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1 Introduction

Although formalized since the beginning of mechanized deduction, the three concepts of proof
search, proof representation and proof check are always of fundamental interest, both from the
theoretical point of view and for their applications, in particular concerning computer security
and dependability. These three notions have drawn independently much attention, but are closely
related and this work addresses them as a whole, focusing first on equational and then on inductive
proofs.

The conceptual bridges joining proof search, representation and check are the deduction modulo
and the rewriting calculus. Deduction Modulo [DHKO03] is a presentation of first-order logic allowing
to identify the notions of computation and deduction and their interactions. This fundamental
difference between computation and deduction has been identified since at least one century by
Henri Poincaré and it plays a fundamental role in today proof theory, because the status of what
we search for and what needs to be computed should be identified and treated appropriately, in
order to get proofs where only useful (and often difficult) parts are described.

Indeed, we are today able to compute billion of numerical operations per second and symbolic
systems like ELAN [KMO1] are able to execute several tens of millions of computational rewrites per
second. Building these computations as explicit parts of proofs is hopeless and, most important,
uninteresting. Deduction modulo is a way to keep such computations into account.

The rewriting calculus [CKO01], has been introduced to combine the capabilities of standard
rewriting and of the lambda calculus. It relies on the matching paradigm as a fundamental way to
capture the structural form of the considered objects. We are using it in this work as a powerful
means to represent proofs in a compact way.

The necessity to check a proof as such, and not the proof search, has also been identified since
a long time, and the now well established use of proof-assistants like Coq makes this routine. It
allows us to (mostly) forget about the believing way, in which the proof assistant just accepts
new statements produced by the proof search side and to switch to the skeptical or the autarkic
ways (using the terminology of [BB02]). In the skeptical way, the proof search engine must provide
with each of its results a proof object checkable by the deduction system. In the autarkic way
the proof assistant learns to itself proof search, by incorporating for instance some verified term
rewriting engine or model-checker in the system itself, using a reflection technique to be more
efficient [Har95, Bou97].

This paper presents an on-going research project on theoretical and practical issues of com-
bining rewriting based automated theorem proving and user-guided proof development, with the
strong constraint of safe cooperation of both. In practice, we instantiate the theoretical study on
the Coq proof assistant and the ELAN rewriting based system.

A first approach of cooperation between Coq and ELAN is described, where Coq delegates
equational proofs by rewriting to ELAN that builds a proof term, while doing the proof. This
proof term is then returned to Coq and checked. In the context of proof by structural induction
performed by Coq, this technique is currently experimented for proving the base case and the
induction case by rewriting. However proofs by Noetherian induction performed by rewriting are
much more powerful than structural induction. A second approach, which is yet on-going work,
is then presented. Based on the description at the proof theoretical level of proof by Noetherian
induction provided by the deduction modulo framework, we show how to use narrowing in order
to perform proof search for an inductive proof by rewriting, and give hints to build a proof term
that can be checked by Coq. In order to check the proof, additional proof obligations to justify
the Noetherian induction principle in Coq are also needed.

The structure of the paper is as follows: Section 2 gives the general context of the cooperation
between Coq and ELAN as an instance of the skeptical approach. Section 3 presents the notion
of proof terms, their representation in po-syntax and their association to rewriting derivations.
Section 4 shows how Coq and ELAN actually cooperate in proof construction and proof checking,
for rewriting proofs and for proofs by structural induction. Section 5 relates the deduction modulo
framework and Noetherian induction, gives a proof theoretic presentation of induction by rewriting,
and shows how to perform the induction step using an adequate notion of narrowing. Section 6
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briefly sets what are the needed steps for making ELAN able to perform delegated proofs by
induction and for making Coq able to check these proofs. Then related works and further goals
are mentioned in the concluding Section 8.

2 Making Coq and ELAN cooperating

In [NKKO02, Ngu02a], we consider an instance of this general problem that consists in using
rewriting techniques to tackle some of the computations needed by a proof assistant. The approach
was a contribution to the skeptic way to integrate computation and deduction. Its concrete realiza-
tion was to make cooperating the Coq proof assistant, based on the calculus of constructions, with
the ELAN deduction and computation system, based on the rewriting calculus. From a practical
point of view, this amounts on one hand to providing for Coq a class of decision procedures using
term rewriting techniques, and on the other hand to using Coq as a proof checker for ELAN.

Coq is a proof assistant based on the Calculus of Inductive Constructions, the Calculus of
Constructions [CH88] with inductive data types [PM93]. Proofs in Coq are constructive and by
the Curry-Howard isomorphism, logical propositions are interpreted as types. A proposition is
provable if and only if, when interpreted as a type, it is inhabited by a term which is a proof term
of that proposition. The proof terms generated in deduction steps are type checked by Coq kernel.
This approach has strong advantages: correctness is ensured by the reliability of a tiny kernel, and
a certified (functional) program can be extracted from the proof of its specification. However, this
mechanism requires to keep all information concerning each deduction step in the proof term that
is often huge.

ELAN provides an environment for specifying and prototyping deduction systems in a language
based on rewrite rules controlled by strategies [BKKMO02]. It offers a natural and simple logical
framework for the combination of the computation and deduction paradigms. It supports the design
of theorem provers, logic programming languages, constraint solvers and decision procedures and it
offers a modular framework for studying their combination. ELAN’s evaluation mechanism is based
on rewriting. In ELAN a rewrite rule may be labeled, may have boolean conditions, and matching
conditions. The evaluation mechanism also involves backtracking since in ELAN, an evaluation
step may have zero, one or several results. One of the original aspects of the system is to provide
a strategy language allowing the programmer to specify the control used for the rule applications.
This is in contrast to many existing rewriting-based languages where the term reduction strategy
is hard-wired and not accessible to the designer of an application. The strategy language offers
primitives for sequential composition, iteration, deterministic and non-deterministic choices of
elementary strategies that are labeled rules. From these primitives, more complex strategies can be
expressed. ELAN’s formal foundation is based on rewriting calculus [CKO01], also called p-calculus,
a common generalization of lambda-calculus and of term rewriting.

