Vérification de propriétés quantitatives et fonctionnelles
Analysis and VERification for the Reliability Of Embedded Systems

dUERROCS

Lot 4.3

Technologie de modélisation

Complexité en espace et en temps

Introducing Decision Procedures
in the Calculus of Constructions

Description : We investigate a new version of the calculus of constructions which incorpo-
rates arbitrary decision procedures into deductions via the conversion rule of the
calculus. Besides the novelty of the problem itself in the context of the calcu-
lus of constructions, a major technical innovation of this work lies in the fact
that the computation mechanism varies along proof-checking: goals are sent to
the decision procedure together with the set of user hypotheses available from
the current context. Our main result shows that this extension of the calculus
of constructions does not compromise its main properties: confluency, strong
normalization and decidability of proof-checking are all preserved.

Auteur(s) : Frédéric BLANQUI, Jean-Pierre JOUANNAUD Pierre-Yves STRUB

Référence : AVERROES / Lot 4.3 / Fourniture 3 / V1.0

Date : 25 octobre 2006
Statut : validé
Version : 1.0

Réseau National des Technologies Logicielles
Projet subventionné par le Ministére de la Recherche et des Nouvelles Technologies

CRIL Technology, France Télécom R&D, INRIA-Futurs, LaBRI (Univ. de Bordeaux — CNRS),
LIX (Ecole Polytechnique, CNRS) LORIA, LRI (Univ. de Paris Sud — CNRS), LSV (ENS de
Cachan — CNRS)

AVERROES — Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

Historique

juin 2006 V 0.1 | version préliminaire
25 octobre 2006 | V 1.0 | mise au format averroes

Contents

1 Introduction 3

2 Calculus of Congruent Constructions 4
2.1 Typing derivation oL e e e 5
2.2 COonversiON vt it i e e e e e e e e e e e e 5

3 Meta-theorical properties 6
3.1 Capsandallthat... L 6
3.2 General propertieso e e e e e e e 7
3.3 Basic properties e e 7
3.4 Logical consistency 10

4 Further work 10

Projet RNTL : AVERROES / Lot 4.3 / Fourniture 3 / V1.0 2

CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA, LRI, LSV

AVERROES — Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

1 Introduction

Background. It is commonly agreed that the success of future proof assistants will rely on their
ability to incorporate computations within deductions in order to mimic the mathematician when
replacing the proof of a proposition P by the proof of an equivalent proposition P’ obtained from
P thanks to possibly complex calculations.

Proof assistants based on the Curry-Howard isomorphism such as Coq [7] allow to build the
proof of a proposition by applying appropriate proof tactics generating a proof term that can
be checked with respect to the rules of logic. The (intuitionnistic) logic on which Coq is based
is the Calculus of Constructions (CC) of Coquand and Huet [8], an impredicative type theory
incorporating polymorphism, dependent types and type constructors. As other logics, CC enjoys
a computation mecanism called cut-elimination, which is nothing but the g-reduction rule of the
underlying A-calculus. But unlike logics without dependent types, CC enjoys also a powerful
type-checking rule, called conversion, which incorporates computations within deductions as done
by the working mathematician: if p is a proof of a proposition P, and P is S-equivalent to P’,
then p is again a proof of P’. For example, rather than proving that 1 + 3 is a even number, any
math undergrad will prove instead that 4 is an even number. With this rule, the decidability of
type-checking becomes a non-trivial property of the calculus.

The traditional view, however, that computations coincide with (-reductions suffers several
drawbacks. A methodological one is that the user must encode other forms of computations as
deductions. And a practical consequence is that proofs become much larger than necessary, up to
a point that they may not be type-checked anymore.

These questions become extremely important when carrying out complex developments involv-
ing a large amount of computation. This was recently the case with the first formal proof of the
four colour conjecture (now a proof-checked theorem) completed by Gonthier and Werner using
Coq [11]. The lack of computing power lead Gonthier to use sophisticated detours in the way he
specified the enumeration of the basic maps to be coloured by the system.

