finally in section 4 we discuss some proof-search strategy issues and present our implementation
of a proof-search procedure based on this calculus.

2 A sequent calculus with inductive formulae

2.1 Introducing inductive formulae

In the following text we will use the notations ﬁi, ﬁ,—)X , 7 and V@-).X as shortcuts for
Hi.,...,H;p, Hii—(...>(H;p—X)), ©1,...,2p and VYy;1...Vy;p.X. Please note that the
length of the sequences is always fixed a priori, and that the meaning of H; depends on whether it
is or not followed by an arrow. We suppose implication is right-associative and has higher priority
than V. We will also use the {_}; notation to mean either a sequence of formulae or a (finite) set
of premises in a rule, where i ranges over the constructor indices or the hypotheses indices of an
inductive formula.

To define our class of formula we start with a signature of first-order constants and predicates
of fixed arity. Any term formed by the application of a n-ary predicate to n well-formed terms
possibly containing variables will be called atomic formula, and the variables occurring in the n
terms will be called the free variables of this formula.

Then we define compound formulae and inductive families mutually recursively, so let us begin
with the inductive families. An inductive family is a triple (I, X, {C1 : 71; C2 : T»;...}) where I
is the name of the inductive family, j() a possibly empty list of formal parameters having a fixed
arity and being either propositional or first-order parameters. C; is the name and 7; the type of
the ith constructor, which is itself a formula.

Then we define our formula language inductively as follows: A formula is either an atomic
formula or a compound formula. If A and B are formulae then so is A—B, if P[z] is a formula
then so is V. P [z] and if 7 is a sequence of parameters whose arity and class (formula or term) fit
those of the formal parameters of the I family, then I (?) is a formula. Implication and universal
quantification behave as usual regarding free and bound variables. The free variables in (?) are
those in ?

A constructor type must be a formula made of a (possibly empty) sequence of universal quan-
tifications and implications and the head of that formula must be I(X). The formal parameters
must not be bound by the quantifiers. But all other free variables must be universally quantified.

Without loss of generality we will assume that constructor types are in weak prenex form, i.e.
all dependent products outermost, thus being of the form Vﬂfﬁf(?, =1 (5()) We will call ﬁl
the logical hypotheses of the constructor and Y. the first-order variables of the constructor.

We suppose that inductive families we consider are neither recursive nor mutually recursive,
i.e. the relation defined by the use of an inductive family in the logical hypotheses of another one
is well-founded.

Here we give a set of examples of inductive definitions defining standard connectives :

O

T,AFB I,P,BFG
T+4-B ®* T.pPoBrG Lo
T,A,BsCHB T,C+HG
T,(A5B)—CFG
'k Az I,\Vz.Alz], At FG
I FVz.Alz] IV Alz] FG
T, (Vz.A[z])=B +FVs.A[z] T,BFG
T,(Vz.A[z])=BFG
_)
CHE,B D) o ALED.7) FG)
CHI(P) ¢ LI(P)FG
T, (V7. H,(B, 7))~ B} G
I,I(P)=»B+G

L——

IN—

LI—

Figure 1: The LJTI calculus

(A, (A, B),{pair : A-B—A A B})
(V,(A,B),{inj; : A»AV B;inj, : B5AV B})
(L0, 1)

(T,0,{triv:T})
(3,(H[_]),{witness : Vy.H [y] »3z.H [z]})

The A and V inductive families have two propositional parameters of arity 0, T and L have
none, and 3 has one propositional parameter of arity 1.
Given those definitions, the meaning inductive formulae is that

1) & @7 \ His(B.7)

Let us see somme more exotic examples : many specific predicates may be defined by non-
recursive inductive definitions. For example we express that A satisfies the excluded-middle prop-
erty using:

(Dec, (A), {istrue : A—»Dec(A); isfalse : (A—1)—Dec(A)})

Another example could be to express the Euclidean division of two natural numbers. That is,
Eucl div(a,b) gives both witnesses ¢,r and proofs of r < b and a = bg + r. Eucl div has two
first-order parameters of arity O :

(Eucl _div, (a,b), { EDintro : Vg.¥r.(r < b)—(a = bq + r)—Eucl div(a,b)})

2.2 The LJTI sequent calculus

From now on we will assume that ¢ ranges over first order terms, z,y over first-order variables
A...G over arbitrary formulae, P, over atomic formulae, z,y over first-order variables, and
I,IV,T" over multisets of formulae. When we write P [z] we assume that z is not free in P [y] if
x # y, and that any variable free in ¢ is free in P [t] (we allow the use of a-renaming in P).