The motivation of combining proof assistants based on constructive type theory and automated
provers based on rewriting is related to the definition of equality in proof assistants. Definitional
equality is not easy to extend since it is in general difficult to add new rules in the kernel of the
proof assistant, while keeping the strong requirements of subject reduction and decidability of
type checking. So often, logical equality is defined as a theory and equality proof terms are built
and later checked by the kernel. However this second option also raises some problems: efficiency
is low and the size of generated proof terms could be prohibitive. Moreover, this technique does
not easily generalize to associative commutative (AC for short) theories, frequent in practice, but
where the exponential complexity of AC-pattern matching is an additional obstacle to efficiency.

The approach followed for equational proofs relies on a normalization tactic in associative and
commutative theories written in ELAN. It generates a proof term in the rewriting calculus, which is
then translated into a proof term written in the Calculus of Constructions syntax that can finally
be checked by Coq to get the proof of the normalization process. The advantages of this approach
are to take benefit from the efficient (conditional AC) rewriting performed by the ELAN compiler,
and to ease the size reducing transformations of the proof terms before sending them to Coq.

Actually this work goes beyond the specific use of Coq and ELAN. It raises the general problem
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of incorporating equational reasoning, and more generally decision procedures, in proof assistants
based on type theory, in a reliable and efficient way. Reliability is handled here through the concept
of proof term, that contains all information about the proof and is exchanged between the two
systems. Built by ELAN during the rewriting proof construction, it is then checked by Coq or by
the proof assistant.

3 Construction of proof terms

In a proof term, the information needed for each proof step has to be recorded in the most com-
pact way. While for syntactic rewriting, the rewrite proof term can be reduced to a simple trace of
rewriting derivation, which may be represented as a list of pairs (rulename, position_of redex),
the situation is different for AC rewriting: in this case, the proof term needs to include the
used substitutions, since AC-pattern matching is not unitary, and moreover the subterm posi-
tion is no more appropriate to identify a redex. For example, given the rewrite system, R =
{ (#+(—z))+y — y } where the symbol + is AC, the term (a+b)+ ((—a) + (—b)) is rewrit-
ten modulo AC by Peterson and Stickel’s rewrite relation denoted - ac [PS81, JK86]) at root
position in two different terms:

(a+0d)+ ((—a) + (=b)) —rac a+(—a)
—R,AC b+ (—b)

using respectively the first-order substitutions {z + b,y — a+ (—a)} and {z — a,y — b+ (=b)}.
The requirement of taking into account AC rewriting induces an additional complexity compared
to pure rewriting.

The chosen proof term representation is based on the po-calculus [Cir00, CK01] that provides
a syntax and a semantics to an appropriate notion of proof objects. The main idea of this calculus
is to make all the basic ingredients of rewriting explicit objects, in particular the notions of rule
application and result.

A rule application can be reduced to a singleton, but it may also fail and return the empty set,
or it can be reduced to a set with more than one element. For example, if the symbol + is assumed
to be commutative then x + y is equivalent modulo commutativity to y + z and thus applying the
rule z +y — x to the term a + b results in {a, b}.

Moreover, the rewrite binary operator “. — _”, being integrally part of the calculus syntax
provides a powerful abstraction operator whose relationship with A-abstraction [Chu40] gives a
useful intuition: a A-expression Az.t can be represented in the p-calculus as the rewrite rule z — t.
Indeed, the S-redex (Az.t u) is nothing else than [z — t](u) (i.e., the application of the rewrite
rule z — t to the term u) which reduces to {{z/u}t} (i.e., the application of the higher-order
substitution {z/u} to the term t). Of course we have to make clear what a substitution {z/u} is
and how it applies to a term. This is performed by a substitution mechanism that preserves the
correct variable bindings via the appropriate a-conversion. For a general presentation of explicit
substitution calculi, the reader is referred for example, to [ACCL90, CHL96].

Shortly speaking, in po-calculus, abstraction is handled via the arrow binary operator, matching
is used as the parameter passing mechanism, substitution takes care of variable bindings and results
sets are handled explicitly.

More formally, let ¥ = (F,X) be a signature, with a set F of function symbols and a set
X of variables. The po-expressions are divided into two sorts, one for terms and another for
substitutions, which are defined by the following BNF notations (z € X and f € F):

terms t u= x| f.. ) | {t. .t | [B]@) |t ot o)
substitutions o | 1| ft(o)|to|ocoo

The set of terms contains the first-order terms in the signature (7 (F, X)) and several new
constructs. The binary symbol — is used to represent p-abstractions. The p-application (of terms
on terms) is represented by the binary operator [](-) where _ is the place holder. The application
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of a substitution on a term is denoted by the binary operator _(_). The set construct is used to
represent the result of a rewrite step which is in general non-deterministic.

The substitution syntax is composed of the identity substitution (ID = {z/z,y/y,...}), the
shift (1), the composition operator (o), the operator cons of a term onto a substitution (.) and the
lift (1) The operators shift and lift update bound variable indices.

In order to better understand this notion of proof term, let us give an example of a rewrite
derivation and its associated proof term in po-calculus.