The Calculus of Inductive Constructions of Coquand and Paulin was a first attempt to solve
this problem by introducing inductive types and the associated elimination rules [6]. The recent
versions of CoQ are based on a slight generalization of this calculus [10]. Besides the -reduction
rule, they also include the so-called ¢-reductions which are recursors for terms and types.

A more general attempt was carried out since the early 90’s, by adding user-defined compu-
tations as rewrite rules, resulting in the Calculus of Algebraic Constructions [3]. Although con-
ceptually quite powerful, since CAC captures CIC [4], this paradigm does not yet fulfill all needs,
because the set of user-defined rewrite rules is fixed and must satisfy several strong assumptions.
Besides, the prototype version has not been realised since making type-checking efficient requires
novel compilation techniques still under investigation.

The proof assistant PVS uses a potentially stronger paradigm than Co0Q by combining its
deduction mechanism! with a notion of computation based on the powerful Shostak’s method for
combining decision procedures [13], a framework dubbed little proof engines by Shankar [14]: the
little proof engines are the decision procedures, required to be convex, combined by Shostak’s
algorithm. While a given decision proof procedures encodes a fixed set of axioms P, an important
advantage of the method is that the relevant assumptions A present in the context of the proof
are also used by the decision procedure to prove a goal GG, and become therefore part of the notion
of computation. For example, in the case where the little proof engine is the congruence closure
algorithm, the fixed set of axioms P is made of the axioms for equality, A is the set of algebraic
ground equalities declared in the context, while the goal GG is an equality s = ¢ between two ground
expressions. The congruence closure algorithm will then process A and s =t together in order to
decide whether or not s = t follows from P U A. In the Calculus of Constructions, this (possibly
long) proof must be constructed by a specific tactic called by the user, which applies the inference
rules of CC to the axioms in P and the assumptions in A, and becomes then part of the proof
term being built.

1PVS logic is not based on Curry-Howard, and proof-checking is not even decidable, which makes both frame-
works very different, and difficult to compare.

Projet RNTL : AVERROES / Lot 4.3 / Fourniture 3 / V1.0 3
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA, LRI, LSV

AVERROES — Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

A step in the direction of integrating decision procedures into the Calculus of Constructions is
Stehr’s Open Calculus of Constructions OCC [15]. Implemented in Maude, OCC is too general to
make type checking decidable. In a preliminary work, we designed a new framework, the Calculus
of Congruent Constructions (CCC), which incorporates the congruence closure algorithm in CC’s
conversion [5].

Problem. The main question investigated in this paper is the incorporation of a general mech-
anism calling a decision procedure for solving conversion-goals in the Calculus of Algebraic Con-
structions which uses the relevant information available from the current context of the proof.

Contribution. Our main contribution is the definition and the meta-theoretical investigation
of the Calculus of Congruent Constructions (CCC), which incorporates arbitrary decision proce-
dures into deductions via an abstract conversion rule of the calculus. Besides the novelty of the
problem itself in the context of the Calculus of Constructions, a major technical innovation of
this work lies in the fact that the computation mechanism varies along proof-checking: goals are
sent to the decision procedure together with the set of user hypotheses available from the current
context. Our main result shows that this extension of the Calculus of Algebraic Constructions
does not compromise its main properties: confluency, strong normalization and decidability of
proof-checking are all preserved.

2 Calculus of Congruent Constructions

Let A be a set of sorts and ¥ a A-sorted signature. For any f € ¥, we write ar(f) = (o1 x -+ X
on,0) the arity of f and define |ar(f)| by |ar(f)| = n.

Let S = {x,0} - the usual sorts of the calculus of constructions - and for all s € S, X* a
countable set of variables (variables of sort s) s.t. X* N A = (. Let 7* = ¥ and F" = {eq} UA.
We will write F (resp. X) for F* U F5 (resp. X* U XD).

Let A = {r,u} a set of annotations ordered by r <4 u.

Definition 1 (CCC syntax) The terms of CCC are defined by:
teTu=seS|feFlaeX|tt]| (Ve :“t)t]|[Ax 2t (a e A)

The usable notions of free variables, substitutions, positions (...) are defined as usual.
For each f € F, we associate a closed type 7y and sort sy € S as defined bellow:

[feX]. Ifar(f)=(o1 X X0n,0), then7p =01 —> 02—+ —0p — 0 and s; = *.
[c€A]l. 7, =%ands, =0.
[eq]- Teq = (VT " %)T — T — % and seq = 0.