Using the definition of inductive formula above we define the LJTI sequent calculus in figure
1. Please note that using generic inductive definitions we have a smaller number of rules in our
system than in LJT. Note that in axiom and La— rules P must be an atomic formula.

In the right introduction rule, ¢ ranges over the constructor indices, so there is one such rule
for each constructor, and in the left introduction rule existential variables ﬂz must follow the
eigenvariable condition, and so must x in the RV rule. This means z and E) must not occur free
in T (and in G and P for 77).

For instance, if we try to apply this scheme to L, we get the following rules :

-G

LL §154FG

(no RL rule) I,L+FG Li—

You can check that the rules for L match those for the standard connectives in [5] except for LL
which is a special case of weakening that is invertible (see lemmata 1 and 2, rule vi). For Dec we
have :

- LAFG T,A5LFG
ecy [, Dec(4) -G o

rrA
I' FDec(A)

T'FA—> L

D = L2 ==
RDect i Dec(a)

IA-C,(A—»1)=»C+G
I,Dec(A)—»C +G

LDec—

For Eucl div we would get :

'kFr<b Fl_a:bq+TREucl div Lr<ba=bg+r+tG
T FEucl div(a,b) - T, Eucl div(a,b) FG

LEucl div

I,VgVr.(r <b)—=(a=bg+r)—»A+G
T, Eucl div(a,b)—AFG

LEucl div—

In the LEucl div rule ¢ and r mustn’t be free in I" or G nor in a or b.

We say that a rule is admissible in LJTT if for every instance of the premise(s) that are
derivable in LJT'I, we get a derivation of the conclusion in LJT'I. When there is only one premise
in the rule, we say that this rule is strongly admissible if the derivation of the conclusion can be
made shorter or of equal height than that of the premise, the height being 0 for an axiom and the
maximum of the heights of the derivation of the premises plus one otherwise.

3 Properties of the LJTI calculus

3.1 Inversion lemmata

We first give a series of lemmata about invertibility of rules, and admissibility of weakening.

Lemma 1 The following rule is strongly admissible in LJTI.
I'[z] F G[z]
L[t FGt]

Proof : By structural induction on the derivation tree, renaming eigenvariables by induction hypothesis.

Theorem 1 The Weakening rule below is strongly admissible in LJTI.

r-G

rrrre W

Proof : By structural induction on the derivation tree, renaming eigenvariables if needed, using lemma 1.

Lemma 2 The following rules are strongly admissible in LJTI :

I,Vz.A[z] 5B +G

-A-B . (iv)
[,AFB (i) I'BrG
I,P5BFG . I,I(P)FG)
T.BFG (1) (P,)G '
T,(C—»D)-»BFG (i) I, I(P)=»BFG _
rare LOREG Denre

Proof : By induction on the height of the derivation, using lemma 1 to rename eigenvariables and for

rule v

3.2 Admissibility of contraction
We first show that the generalized axiom rule is admissible in LJT'I, and we obtain the admissibil-

ity of contraction which allows us to show the admissibility of generic L— rules used in standard

sequent calculi.
To perform induction on formulae, we define a notion of weight which is given below :

wt(P) = 1, P atomic

wt(A—=B) =1+ wt(A) + wt(B)
wt(Vz.Az]) =1+ wt(A4 [z])

wt(I()) = 3 wi(C(P))

if C;(P) : Vil HAT, 1)~ I(F) then
wH(C(P)) = (2% length(F) + 3 1+ wi(Hy, (7))

J
This weight is lower than the one in [5] in the case of disjunction, but in fact Dyckhoff’s proof
is valid even with our weight. The essential fact about this weight is that the rules about inductive
formulae applied upward replace their principal formula with strictly lighter formulae or remove
them, or they have no premise.
In our proofs, Ind steps mean that we use the induction hypothesis, we use the double bar to
distinguish those steps from the others. Admissible rules are labeled by the lemma in which they
were introduced.