Example 0.1 Consider the rewrite system

1] z+(-2z) - O
R_{[r2] z+0 - =z

where + is an AC symbol. The term (a+b) + (—a) can be normalized by the following derivation:

(a + b) + (—a) T—1>R,AC 0+1b r—2>R,Ac b
The associated po-proof term of this derivation is:
T = ((z + (—2)){z/a) = 0(z/a)) + b ; (z + 0)(x/b) = z(x/b)

The proof term for a rewrite step at root position lo — ro is of the form l{o) — r{o). If the
rewrite step is performed inside a term, then its context needs also to be included in the proof
term. The proof term for a rewriting derivation is obtained by concatenating the proof terms for
its steps.

4 Proof search and proof check for equational proofs

We are now ready to describe more precisely how ELAN and Coq collaborate in proof construc-
tion and proof check activities. For that, the ELAN compiler, i.e. the rewrite engine, has been
extended by a proof term producer that builds the rewriting proof term, and by a proof term
translator that transforms this formal trace of ELAN into the corresponding Coq proof term for
checking. In this cooperation scheme, ELAN can be seen as a computing server and Coq proof
sessions as its clients. At the moment, both syntactic and AC rewriting are supported. A ver-
sion for conditional rewriting is being experimented where ELAN generates proof obligations for
conditional rewrite steps, whose proofs are left for now to the Coq side.

4.1 Tracing term normalisation by AC rewriting in ELAN

As already mentioned in the previous section, building proof terms for AC rewriting raises a
number of difficulties, besides the fact that multiple results and corresponding substitutions have
to be taken into account. Let us mention below some other points related to specificities of the
ELAN compiler.

The trace of an AC rewrite step contains the applied rule, the used substitution and the
context. By AC rewriting, terms are normalised in ELAN using the leftmost-innermost strategy.
A term is flattened in its canonical form before being reduced: the subterms of an AC symbol
are sorted while identical subterms are put together and their count represented by a multiplicity
exponent. For example, the term f(a, f(a,b)) is flattened in f(a?,d) if f is an AC symbol. In order
to speed up AC-pattern matching, the ELAN compiler automatically transforms complex patterns
into simpler ones.

For example, if f,g are AC symbols, the rule hA(f(x1,%2),g(x3,24)) — r is transformed into
h(X,g(x3,24)) — r where f(z1,22) = X, where X is a fresh variable. The pattern matching on
h(f(z1,22),9(x3,24)) is hence decomposed into two simpler steps: the first one on h(X, g(z3,z4))
and the second one on f(z1,z2). Both patterns are in the restricted class for which several opti-
mizations of AC-pattern matching are valid. However, in order to get the used substitution for a
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transformed rule, we need also to trace the pattern matching of the local evaluations by where.
For example, for the rule above, the first pattern matching returns the instantiation for x3 and x4
while the second one yields the instantiation for z; and zs.

On the other hand, for efficiency reason, ELAN simulates the rewriting relation with AC-
equivalence class (—g/ac) by the rewriting modulo AC relation (—x,ac) [PS81, JK86]. The
completeness is ensured by adding the extension rules, if necessary, in the original rewrite system.
That is, for each rule I — r such that the head symbol of [ is an AC symbol f, an extension rule
f,X) — f(r, X) is added, where X is a fresh variable called the extension variable. Because the
extension rule notion is not known by Coq, we need to reconstruct the corresponding trace by
the original rule. If C[O] is the context and o is the used substitution in a rewrite step by the
extension rule, i.e. C[f(l,X)o] — C[f(r, X)o], the context of the corresponding rewrite step by
the original rule I — r is C[f([0], o0x)]. The used substitution ¢’ is obtained from o by eliminating
the image of the extension variable X.

4.2 Proof term translation

The translation of ELAN rewriting proof terms into the calculus of constructions syntax is
described in [NKKO02]. The trace of ELAN rewriting is first formalized in po-syntax. This trace is
then normalised into its compact canonical form before being translated into an immediate format,
called II-syntax, and finally, into Coqg-syntax. The II-syntax gives genericity to the translation
since one can parameterise it by proof term syntaxes of proof checkers: actually, constructions
of II-syntax actually mimic the basic properties of equality: reflexivity, symmetry, transitivity,
substitutivity and congruence. Two operators po2Il and I[12Coq are used to translate proof terms
from po-syntax to II-syntax and from II-syntax to Coq proof term syntax. As discussed in Section 3,
translating proof terms of AC rewriting has another technical problem: the equalities modulo AC
in ELAN are implicit while they need an explicit proof in Coq. In [Ngu02b], an efficient method
for proof search and proof check of equalities modulo AC is described. This method has been used
for checking rewriting proof terms by Coq.

The soundness of the proof term translation is stated as follows.

Theorem 0.1 [NKKO02] If w is a po proof term for the rewriting derivation t —%, s in ELAN,
then I12Coq(po2I1(m)) is a proof of the equality t = s in Coq.

The general scheme of cooperation between Coq and ELAN is described in Figure 1.

[
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Fi1G. 1 — Integration of automatic ELAN rewriting into Coq proofs
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In the first phase, the Coq user defines the client theory before calling the server that generates
from this theory an ELAN specification and a set of lemmas needed for checking equalities modulo
AC. The generic normalisation engine, proof term producer and proof term translator are three
ELAN modules which generate from a specification its corresponding executable files using ELAN
compiler. In the second phase, automatic rewriting can be used in any Coq proof. The bold arrows
represent the data flow exchanged between the two systems during this phase. The trace of ELAN
rewriting is processed in several steps before being able to be checked by the Coq kernel.