Terms of the form [Axz :* t]t, (Va :* t)t,tt are respectively called abstractions, products, and
applications. As usual, we consider terms up to sort-preserving renaming of bound variables, and
write t1 — to for (Va :® ¢1)to whenever x € FV(t2). A term is ground if it has no free variable
and algebraic when built solely from variables and function symbols in X™* U F*.

Before defining the typing derivation, we define syntactic terms classes:

Definition 2 We denote by O, P, K, £ the classes of object level, predicate level, king level and
extern level terms, syntactically defined by:

Ou:=X"|F*| [\ :*ClO| [Ax:* K]O | OO | OC
C:=X" | FU | (Vz:*C)C | (V(z:*K)C|CO|CC
Kui=x| (Vz:*C)K | (Vz:* K)K

g =0

For any term t, we write 1) CL(t) =D ift € D for D € {O,C,K,E};) CL(t) =L otherwise.
For D € {0,C,K,E}, we define D+ 1 by (O,C,K,E)+1=(C,K,E,1).

Projet RNTL : AVERROES / Lot 4.3 / Fourniture 3 / V1.0 4
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA, LRI, LSV

AVERROES — Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

2.1 Typing derivation

Definition 3 An environment is a possibly empty sequence of type declarations of the form [z :* T
(T € T) with no variable declared twice.

An environment A is an extension of an environment I' = [x1 : T1],..., [z, :* T, written
r Q A, ZfA 18 Of the form A= Al, [561 @ Tl], AQ, . .,An, [ZL'n @ Tn]7An+1.
In some case, an environment I' = [x1 :® T4],...,[x, :* T,] will be seen as the substitution

{z; — T;} of domain (written dom(T")) {z1,...,z,}.
Typing judgements are written I' -t : T, where I" is an environment, and t,T are terms.

The typing rules of CCC given in Figure 2.1 are very similar to those of CC. Annotations are
used to control substitutions as seen from rule APP. CONV uses a yet unspecified family {~r}r
of congruence relations between terms, refining =, g.

F7pisy
[SymB] W [(Ax)10M] ——
I'ET:s, I'kt:T THU:s,
VAR S a2 T o & dom(D)] (Werkl 5 0Tr 6.7 [& dom(D)]

FEU:sy T,jz:*UlFV:sy
'k (Vz:*U)V :sy

[(ProD)UCT]

Dz:*Ulkv:V TFEWNz:U)V:s
Pk [Az:* Up: (Va2 U)V

[(ABS)TRACT]

PHt:(Vz:*U)YV Thu:U
Fkitu: V{z— u}

fa=rand U HE eq T't1to with t1,t0 € O
then tl ~T tg

[(APP)LICATION]

where

'tt:T THT :s T~pT

C
[(CoNV)ERSION] T T

Figure 1: CCC typing rules

2.2 Conversion

Our calculus aims at using an arbitrary decision procedure for some logical theory 7 to solve
conversion goals. Formulas in this logical theory will be built from the symbols in F*. In pratice,
the theory will be some decidable fragment of a first-order theory. Another problem is that symbols
in CCC do not need to be completely applied, while they need when considered as symbols of the
theory: we will therefore distinguish the symbols used in 7 from those used in CCC.

Definition 4 Assume given a equivalence relation R refining a-equivalence and a one-to-one
mapping Tr from equivalence classes of terms to a set) of fresh variables. Let t be a raw term
in CCC. We define capg (t) by:

o Lett=x € X. Then capg(z) =z ;

Projet RNTL : AVERROES / Lot 4.3 / Fourniture 3 / V1.0 5
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA, LRI, LSV

AVERROES — Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

o Lett=(...(f t1)...)tn, with f € F* and |ar(f)| = n - that is f fully applied.
Then capg (t) = f(capg(t1), ..., capr(tn)) ;

o Otherwise, capg (t) = mr(t).