Lemma 3 Sequents of the following form are provable in LJTI :
1. T, A+ A (generalized aziom)
2. T,A,A—»BF B (modus ponens)

Proof :
1. We prove by induction on wt(A) that for any I we have I'; A+ A by cases on the shape of A.

o If A is an atomic formula, the judgement is an aziom.

o If A= P—B with P an atomic formula then it comes :

Ind
T,P,BFB
T.P,PoBFB 107

T,PoBFP—B

o If A= (C—D)—B we have :

Ind
I'D—»B,C—»DF+C—D
. lemma 2(i) Ind
I,D—B,C—»D,C+D TI,B,C—»DFB
r,(C-»D)-»B,C—»DFB
T,(C=D)—BF(C—D)—B 7

L——

e If A =Vz.B|[z] then we have :

Ind
T Bl "Bl
I',Vz.B[z] F BJy]
I',Vz.B [z] FVz.B [z]

Lv
RV

o If A= (Vz.C[z])—B we have :

Ind Ind
I, (Vz.C [z])=»B,Vz.C[z] FVz.C[z] T,B,Vz.C[z]+B
I, (Vz.C[z])=»B,Vz.C[z] B
T, (Vz.C[z])=B F (Vz.C [z])—B

IN—

o If A = I(?) then for all constructors C; and logical hypotheses H;; we have by induction

hypothesis T, ﬁz(?, E?) F Hq;,j(?, @)), so for each i we have T, ?,(?, ﬂz) F I(?) by RI;. Since
we can choose Y. that do not occur free in T nor in J we can use LI to obtain I, I(T) FI(7).

o IfA= I(?)—>B, B being an arbitrary formula, for any constructor Cr and set of formulae A
we have by induction hypothesis :

— —
T, A, Hy(P, %) =B+ Hy(V, %)~ B
Using lemma 2, Tule i for each Hy ; we get :
— —
F7 A, Hk(?y Z_k))—>B, Hk(?: Z_k)) +B

Now if we choose A = {Vﬁ.i(?,ﬁ)—)B}i,A' and A’ is_;‘,he sequence of formulae obtained
by instantiating one or more of the Ec) by the Zi in Vﬂ.Hk(?,ﬁ)—)B. We can use LY for
each z,; with that formula and the formulae in A’ and we obtain for each constructor Cy, :

L, (V3! HA(P, 7))~ B}, Hi(¥,5) - B
We can choose the z}, so that they are not free in T’ 7 or B and from there we have :
—)
T, (V5 H(¥, 7))~ B}, Hi(P. 7) - Bhe
L (V3 HL (7,)~ B}, I(P) - B

I,I(¥)»B,1(¢)FB
I,I(P)—»B+I(P)-B

R—

2. By1,T',A—»B+ A—B is derivable and so is ', A, A—B + B by lemma 2, rule i.

Lemma 4 The following rule is admissible in LJTI :

I'+D T,B+E
T,D>BFE

Proof : By induction on the height of the derivation d of the first premise and by cases on its last step.

If it is by an aziom then D is atomic and T =T, D. We have :

I',D,B+E

—— 0 e
' D,DSBFE

If it is by R— then let D = D1—Dy :
I,D: b D,
T.D;»B,D:FD; " T,B+E
I',(D1;—Dy)—+B+E

L——

If it is by La— then T =T', P, P—»C. We have :
I',P,P—C,B+E
: lemma 2 (ii)
I',P,CFD TI',P,C,B+E
I',P,C,D>BFE
I P,P>C.DSBRE °

Ind
_)

If it is by L—— then I'=I", (F—-G)—H. The premises are I',G—H,F +G and I",H,B+E.
', (F-G)—»H,B+E
: lemma 2 (iit)
', GH,F FG I''H+D T',H,BFE
T GoH F,.DoBFG I'H D>BFE
I, (F»+G)—»H,D—»B+E

Ind
L——

If it is by RV then D =Vz.C[z] :

I'FVz.Cx]
T,(V2.C[e)) =B FVa.Cle] " T,BFE
T, (vz.C[z)>BFE

IN—

If it is by LY then let T =T",Vz.C [z] :
I',Vz.Clz],B+E
' Vz.Clz],C[t)]FD TI',Vz.Clz],C[t],BFE
', Vz.C|z],C[t], D-B+E
I',Vz.Clz],D»B+E

Ind

If it is by LN—> then let T =T", (Vz.G [z])—>C :

', (Vz.G[z])—»C,B+E
: lemma 2 (iv)
T, (Vz.G [z])=C FVz.G [z] I,C+D TI,C,B+E
I, (Vz.G [z])—=C, DB FVz.G[z] I,C,D—BWVE
T, (Vz.G[z])»C,D—B}FE