Example 0.2 Let us come back to Example 0.1. Traditionally, the proof of the deriation (a +
b) + (_a)—);z,Acb in Coq must be manually performed using the associative and commutative
properties of +, that are respectively called +_assoc and +_commu, as well as the two rules r1 and
r2. Rewrite is a Coq tactic that replace equal by equal with a given aziom. The Coq script written
by the user is as follows:
Rewrite +_assoc; (x rewrite (a+b)+(-a) to a+(b+(-a)) %)
Rewrite +_commu; (x rewrite a+(b+(-a)) to a+((-a)+b) *)
Rewrite <- +_assoc; (* rewrite a+((-a)+b) to (a+(-a))+b by reverse

associativity *)

Rewrite ri; (* rewrite (a+(-a))+b to 0+b *)
Rewrite +_commu; (* rewrite 0+b to b+0 *)
Rewrite r2; (* rewrite b+0 to b *)

This manual proof can be greatly improved now by automatically calling the ELAN based rewriting
tactic which performs AC rewriting and proofs of equalities modulo AC as follows:

(@a+b)+(—a) Hrac 0+b Zrpac b

The tactic first provides to Coq the proof of the equality modulo AC (a+b)+(—a) =ac (a+(—a))+b
and then, translates the po—proof term w to Coq proof term syntax for checking the derivation
(a+ (=a)) + b—% ach:

4.3 Extension for proofs by structural induction

A similar approach is currently experimented on the proofs by structural induction perfor-
med by Coq. In Coq, a default induction scheme for each inductive data type, called elimination
principle, is generated by Coq when the data type is defined. This scheme is defined from the
constructors of the data type. For instance, for a proof of a property P on the type nat, with
constructors 0 and S, the elimination principle is Peano’s induction principle:
nat_ind : (P:(nat->Prop)) (P 0)->((n:nat) (P n)->(P (S n)))->(n:nat) (P n)

The Coq user must provide at least the recursion variable, that should be of an inductive
type, and the system then generates the subgoals to be proved. Usually these subgoals need to be
simplified and at some points the subgoals are simply proved by rewriting. Such parts of the proof
can be delegated to ELAN as previously, especially in the case of AC theories.

For that, the ELAN based rewriting tactic has been enriched by the capability to dynamically
add new rules (and so, new sorts and symbols) to an existing rewrite theory for ELAN. In a
practical proof development, the Coq user often wants to enrich the rewrite system by newly
obtained theorems or lemmas. Incremental definition of current rules for the tactics allows him to
add such new hypotheses into a pre-defined rewrite engine. The new engine can then be used for
simplifying any term in the later proofs. In particular, a proof by induction requires the use of an
induction hypothesis, not known before, and that needs to be added to the rewrite engine during
the proof of the induction case. More generally, the local context of a proof includes hypotheses that
can also be used for simplifying the current goal, which is often very useful. The main difference
in comparison with global context is that when the proof is finished, the local context is closed
and all of its hypotheses are no more valid.

In Coq, the induction principle is generated from the definition of inductive data type. Given
this induction principle, one can generate in ELAN the proof term of a proof by induction if
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rewriting can solve alone the base case and the induction case. This amounts to an automatic
tactic, that we are experimenting, which allows the Coq user to delegate simple structural induction
proofs from Coq to ELAN.

Example 0.3 We prensent here an example to show how AC rewriting is used to partially auto-
matize structural inductions in Coq. We consider an extension of Peano arithmetic by exponential
operator. The main lemma consists in proving that Vx,ni,ny € Ng™ % gn2 = gtitnz,

(* + and * are declared as AC operators *)

Parameter AC nat_plus nat.

Parameter AC nat_mult nat.

Parameter nat_exp : nat -> nat -> nat.

(* Axioms for arithmetic *)

Parameter plus_zero: (x:nat) (nat_plus x 0) = x.
Parameter plus_succ: (x,y:nat) (nat_plus x (S y))
Parameter mult_zero: (x:nat) (mat_mult x 0) = 0.

(S (nat_plus x y)).

Parameter mult_succ: (x,y:nat) (nat_mult x (S y))
(nat_plus x (nat_mult x y)).

Parameter exp_zero: (x:nat) (nat_exp x 0) = (S 0).

Parameter exp_succ: (x,y:nat) (nat_exp x (S y)) = (nat_mult x (nat_exp x y)).

Elan Sort A_dom_L [nat].
Elan Symbol A_fun_L [nat_plus nat_mult nat_exp 0 S].
Elan Rule A_axm_L [plus_zero plus_succ mult_zero mult_succ exp_zero exp_succ].

(*x Definition of rewrite system *)
Elan Theory expo A_dom_L A_fun_L.
Elan Rewriting expo A_axm_L.

(* Connect to ELAN server x*)
Connect expo "localhost".

Lemma exp_mult: (x,nl,n2:nat) (nat_mult (nat_exp x nl) (nat_exp x n2)) =
(nat_exp x (nat_plus nl n2)).
Proof.
Induction nil.
(* Base case *)
Intros.
ElanRewrite expo.

(* Induction case *)
Intros.

(* Add new symbols and induction hypothesis *)
Elan Pose Symbol A_fun_L_add [x nl n2 n].
Elan Pose Rule A_axm_L_add [H].

Elan AddTheory expo [] A_fun_L_add.

Elan AddRewriting expo A_axm_L_add.

(* Recompile the rewrite system *)
Recompile expo "localhost".

ElanRewrite expo.
Qed.
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5 Deduction modulo and the Noetherian induction prin-
ciple

However, by using sophisticated termination orderings, proofs by Noetherian induction perfor-
med by rewriting are much more expressive than structural induction. We explore in this section
how deduction modulo can provide the description, at the proof theoretical level, of proof by Noe-
therian induction. A proof search system for induction is proposed, based on a main induction rule
that relies on a narrowing process to choose both the induction variables and the instantiation
schema.