In case of R is not an congruence, capg(t) = capg(t) and nr(t) = ns(t) where S is the
smallest congruence relation containing R.

In this transformation, the so-called alien subterms of ¢ have been abstracted by a constant,
according to their equivalence class modulo R. capg(t) is sometimes called the cap of t modulo
R.

We can now define the relation ~r for an environment I':

Definition 5 The family of relations {~r}, indexed by typing environments, is defined by the
rules of Figure 2.2.

t=pu [z W]el W —jeqTuv wu,ve0
(6] ; [Eq]
~r U u ~pr v
ca u) = ca V) |u~r vl ca s) = ca t
e AP (1) = €D (0) [0~ 0} cap. (5) = capey (1)
S ~r t
t~ru u~rC t~ ti~ruy tog~ru
[TrANS] r- T [Sym] A [ApP] Lr R
t ~1r U u ~r t tlﬁg ~T ULTU2
t1 ~rup to~ru t1 ~p ur to T [piar] U
[Law] 1 ~r Ul l2 ~r U2 [Prob] 17T UL 12 T [ziaty] U2

[Az :* t1]ta ~r [Az :* uq]ug (Vz :* t1)ty ~r (Vz :* uy)ug [z & dom(T), a < b]

Figure 2: The Conversion Relation ~p

One can wonder wether a simpler definition of conversion would be possible. The answer is no
one wants conversion to be non trivial. Defining conversion as a fixpoint actually came from the
proof of the substitution lemma to come next. It is also necessary in the proof of confluence in
the DED rule.

3 Meta-theorical properties

3.1 Caps and all that...

We will now describe more precisely the notion cap and aliens for terms in CCC, and enounce some
properties about them:

Definition 6 (Cap and aliens positions) For any term t € T, we define the set of cap posi-
tions - CPos(t) - and alien positions - APos(t) - by:

o Lett=x € X. Then APos(z) = 0;

o Lett = (...(f t1)..)ty with f € F* and f fully applied - that is |ar(f)| = n. Then
APos(t) = I~ 17 -2 - APos(t,_i);

e Otherwise, APos(t) = {e}

and CPos(t) = {p € Pos(t) | p is a strict prefix of a position in APos(t)}.

Projet RNTL : AVERROES / Lot 4.3 / Fourniture 3 / V1.0 6
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA, LRI, LSV

AVERROES — Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

Lemma 1 1. V¥p,q € APos(t),p # ¢ = p and q are not comparable in the prefix ordering;
2. CPos(t) N APos(t) =0 ;
3. Vp € Pos(t), if p & CPos(t) U APos(t) then 3lq € APos(t) s.t. ¢ is a prefix of p ;
4. capgp(t) = t[WR(tlp)]peAPos(t)
Lemma 2 Lett € T and 0 a substitution over T. Then:
1. APos(tf) = APos(t) W {pl - p2 | pl € P, 9,p2 € APos((t(p1))0)}
2. CPos(tf) = (CPos(t) — P,g) W {pl-p2 | pl € P,g,p2 € CPos((t(p1))0)}

where P, g = {p € CPos(t) | t(p) € dom(0)}.

3.2 General properties

Lemma 3 Assume f: 7 — A, where A is an abitrary set, s.t. f is compositional and compatible
with algebraic context (i.e. f(t) = f(u) implies that f(C[t]) = f(Clu]) for any terms t,u and
algebraic context C). Let R be a binary relation on T compatible with f (i.e. u R v implies
f(u) = f(v)). If {capg (w1) = capg (w2) | w1 R ws} b capg (u) = capg (v) then f(u) = f(v).

Proof. By induction on the length n of the equational derivation capy (u) <% capg (v). O

Lemma 4 (cap f-monotony) Given i) a substitution 6 whose domain is included in X and
i1) two binary relations R and R onT s.t. R CR'O (where SO = {(t0,ud) | t S u}), there exists
a substitution 572 s.t. for any term t € T, capp, (t0) = capg (¢)§R .

Corollary 1 (Monotony of DED) Let i) 0 a substitution whose domain is included in X and
i) two binary relations R and R’ on T s.t. R C R'0. Suppose that {capy(s) = capg(t) | s R

t} F capg (u) = capg (v). Then, {capg/(s) = capg/(t) | s R’ t} - capg, (u) = capg: (v).