Ind
LY—

If it is by RI; then let D = I(7) :
%
{TFH;;(¥,t)}; T,BFE
VR, BB, () 9BEE
some
vy H(F,7)~>B+E

f —
T {Vyl.He(P,yk)—+B} - E
I,I(§)»BF+E

some Ind

o Ifitis by LI then T =I",I(P). We have for every constructor C; :
', 1(7),B+E

lemma 2 (v)
I 7(P, 7)) +D T, B(F, 7). B+E
', H\(7,7), D=BFE

Ind

If we choose E) so that they are not free in I',¥,B or E, we use LI and get I",I(?),D—)B FE.
e Ifitis by LI then T =T", I(7)—C. We have :
I, 1(P)=»C,B+E
. lemma 2 (vi)
' (V. B(P.7)~C}: FD T (Vi Hi(B, 7))~ C}:, BFE
', (vt . HF,5)=C}:, DB FE
I, 1(p)-»C,D—-B+E

Ind

LI—

Lemma 5 The following rule is admissible in LJTI.

T,(C—»D)—»B\E
T,C,D—B,D>BFE

Proof : By induction on the derivation height, the only interesting case being that when (C—D)—B is
principal. In that case, we have :
I''B+E
I,C,D»B+D T,C,D-B,B+E
I,C,D—»B,D-BF+E

lemma 4

Theorem 2 The Contraction rule below is admissible in LJTI.

I'AJAFG
711’14 e Contr

Proof : By lezicographic induction on wt(A) and the height of the derivation of the premise. If A is not

principal in the last step deriving the premise, we use the induction hypothesis on the premise(s) of this
step and apply the rule on the contracted premise. If A is principal, we do a case analysis on the shape of

A.

o If A is an atomic formula P then the last rule is an aziom and G = P so the conclusion is an
aziom.

e Jf A= P—B with P atomic, we have :
T,P,B,P>BFG
. lemma 2 (i1)
I,P,B,B+G
T,P,BFG
T.P,PoBFG Lo

Ind

e If A= (C—D)—B then we have :
r,C—D,(C—»D)—»B,C+D

! lemma 5 T,B,(C»D)-B+G
r,C—D,C,D—B,D—B,C +B : lemma 2 (iii)
: Ind (3 times) I'B,BFG
T, D—B,CFD T.5rG ™

T,(CoD)—BFG L==

10

e If A =Vx.B|x] then we have :

I'Vz.B|[z],Vz.Bz], B[t]F G
I,Vz.B[z],B[t] FG
I,Vz.B[z]FG

Ind

o If A= (Vz.C[z])—B then we have :

I, B, (Vz.C[z])»B+G
lemma 2 (iv)
T, (Vz.Clz])—B, (Vz.C [z])—»B FVz.C [z] I''B,B+G
T, (V2.C[z]) =B V2.0 |a] Ind =g Ind

I, (Ve.Clz])=»BFG

LY—

o If A= I(7) then we have for each i:

0,13, BT, 7)) FG
lemma 2 (v)
T, H(P, 7)), H(P,) -G

. some Ind

rB(F 7 FC

Since the E’ are not free in T or 7 nor in G, we can use LI to get P,I(?) FG.
o If A=I(P)—C then we have :

T, 1(F)=C, V5. H.(7, 7)) —=C}: F G
: lemma 2 (vi)
T, (Vi Hi(B, 7))~ Chi, (VB HA(P, 1) —C}i H G
: some Ind
I,V BT, 7)=C}i F G
I,I(P)—»CF+G

Which closes our proof by induction.

Lemma 6 The following rule is admissible in LJTI :

[LA3B+A T,B+G
IA-B+FG

Proof :
I,BFG
I,A3B+A T,ASB,BFG
I,A3B,A>BFA lemma 4
T.AsBrG Comtr

This last lemma shows us that the LJTI calculus is complete with respect to the LJI calculus
where the axiom rule would be the generalized one and all left arrow rules would be replaced by
the one from the lemma.

3.3 Cut-Elimination theorem

The proof outline follows that of [5] except that with our notion of inductive formula there are
fewer cases to consider.

11

Theorem 3 The Cut rule below is admissible in LJTI.