5.1 Deduction modulo and HOL,,

Proof search engines like Spike [BKR92] or RRL [KZ95] allow to find proof of inductive pro-
perties, but they do not build the proof object that results from this proof search. Because we are
working on the cooperation scheme between Coq and ELAN we need to exhibit an explicit proof
of a given inductive statement. Therefore, we need to provide a proof theoretic setting that gives
a detailled account of a noetherian induction principle use.

Being a bit more formal (but not yet completely), if we assume given a noetherian relation R
and a user defined theory Th,,, we are looking for a proof of the proposition P using a noetherian
induction principle denoted NoethInd, i.e. a derivation of the sequent: NoethInd(R),Th, + P.
Therefore, in this section, we represent our proofs in an appropriate sequent calculus. But since
the noetherian induction principle is by essence a second order proposition, we need to encode this
sequent in higher-order logic. The idea to use rewrite concepts and techniques leads to consider
mainly first-order theories and therefore motivates the use a first-order presentation of higher-
order logic called HOL), [DHKO1] which is based on deduction modulo [DHKO03]. It is clearly
out of the scope of this paper to explain in detail the full approach, and we only provide here the
main ideas. The reader can refer to [Dep02] and to [DKO03] for a detailled exposition.

In deduction modulo, terms but also propositions can be identified modulo a congruence. We
use a congruence that can typically be defined by conditional equations and that takes into account
the context of application to evaluate the conditions. Furthermore, since the congruence application
should be controled closely, an appropriate notion of protective symbol is used, see [Dep02]: indeed
the congruence is not allowed to act below a protective symbol. In deduction modulo, the notions
of term and proposition are that of (many sorted) first-order logic. We consider theories formed
with a set of axioms I' and a congruence, denoted ~, defined on terms and propositions. This
congruence takes three arguments: the two objects to be compared and a set of axioms I" called
a local context. When we want to emphasize this, we denote the congruence ~'. The deduction
rules of the sequent calculus take this equivalence into account. For instance, the right rule for the
conjunction is not stated as usual

THAA TFBA
TFAAB,A

but is formulated
'k, A,A Tk B,A

T D,A

if D~ AAB.

We recall in Figure 2, the definition of the sequent calculus modulo. It extends the usual
sequent calculus by working modulo the congruence ~. In these rules, I' and A are finite multisets
of propositions, P and @) denote propositions. When the congruence ~ is simply identity, this
sequent calculus collapses to the usual one. In that case sequents are written as usual with the
symbol.

Proof checking decidability for the sequent calculus modulo reduces to the decidability of the
relation ~'', since we can check for each rule that the conditions of application are satisfied and we
provide the needed information in the quantifier rules. When ~' is not decidable, we still can use
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I,PRA Th QA

maxiom ifP~"Q A = cut if P~ Q
F’?,l’;%ﬁcontr-l if (A) %conﬁr-r if (A)

Tk A Tk A
TPRA Aweak-l T PA Awea.k-r
7Ff}zQ;NAA Al if R~ (PAQ) LS F;;ﬁ EI;Z” Q’A/\-r if R~ (PAQ)
RPE L RISl i () RSy i ()

5 e (o Sl
%ﬁ-l if R~" -P %ﬁ_r if R~" —P
mJ_-l if P~ L

U =L Qunvr i@ RS Gy v if (8)
%(Q,m,y) 31 if (F) %(Q,m,t) 3r if (G)

A=P~"Q ~"Q@Q,B=R~"PVQ C=R~"P=Q),D=P~"VzQ E=P-~"
Vz Q,y fresh variable, F = P ~' 3z Q,y fresh variable, G = P ~! 3z Q

F1G. 2 — The sequent calculus modulo

instances for which one can check the conditions of application (for instance a constraint solving
algorithm can be used).

We can now introduce the fundamental notion of compatibility: a theory (a set of propositions)
T is said to be compatible with a congruence ~ when:

T, T+ Aif and only if T k. A.

This property is modular: if 77 is compatible with a congruence C; and 7> is compatible with
Cs then 71 U T3 is compatible with C; U Cs.

Using the above equivalence, we can internalize propositions into the congruence, and call
this operation “push”. We can also recover them at the level of the logic, and call this operation
“pop”. Moreover, thanks to modularity, this can be done dynamically during the proof. This
duality between computation and deduction is very conveniently reflected by the compatibility
property. In [DHKO3], internalization has been done statically and used to identify computation
within the deduction process. Our aim here is to do internalization dynamically and to use it to
design rules for induction by rewriting and an adequate strategy for noetherian induction.

In what follows, we consider congruences generated by conditional class rewrite systems deno-
ted RE and composed of (conditional) term rewrite rules, (conditional) term equational axioms,
(conditional) proposition rewrite rules, (conditional) proposition equational axioms. Moreover, we
assume the left-hand side of a proposition rewrite rule and both sides of a proposition equatio-
nal axiom have to be atomic propositions. Conditions may be arbitrary propositions. The (free)
variables in the right-hand side and condition of a rule must occur in the left-hand side. In the
case of equational axioms, variables in both sides have to be the same and (free) variables in the
condition have to be a subset of those.

We assume here that we work with the axioms of equality. In this case, to any conditional class
rewrite system RE is associated the theory denoted Tr¢e as follows: for each conditional rewrite
rule (I = r if ¢) or equational axiom (I & r if ¢) in RE, Tre contains the proposition:

- VZ(c = (I & r)) when | and r are propositions,
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- VZ(c= (I = r)) when [ and r are terms,
where all free variables T are universally quantified.