3.3 Basic properties
Lemma 5 (Free variables) Assume that T'Ft:T. Then:

1. FV(t) UFV(T) C dom(T).
2. IfT =Ty, [z :2 T),Ty, then FV(T) C dom(T';).

Proof. (1) is proved by an immediate induction on I' ¢ : 7. (2) is an consequence of (1). O

Lemma 6 Ift ~r u, then CL(t) = CL(u).

Proof. By induction on ¢ ~r u, by case on the last rule used. The DED case is a corollary of
Lemma, 3. (I

Lemma 7 Assume that Tt :T. Then, CL(t) #L, CL(T) #L and CL(T) =CL(t) + 1

Proof. Direct induction on I' - ¢ : T. The CONV case is a corollary of Lemma 6. (|

Lemma 8 Assume that I' and A are two typing environments s.t. if [v " T] € I' with T —7
eq Utity and t1,t2 € O, then there exists y € dom(A) s.t. y is annotated with v in A, and
yA —>E eq Vﬁl tg. Then, NFQNA.

Proof. By proving that t ~r u = { ~a u, by induction on ¢ ~ . O

Projet RNTL : AVERROES / Lot 4.3 / Fourniture 3 / V1.0 7
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA, LRI, LSV

AVERROES — Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

Corollary 2 1. IfT' C A, then ~pCr~n.

2. If T =[xy :™ Ty]---[w, 2% Ty and A =[xy 2 TY] - [z, > T,) with Vi.b; =4 a;, then
~TC~A.

Lemma 9 (Compatibility) Assume that t ~p t'.
L Ift=(Nz:*U)V, thent' —5 (Vo :* U)V' withU ~r U', V ~p gy V' and b =4 a .
2. Ift=5s€S, thent' —} s.

3. Ift=xc XY, thent' —% T

Proof. 1. By induction on t ~r t', we can prove that if ¢ —7 (Vo :* U)V (resp. t' —} (Vx :
U)V'), then t' —7 (Vz :* U")V' (resp. t —% (Vo :* U)V) with U ~r U" and V' ~p op) V'
where a >4 b. The main arguments are i) since t —7 (Vo :* U)V, then it is of the form
(A (@129 Ty) - (2% T5)] (V2@ Up)Vig) Ax - - - A with Ug —75 U and Vg —5 V and ii) EQ
extract only object level equations. O

Lemma 10 1. Assume that 't :T. Then, FV(t) UFV(T) C dom(T").

2. Any subterm of a well formed term is well formed.

Lemma 11 (Weakening) Assume that ' - ¢ : T and A DT s.t. there exists at least one term
typable under A. Then A+t :T.

Lemma 12 1. IfTHt:T and A DT is a well formed environment, then A+t :T.

2. If Ty, s :* T), T3 is a well formed environment, then T1 F T : s.

Lemma 13 (Substitutivity) LetT' =T, [z :* W], T, 0 = {z — w}, A =T1,T'90 and two terms
T, T st i) T ~r T, i) T1Fw: W and iii) ifa =1 and W <% eq Vuv with V <5 V' € A,
then u ~r, v. Then, TO ~A T'0.

Proof. For any environment I s.t. dom(T") Ndom(T") = (), we prove the more general statement
T ~pp TV = T0 ~a 19 T'0, by induction on the proof of T ~p r T'. By case on the last rule
used:

o If T ~pp T is derived from a structural rule (LAM, PROD, APP) or the TRANS rule, we
obtain the result by application of the induction hypothesis on the premises.

o If T ~p s T" is obtained by the [rule. Then T' =5 T”. By compatibility of the f-reduction
with substitutions, we have T0 =3 70 and by application of the § rule, T0 ~a ¢ T"6.

o If T ~pp T’ is obtained from the EQ rule with the premises I, TV = T',, [z :* V],I'3 and
V% eq Viuwo with V! <5 V" € A, we distinguish 2 cases:

L. [z # z]. Then [z " VO] € A, 10 (x) and VO <7 eq (V'0) (uf) (v0) with V'O <% V"0 €
A (kx):

— (%) If z appears before z in ', I, then z € FV(V) (Lemma 5) and T, [x :* V] C T'y.
Thus, [z " VO] = [z " V] € 'y C A, IV0. Otherwise, [x :* V],T'g C I';, IV, thus
[z:"VO],Tg0 CT20,I'0 C A T6.