THFA TV, AFE
I,T'FE

Proof : By lexicographic induction on wt(A) and on the sum of the heights of the derivations of the

Cut

premises :
If the first premise is an aziom, let T =T", A :
' AFE
", I'A+E
If the second premise is an aziom, either E € I' or A= E and the conclusion is an aziom.

Otherwise, neither premise is an aziom.
If A is not principal on the left, by cases on the last step of the left derivation :

o La—
I"PBFA
I".P,PSBFA 7 I ArE
", P,P>B,I'FE Cut
becomes :
I P,BFA T',A+E
" P,B,T'+FE LC“t
. P,P>B,I'FE "%
o L——
" (C-D)—»B,C+D T",B+A L
" (CoD)—=BFA 77 I AVE
I”,(C—»D)—»B,T' FE Cut
becomes :
r",(C—D)—B,C+D I'",B-A T',A+E
I (CoD)»B.C.T'rD "V I"BT'FE Cut
I, (C=D)>B,I' FE -
o LV
I Ve.Dz],D[t] - A
I Ve.Dz] F A ' A+E
I Vz.D[z],I' FE Cut
becomes :
I'",Ve.D[z],D[tj]FA TI',A+E
T veDa. D@, 0 B %
I Vz.D[z],I' FE
o IV—
I Vz.D[z] »C FVe.D[z] T/,CFA oy
I Ve.D[z] 5CF A 7 I AFE
I ,Vz.D[z] »C,I' FE Cut
becomes : . ,
I, Vz.D[z] =C FVz.D [z] I"CFA T',AFE .
" V2.D[z] »C, T’ FVz.D [] " C,T'+E ut
LY—

I, Vz.D[z] »C,T' - E
o LI : We have
(T, B(F, 7)) F A);
" I(P)FA I'A+E
", 1(P),I' +E

Cut

12

For each i we use the induction hypothesis :
I H(P,7)FA T, AFE
", (7, 7). I FE
After renaming i if they occur free in I" or E, We use LI and obtain T, I(7),T" FE.
o LI

Cut

T, (Vg (P, 7)) —»C}i F A i
" I(F)=CFA T T AvE

", 1(7)=C,I' FE Cut
becomes :
I (Vi H(F,5)=Cli FA T',AFE o
U

(Vi (P, 7)) ~C}i,I' FE
", I(P)—=C, I +E

LI—

If A is principal on the left and not on the right, by cases on the last step of the right premise derivation :

e R—
I',A,B+C

I'FA I',AFB—C
I,I' - B—C

Cut

becomes :
T+A T',A,BFC
I,I',BFC A
T.,T'FB—C

Cut

o La—
A # P because it cannot be atomic, being principal in the non-aziom last step of the left derivation.
I'",A,P,C+E
A T A P,P>CFE
r,v",P,P-CVE

La—
Cut

becomes :
'-A T, A,PCV+E
Cut

DI".PCFE
_)
I, P,PCFE

I, A, (C—»D)—»B,C+D T" AB+E
THA I A (C—»D)»BFE
I, T, (C—»D)»B+E

L——

Cut

becomes :

'A T" A (C—»D)-B,C+D I'+-A TV,AB+E
m Cut m Cut
T,T”,(C—D)—B,C +D I,T",BFE

I, T",(C—»D)»BF+E

L——

', A+ By
THA T/,AFVe.B[z]
I, T’ FVz.Bz]
becomes (renaming y if it occurs free inT') :
A T',AFBly
I,T' - BJy]

Cut

Cut
RY

13

I, ANz.Blz],B[t|- E
TFA T",AVz.Blg|FE
T,T" Vz.Bz]FE

Cut

becomes :
A T" AVz.Blz],B[t]+E
I,I",Vz.B[z],B[t]F E
I ,Vz.B[z] - E

w

o IV—
I, AVz.D[z]—»C +Vz.D[z] T",A,C+E

THA I AVz.D[z]»C+E
I, Vz.D[z]-C+E

ILN—

Cut
becomes :
A T AVz.D[zr]»C +Vz.D[x] 'A T, ACFE
T Cut — Cut
I, I Vz.D [x] =C +Vz.D [x] I, CHE
I, Vz.D[z] -C +E

LN—

e RI; : We have N
{Flv AF Hi,j (?1 tl)}J
HA ' AFI(P)

L, -I(7)

For each j we use the induction hypothesis :

RI;

Cut

TFA T, AFHi,;(7,%)
1'171'1/ }_HZ,J(?vﬁ)