It is proved in [Dep02] that Tre is compatible with the congruence generated by RE (see
also [Dow99] and [DHKO03]). This allows us to freely use the “pushing and popping” paradigm.
This also ensures that deduction modulo a congruence represented by a conditional class rewrite
system is not a proper extension of first-order logic, but only a different presentation of it.

5.2 Deduction modulo for inductive proofs

This short introduction to deduction modulo now allows us to give a proof theoretic unders-
tanding of induction by rewriting. In the context of deduction modulo, the induction hypotheses
arising from equational goals can be (dynamically) internalized into the congruence. When doing
this, the computational part of the deduction modulo appears to perform exactly induction by
rewriting as done for instance by systems like Spike [BKR92] or RRL [KZ95].

The powerful principle of these approaches is to allow application of induction hypotheses,
current conjectures and axioms of the theory, at any position of the current goal, provided that
the applied formula is smaller in the Noetherian induction ordering than the current goal. When
the ordering contains the relation induced by a terminating rewrite system, a smaller formula is
obtained as soon as a rewrite step is performed. Moreover, in Spike for instance, the choice of
the induction variables and instantiation schemas is done using pre-calculated induction positions
and schemas called test-sets. In the approach described below, we propose to use narrowing to
automatically perform these choices.

Given a property P and a relation R defined on a type 7, the Noetherian induction principle
NoethInd(P, R, T) is defined as follows:

Vz((z €AYy ((y € T AR(z,y)) = P(y))) = P(z)) = Vz (z € T = P(x))

and we write Noeth(R,T) to state that R is a Noetherian relation over 7.
For proving that P inductively holds in a user theory T'h,,, denoted Thy, |=rna P, it is enough
to derive the sequent:
VRY7T (Noeth(R,7) = VP NoethInd(P,R,1)),Thy b P.

Of course to finish the proof, one should also provide a proof of Noeth(R, 7). Considering an
equational goal @ of the form Vz (r € 7 = t1(z) = t2(z)), the whole problem is formalized in
HOL), the first-order presentation of higher-order logic using deduction modulo. The remainder
of this section gives the main steps which are detailed in [Dep02]. We start from the sequent:

VRVT (Noeth(R,T) = YP NoethInd(P,R,T)),Thy FVz (z € T = t1(z) = ta(z)).
Choosing a specific relation R (written <) and a type still denoted 7, we get:
Noeth(<,7) = VP NoethInd(P,<,7)),Thy - Vz (z € T = t1(2) ~ t2(x)).

From this, by the rule =-1 of the sequent calculus, we get on the one hand the sequent Th,, F
Noeth(<,7) corresponding to the proof that < is indeed Noetherian, on the other hand the sequent

VP NoethInd(P,<,7)),Thy FVz (z € 7 = t1(x) ~ t2(x))

corresponding to the use of the induction principle to prove our goal.
We instantiate P to get:

Vez((z € TAVzZ((z € TAZ < 1) = t1(z) & t2(2))) = t1(z) = t2(x))
=>Vz(reT=ti(z) ®ta(x)), Thy FVz (x € T = t1(z) = ta(x))

where we have renamed y to £ to emphasize that x is a smaller instance of x. A few easy steps of
the sequent calculus later, we get:

ThybVz(zeTAVz((z € TAZ <) = t1(z) = t2(2))) = t1(z) = ta(x))
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We then instantiate x by a fresh variable that we call X to emphasize this status, and we get:
ThyF (X eTAVz((zeTANZ < X) = t1(z) = ta(2))) = t1(X) = t2(X).
The =--r and A-l rules of the sequent calculus lead to the discovery of the induction hypothesis:
Thy, X €TVz((2 € TAz < X) = t1(2) = t2(2))) F t:1(X) = t2(X).

Using what we have seen on compatible theories, this hypothesis, can now be internalized as a
conditional equation denoted in general RE;,q(@):

ti(z)mt(z)ifzeT Az <X (1)

Note that because of its status of free fresh variable, X behaves like a constant.

What is crucial in using the induction hypothesis (1) as an equation or a rewrite rule, is to
check its condition. For any many-sorted theory, the £ € 7 part of the condition is trivial. More
interestingly, the z < X condition is always satisfied provided the following hypotheses (called H)
are imposed:

(¢) the theory Th, can be oriented into a Noetherian rewrite system R,
(74) we choose for < the reduction ordering induced by R,
(#97) (1) is only applied on a subterm of the goal t; & t2 or on a R-reduced form of this goal.

Under these hypotheses, we are left to derive the sequent

Thu,X eET l_R,h(ﬁ)th(&) tl(X) ~ tg(X).

in the sequent calculus modulo. To be able to satisfy the (i47) part of the H hypotheses, we need
in general to use the information that X € 7 in order to instantiate X by the free constructors of
7. This idea is exploited in the next section to provide the proof search strategy.

5.3 Proof search by narrowing

The rules of the proof system in Figure 3 apply on sequents modulo of the form T'y [T’y Fre,|re,
@, where T'; is the deduction part of the definitions, RE; is their computational part; I'y is the
deduction part for other statements, RE2 is their computational part; () is an equational goal.
The distinction between I'; /RE; and T'2/RE> is needed because in the Induce rule, only RE; is
used for narrowing. The initial I’y may contain lemmas. RE, receives the induction hypotheses.
Sequents are gathered in a multiset structure modeled with the e operator that is an AC operator
on sequents with & as a neutral element.