Cut

And we use the RI; rule to get T,T' +I(7).
o LI
(I, A, Hi(7.7) - B):
THA I'" A I(P)FE
O,I" I(P)FE

For each © we use the induction hypothesis :

Cut

THFA T, AH(F.7)FE
0,0, H(7, %) - E

After renaming E) if they occur free in T, we use LI to get T, T, I(?) FE.
o LI~

Cut

I, A V7B, 7)—C)i F B
THA ", A I(P)—»C+E
I, I(P)»C+E

Cut

becomes :
THA T A {VZ.H (T, 7)~Ch FE

I,I", (Vg Hi(P,7)~C}i F B
L,T", I(P)—C+E

If A is principal in both premises, by cases on the shape of A :

e A=P—B
I,P-B I'\PBFE
TrP—B *7 T, PP—BrE
I,T',P-E Cut

14

becomes :
I,P+B I',P,BFE

I,I',P,P+-E
I,I',P+E

Cut
Contr

e A=(C—D)—>B
I,(C—D)FB I',(C»D)»B,C+D I',B+E

TF(C—D)=B I’ (C=»D)—»BFE

L——

IT'FE Cut

becomes :
lemma 3, (1)
D,C+D

DrCcop

I,C—»DFB
I,D-B
I'-D—B

Cut

I',D—»B,C+D

I,I',C+D

——————— R

I, T"FC—D I C—DFB Cut

IL,I,T'+B I',B+E
I,I,I'.T'+E

I,T'+E

R—

Cut

Cut
Contr
o A=Vz.Blz]
T'FBy I'.Vz.B[z], B[t] - E
TFVz.Blz] V' T',Vz.Blg]FE
I, T'FE

Cut

becomes :
'+ Bly]

‘lemma 1 I'FVz.Blz] I',V2.B[z],B[t|]FE

I' B[t I,I",Vz.B[z],B[t| F E
I,I,T'+E
I,I'+E

Cut

Cut
Contr

o A= (Vz.D[z])—B
I,Ve.D[z] - B I',(Vo.D[z])»B FVz.D[z] I',B+E
TF(Vz.Da))=B v I',(Vz.D[z]) =B F E

I,T'FE

LY—

ut
becomes :
I'+(Vz.D[z])»B TI',(Vz.D[z])=»B +Vz.D[x] Cut
I,T" +Vz.D|z] I,Ve.D[z] B Oyt
I,T,' FB I',B+E
IO, T'FE
T FE

Cut
Contr

e A=1I(7P)
T-I1(7) ¢ ' I(P)FE

' FE Cut

becomes T H(7, 7)) FE
. lemma 1
Cra,;@ 1)y UH@EE
I T'FE

some Cut

15

e A=I(P)—B

I,I(P)FB ', (Vi Hi(P,) =B} F E
TFI(p)—B ', 1(F)=BFE
I,T'FE Cut

For each constructor index © we have :

I,I(P)FB
¢ lemma 2 (v)
I H(F,7) - B
: some R—
I'+H(7,7)~B
: some RV
TV H(F, 7))~ B

For each constructor, we do a cut on Vﬁ.i(?,@-})—)B with F',{Vﬁ.ﬁ:(?,ﬂg)—)B}i FE (the
second premise). We get T',...,I',T' - E and finally we do some contractions on T.

This closes our proof by induction.

This gives us the cut-elimination property for LJTI by removing the topmost cuts first.

4 Embedding our calculus in a proof-search procedure

4.1 Basic strategy

To perform bottom-up proof-search using our calculus, we use bounded depth-first search, using
our bound on non-decreasing rules.

We first notice that we can do without the atomicity condition in Az and La— rules, since
those generalized rules are admissible : for Az see lemma 3, rule 1, and for La— use lemma 3,
rule 2, cut and contraction. This can speed up proofs by avoiding the destruction of two opposite
occurrences of the same compound formula followed by as many axiom rules as the number of its
subformulae.

In order to refine our strategies we have separated the inductive families in classes. First
we distinguish between first-order inductive whose constructors may have first-order (quantified)
variables, and propositional inductive families whose constructors are propositional formulae, and
among them we have three classes :

e Those with no constructor are the absurd class (for instance L)
e Those with one constructor are the conjunctive class (A, T,...)
e Those with more than one constructors are the disjunctive class (V,Dec,...)

Of course the axiom and left-absurdity rules are to be used as soon as possible. Moreover, it is
fundamental that we try to apply the generalized La— rule before trying any LI— rule in order
to shortcut that part of parallel destruction.

This calculus also has a lot of invertible rules which must be used before the non-invertible ones,
because there will be no need to backtrack if the proof fails next. Notice that for the conjunctive
class, the right introduction rule is invertible.

Some rules like LV— and L—— are only partially invertible, so we first try to prove the
non-invertible premise and if we succeed there will be no need to backtrack if the second premise
fails.

The last point is that some rules generate more than one subgoal to be proved, so we try to
delay them as much as possible.

16

4.2 Instantiation strategy

When all else fails we try to apply instantiating rules LV and RI, with I a first-order inductive. To
use those rules some terms ¢ must replace the quantified variable(s). To find these terms, we use a
well-known notion of polarity (see for instance [10]) to define the set of signed atomic subformulae
SF(T FG) of a sequent by induction on the structure of its formulae.

O

FH(4) =)=

(A4)=-A
(A—B) =
(D
(

(A atomlc)
f() S}' (A) USF*(B) S (YUSF (B)
SFt(Vz.P[z]) = SFH(P[?.]) =
(I U

SFFU(P) = Uy, SFHH (B, 50) S

“hOhO»

Vz.P |z

[
P) =

_) .
(where 7, and ?;), are fresh metavariables)

< 7))
F(Hiy (B, 70))

~

7:
‘7_'
j.'
‘7_'

SFIrG) =SFH@G U | SF (

Hell

We remark that signed atomic subformulae in premises of rules are also in the conclusion,
maybe in a more general form (with some terms replaced with metavariables). This can be seen
as a kind of subformula property in our calculus, and in the end we only need pairs of matching
subformulae of opposite signs used in axiom or La— rules, and inductive formulae with terminal
rules : negative absurdity or positive tautology !. We call those particular subformulae trivial
subformulae, and they are also necessary in a derivation.

When we want to use a trivial subformula under a quantifier or an inductive definition to prove
our sequent, we just need any term ¢ to instantiate our quantified variable, in order to bring that
trivial subformula to the top and apply a terminating rule, so we create a goal stating we have
a term to instantiate our variable and ask Coq to use trivial or auto to solve that non-logical
goal. We have to use this trick because in Coq, unlike first-order logic, the quantification domain
may be empty, and this emptiness is undecidable in general (type inhabitation is what Coq is all
about).

Otherwise we try to build matching pairs of atomic subformulae, and that we do by us-
ing first-order unification between atomic subformulae of opposite sign, and by looking at the
terms associated to the quantified variables in the unifiers, for example, if we have to prove that
Vz.P[z] F 3y.P[f(y)], we have the signed atomic subformulae —P [?;] and +P[f(?2)]. And we
have {?1 — f(?2)} as a unifier. So we will try to use a term of the form f(?2) to instantiate ?;.

Now, we can get three different kinds of terms to instantiate our variables: ground terms
(without metavariables), open terms (containing metavariables but not outermost), or trivial terms
(equal to a metavariable).

o If we get ground terms we just use them so, turning Vz.P [z] into P [t].

e If we get open terms, we specialize our quantified formulae: in our example with f(?2), we
turn Vz.P [z] in Vy.P[f(y)]. For positive inductive formulae we do the same and we use 3
to quantify over open positions in the term. For instance if we consider the following goal :

I,VzNy.y =2 x f(y,z) + 1+ Eucl_div(a,2)

The unification algorithm will yield f(a,?,) for ¢ and 1 for 7, and the specialization scheme
will give the following goals to try to prove :

D,VzNyy=2x f(y,z) +1+F3z.a =2 x fla,z) + 1

CVeNVyy=2x f(y,z) +1+3z.1 <2

1We call tautology any propositional inductive family with a constant constructor

17

e If we get trivial terms, it means that there is a formula of opposite sign that unifies with
this one and that this one doesn’t need to be specialized, this is the case for example in
Ve.P[z] - 3y.Ply]. In that case, we proceed like we do with trivial subformulae and we
get an additional Coq subgoal about domain inhabitation. Having destroyed our quantifier,
we can hope the search procedure will finally bring the matching subformula in outermost
position.

You can argue that our specialization scheme leads to non-termination, but in fact the calculus
itself doesn’t terminate so we just place a counter on the use of those rules plus the LV— rule,
and we give a bound to our search procedure.