The main rule is Induce as it performs the induction step. It uses narrowing to choose both the
induction variable(s) and the instantiation schema. The other rules are T'rivial which eliminates
a trivial equation. Push pushes an equational hypothesis from the deduction part to the compu-
tational part, Orient orients an equation in the computational part into a rewrite rule, according
to the term ordering, Rewrite rewrites using a rule or an equation and orients the step using an
ordering on equations built upon the term ordering. Push, Orient and Rewrite are duplicated
because of the I'1 /RE1 and T'y/RE, distinction.

Here is a simple example of proof by induction on natural numbers using our proof system:

r+0~rz,c+s(y)rs(z+y)|H0+r~z
— 4+ 0=z Fotsy)ms(aty) 0t TR T Push;
— }_z+0%x,m+s(y)%s(m+y)| O+z=zx Push;
— l_:c+0%:c,w+s(y)—).<>‘(av+y)| Otz=z Orient,
- }_w+0—>w,z+s(y)—>s(z+y)\ Otz=uz Orient,
— Fat0-2,0+3(y) = s(a+y) 0+z~e 0 7 0 Induce
I_m+0—>z,;v+s(y)—>s(a:+y)\0+gﬁg 3(0 + y) ~ S(y)
— l_:c+0—)w,zc+s(y)—>.<>‘(av+y)\0+§N§ 8(0 + y) ~ S(y) Trivial
— }_w+0—>w,z+s(y)—>s(z+y)\O—i@—@ 5(0+y) = s(y) Orienty
— }_w+0—>:c,z+s(y)—>s(w+y)\0+£—>Q s(y) ~ s(y) Rewritey
— O Trivial
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Induce  T1|T2 breyire, Qltlo — @ ppere,  T1ll2 Freyresure;, a0 (@)
o€ Unif(t,1l)
o(l) > o(r)

(RRE=1—ror RRE=1l~ror ROE =r =1),w € GPre,(Q)
Push, I, l=rlebreires @ = T1|l2 Freuinryire, @
Orient T2 Freyupire, @ = Till2 Freyugioryire, @
E=lxrorE=rxl
I>r
Pushs, T4 Dol 27 Freyre, @ = T1lTs Freyresugine @
Orientz T1|T2 Freyresue @ = T1lT2 Freyresuiom @
E=lxrorE=rxl
I>r
Rewrite: T2 bpe (RoBire, Qo] — TilTebre  RoBire, Qlo(r)]w
ReE=1l—rorRRE=Ilxror ReE=r=l
Qe > Qo).
Rewritea T'q|T2 Frei e UROE Qle(D)]w — T4l Frei|REURCE Qlo(r)]w
RoE=1l—>rorRE=I1lx~ror RE=r =l
Qlo(D]w > Qlo(r)]w
Trivial T1|Ts breyrey tRE — O

‘¢’ is an AC operator with neutral element <.

Fi1c. 3 — SIADM : A simple proof-search system for induction as deduction modulo

5.4 Complete narrowing for proof search

To make precise the use of narrowing in the induction process, let us introduce a few notations.
Let R be a term rewriting system. The signature ¥ is partitioned into a set of free constructors
and a set of defined symbols. Free constructors are constructors which are not related with each
other by any rule. A constructor term is a term built only with constructor symbols. A ground
substitution is a substitution mapping each variable to a ground term, i.e. a term without variables.
The set of positions of a term ¢ is denoted Dom(t), the subterm of ¢ at position w is denoted ),
and the symbol at position w in ¢ by #(w). The notation ¢[u], means that the term ¢ contains the
subterm u at position w. These notations extend to goals.

A rewrite system is said to be ground convergent if it is confluent and terminating over the set
of ground terms. It is said to be sufficiently complete if any ground term can be reduced into a
(ground) constructor term.

A goal @ is narrowed into ' at a position w with the rule [ — r and the substitution o, if o
is the most general unifier of [ and Q|,,, and Q' = o(Q[r].,). The narrowing relation is denoted by
Q Mlorw,o Q'

We partition R into subsets Ry = {l = r € R|l(¢) = f} for each defined symbol. When a
variable is involved in an induction process, it must be instantiated with all possible values, in
order to cover all possible cases. Since the system is sufficiently complete, the rules in Ry do cover
all cases for f. This idea leads to the following notion of good positions, which states that all rules
in Ry do narrow at these positions. The set of good positions in a goal () is defined by:

GPR(Q) = {w € DOT)’L(Q)'VI —re RQ(w); EIQI : Q lorw Q’}
For an equational goal @ of the form ¢; = t2, we can show that when R is ground convergent
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and sufficiently complete, if @ — Q1 o --- @ @, by the Induce rule, then Vi, R Ernq Q; implies
R ':Ind Q

We then get the correctness of the proof search system:

Theorem 0.2 Let R be ground convergent and sufficiently complete. If Q —+ <, then R Erna Q-

6 Translating induction proofs into Coq

6.1 Structural induction

Our goal is to translate automatic (or semi-automatic) structural induction proofs by ELAN
to Coq. The detection of induction variable can be done in ELAN using automatic proof search
techniques (i.e. narrowing or test-sets [BKR92]) by user interaction.

Proof terms in ELAN An induction step in ELAN is represented by the induction variable z.
The proof term for ELAN is a n-tuple {ind, z, 7y, 7;) where ind is the induction principle, 7
and 7; are respectively the proof terms for the base case and the induction case.

Proof term in Coq
— — —
A X (ind An : T.P{z/n} (I12Coq(po2Il(m)) X) (I12Coq(po2II(m;)) X))

N
where X is the sequence of universially quatified varibles, ind is the Coq induction principle
for the type T'; P is the proposition to prove; x is the induction variable.