4.3 The firstorder tactic

As announced earlier, this proof-search procedure is available in Coq. Since our experience in
maintaining the tauto/intuition tactic showed us that a lot of time was spend doing pattern
matching on contexts (see [2]) we decided to avoid doing it too often.

So we decided to work at the ML level with a persistent data structure reflecting the logical
content of the current subgoal, i.e. all logical hypotheses stored in a priority queue together with
their shape and the set of their atomic subformulae.

Since we are keeping track of the head-form of our formulae, we can work modulo constant
unfolding and fe-reduction at a very low performance cost. The unification algorithm also does
some reduction, but it is basically first-order unification since we are not supposed to have any
variable at the head of an application.

This implementation choice gave very encouraging results when compared to tauto. In some
propositional examples firstorder solved the goal in less than 1 minute where tauto ran overnight
without giving a result. For example try

(AO(—)Al)—)(Al (—)Az), (Al(—)Az)—)(Az(—)Ao), (Az(—)Ao)—)(A()HAl) = A()(—)Al

with a bigger odd number of variables.

The firstorder tactic is available in the current version of Coq and can be used like tauto.
A global integer option may be set using the command (Set Firstorder Depth n). This option
is the maximum number of non-terminating rules allowed in a branch of the proof, so increasing
it may allow your goal to be solved at the cost of an longer search time.

However, in the current state, all propositional inductive definitions are supported but first-
order ones are only supported when they have one constructor with only one first-order variable.
We are planning to fully support first-order inductive families in the near future.

5 Conclusion & Future Work

We have presented a contraction-free sequent calculus to deal with first-order intuitionistic logic
in the Coq proof assistant where most connectives are defined as inductive families. We have
shown that this contraction-free calculus enjoys admissibility of contraction and cut-elimination,
thus establishing a weak form of subformula property. We have shown how this calculus was
implemented as a proof-search tactic in Coq.

Although our inductive formulae do not have more expressivity than standard first-order in-
tuitionistic logic, they give a more uniform reasoning framework. From a more practical point of
view they allow users to define their own connectives without having to consider if they would be
supported by such or such automatic tactic.

We are currently trying to extend our inductive definitions to all non-recursive ones that Coq
supports, and that means reasoning with equality the same way the inversion tactic does.

18

References

[1] G. Bellin and J. Ketonen. A decision procedure revisited: Notes on direct logic, linear logic
and its implementation. Theoretical computer science, 95(1):115-142, 1992.

[2] D. Delahaye. A tactic language for the system Coq. In Proceedings of Logic for Programming
and Automated Reasoning, volume 1955 of LNCS/LNAI, pages 85-95. Springer, November
2000.

[3] A.G. Dragalin. Mathematical Intuitionism: Introduction to Proof Theory, volume 67 of Trans-
lations of Mathematical Monographs. American Mathematical Society, Providence, Rhode
Island, 1987.

[4] R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic
Logic, 57(3):795-807, 1992.

[5] R. Dyckhoff and S. Negri. Admissibility of structural rules for contraction-free systems of
intuitionistic logic. Journal of Symbolic Logic, 65:1499-1518, December 2000.

[6] J.-C. Filliatre. A decision procedure for direct predicate calculus: study and implementation
in the Coq system. Technical Report 96-25, LIP, ENS Lyon, February 1995.

[7] J.Ketonen and R.Weyhrauch. A decidable fragment of predicate calculus. Theoretical Com-
puter Science, 32:297-307, 1984.

[8] S. C. Kleene. Introduction to metamathematics, volume I of Bibliotheca Mathematica. North-
Holland, Amsterdam, 1952.

[9] C. Kreitz. The Nuprl Proof Development System, Version 5, December 2002.

[10] C. Kreitz and J. Otten. Connection-based theorem proving in classical and non-classical
logics. Journal of Universal Computer Science, 5(3):88-112, 1999.

[11] C. Munoz. Démonstration automatique dans la logique propositionnelle intuitionniste. Mas-
ter’s thesis, Université Paris 7, September 1994.

[12] S. Schmitt, L. Lorigo, C. Kreitz, and A. Nogin. Integrating connection-based theorem proving
into interactive proof assistants. In R. Gore, A. Leitsch, and T. Nipkow, editors, Proceedings
of International Joint Conference on Automated Reasoning, volume 2083 of LNAI pages
421-426. Springer, 2001.

19