6.2 Noetherian induction

Translating Noetherian inductions into Coq seems to be less straightforward. Given the des-
cription of the proof search system in section 5.3, the next step is to implement in ELAN the
described rules and to design an adequate strategy for proof search. In case the system finds a
proof, it is represented as a po-term in which the branching step involved in the Induce rule is
expressed using sets of proof terms.

It remains to translate this po-term into a proof term in Coq. Using Noetherian induction
induced by the rewrite system needs a powerful principle, already present in Coq.

Given a Noetherian relation R on the type A:
well _founded_ind:

(A:Set; R:(A->A->Prop)) (well_founded A R)

=>(P: (A->Prop) ) ((x:4) ((y:A) (R y x)->(P y))->(P x))->(a:A) (P a)

Indeed using this principle requires a proof that the relation R is well-founded. So a full forma-
lization of implicit induction proofs will need formal proofs of termination of the rewrite systems.
Standard techniques of proving termination in term rewriting, for example based on precedence on
function symbols, such as the lexicographic path ordering (LPO), are already available. In [GLO01],
a constructive proof of termination is given for a generalization of path orderings that applies to
any kind of structure with a well-founded notion of immediate substructure. Path orderings (LPO,
RPO, MPO) are then easy to obtain as generalizations. In [Lec95], it is proved that the multiset
path ordering (MPO) terminates, and that it enjoys the properties required to prove termination
of rewrite systems, i.e. that it is a simplification ordering.

Summarizing, one of the main interest of this approach is that ELAN provides to Coq not only
the proof term but the proof principle under which the proof can be done. We therefore bridge in
an elegant and safe way rewriting techniques with proof assistant capabilities.

7 Cog-ELAN for Induction - future work

We draw in this section some ideas on the future ELAN based tactics for induction in Coq. Two
different version can be considered depending on the level of proof automation.
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7.1 Semi-automatic version

In this version, no search is needed in ELAN. The induction variables and priciples are provided
by Coq user. The rewrite system used for simplifying goals is also given. In this case, ELAN needs
to apply the induction principle on the right positions and to try to prove automatically the
generated subgoal using rewriting. In case of failure, these subgoals are left to Coq user.

Two possible syntaxes:

ElanInduction X R Wﬁ th machine

or
ElanInduction X P th machine

where
— X is the list of induction variables used in the proof
— P is the used induction principle
— R is the used well-founded ordering
— m} is a proof of the well-founded property of R
— th is the rewrite system used for simplifying goals
— machine is the machine where the ELAN server is launched

For example:
Elaninduction x 1t 1t_wf peano "localhost”.

or
Elaninduction x nat_ind2 peano "localhost”.

7.2 Automatic version

In this version, ELAN searches for the induction variables and principles and applies them to
prove the current goal. This process is semi-decidable and an exit point is needed:

ElanInduction th machine

8 Conclusion

Checking automatic proof in proof assistants has been studied by numerous researchers. To
this end, the external proof can be translated either (1) into a script to be re-executed in the
proof assistants or (2) into a low-level proof term. The first approach has been experimented
on several interactive theorem provers such as HOL, Isabelle or PVS. In this vein, model che-
ckers [JS94, Rus99], computer algebra systems [HT98] or automatic first-order theorem provers
[Hur99, ABH'98] [BSBG98, Pau99] were combined to interactive theorem provers in order to
improve the automatic level of proof search.

The second approach can only be applied to proof assistant using explicit proof terms but is
more secure since we only need to trust on a small kernel of these proof assistants. The proof
checking, that consists only in type checking the proof term, seems to be also more efficient.
Several experimentations on checking imported proof terms has been done in Coq and Twelf [PS99].
To speed up proof checking, optimizing the generated proof term has attracted much attention.
In [BHANO2], the smartly represented resolution proofs are translated into proof terms to be
checked by Coq. In [SD02, NL98§|, proofs are checked in LF with appropriate optimizations to
speed up proof checking.

Towards a more scalable framework, there are Necula’s work on proof-carrying code (PCC) [Nec97]
and Appel and Felty’s work [AF00, App01] on foundational proof-carrying code. The key idea of
these frameworks is to associate a proof of safety properties to machine-language programs genera-
ted by the code producer. On the other side, the code consumer uses an as small and trustworthy
as possible proof checker for verifying the associated proof before executing these programs.
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The originality of the work presented here relies on the proposition of performing proof of
equational and inductive theorems by rewriting techniques that can be delegated to an automated
prover, while being able to build a proof term to be checked by a proof assistant relying on
constructive type theory. However in order to get there, the notion of proof term and the underlying
po-calculus, as well as deduction modulo, are needed to set up an adequate theoretical background.
Also mandatory to develop this work were mastering the compilation techniques for AC rewriting
and strategies, the rewriting based induction techniques, and the practice of a proof assistant
based on the calculus of inductive constructions.

Much work is yet needed to achieve our initial goal to understand theoretical and practical
aspects of proof construction and verification. An ambitious goal concerns the design of a develop-
ment framework for certified and modular software, whose security properties must be formally
asserted. The proofs would be done by an incorporated proof builder, based upon deduction mo-
dulo and combining different provers specialized to given theories. When completed, the proof
could be checked by the proof checker. Once achieved and checked, the proof could be recorded
to be offered to any a posteriori verification purpose.

At the proof level, the general framework of deduction modulo is quite relevant to keep at the
deduction level only the true deduction steps like modus ponens and to delegate all computational
steps on propositions or terms to specialized provers using equational and rewriting techniques.
Then, some parts of the proofs can be deferred to aside computations while the true skeleton of the
proof is being built. At the checking level, the experiences described here of translating equational
and inductive proofs to proof terms for Coq should be quite useful.
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