— (xx) We obtain the result by application of the compatibility of the S-reduction

with substitutions; and by remarking that since V" is necesseraly closed (V"' € A),
we have V"0 = V" € A.

Finally, from (*) and (xx), by application of the EQ rule, we have uf ~a r+ v6;

Projet RNTL : AVERROES / Lot 4.3 / Fourniture 3 / V1.0 8
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA, LRI, LSV

AVERROES — Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

2. lzr=zand W =V <} eq V' uv with V' <5 V" € A]. By confluence of 3-reduction,
there exists a term T s.t. V' —3 T and eq Viuv —7% T. Thus, T is necesseraly of
the form eq 7"u'v" with u —% v/, v —% v" and T" <% V" € A. By EQ rule, we
deduce that u' ~r, v'. From 2z ¢ FV(V) (Lemma 5) and V' —} eq 7"u'v’, we have
z € FV(u')UFV(v'), implying u'0 ~, v'6. Now, by S-compatibility with substitutions,
we have uf <7 u'0 (resp. vf <7 v'0) and thus (by application of the 3 rule) uf ~r, u'0
(resp. v ~r, v'9). Finally, by application of the TRANS rule, we obtain uf ~p, vf and
we conclude by Lemma, 2.

o If T ~p T’ is obtained from the DED rule, then by application of Lemma 1 to the rule
premise, we obtain:

{cap., (s) =cap.,(t) | s ~a t} b cap., (T) = cap., (T") (*)
We conclude by applying the DED rule to (x). O

Corollary 3 Let I' = I'y,[z :* W], Tq, 0 = {z — w}, and two terms t, T s.t. i)T +Ht:T,
i) 1 w: W and iii) if a =71 and W <% eq Vuv with V <5 V' € A, then u ~r, v. Then,
F17F29 Fto:T6.

Lemma 14 (Type correctness) Assume 't :T. Then, T=0 orT'FT:s€S.
Proof. By induction on I' ¢ : T, by case on the last rule used:

e [APPl.ie. THw :V{z v} withTH¢: (Vz:* V)W, TFv: V.

By induction hypothesis, there exists a sort s s.t. T' - (Vz :* V)W : s. By inversion, sy € S
st. T)[x :* V] F W : sy with s ~p sy, that is s = sy by Lemma 9. By substitutivity
lemma, I' - W{z — v} : s.

e All other cases are (even more) straightforward. O

Lemma 15 (Inversion) Assume that 't :T. Then:
1. ifte X%, thenTHT:s and ol ~0 T
2. if feF, then'F71p:sy and1p ~p T
3. i) ifte S, thent=x and T =0, ii) it is not possible that t = O
4

ift=wuv, theni) T wu: (Ve :* VYW, %) T'Fov:V and i) W{x — v} ~pr T. Moreover, if
a=r1 and V <7} eq V't ty with V' <% V" e A, then ty ~r ty

&

ift=Nz:*U)V, then i) THU :sy, i) T, [x:*UlFV :sy and iii) T ~r sy
6. ift = [Ax :® U, then i) T H U : sy, i) T,z Ul kv :V, @) Tz * U FV: sy,
w) TET: sy and v) (Vo :* U)V ~r T where sy is the sort of x.
Lemma 16 (Type unicity) Assume that T+t:T and TF¢:T'. Then T ~p T.

Proof. Inmmediate by structural induction on ¢ and by inversion lemma. (|

Lemma 17 Assume that T'-¢:T,t —gt' and T —gT’. Then, Tt : T and T" ¢ :T".

Proof. By induction on I' ¢ : T, we prove that i) ¢t -t = T'H¢ :T,andii) I -3 I" =
I" +t:T. By case on the last rule used:

e [VAR]. ie. t=2€ X5, T =T,[z:*T]and 'y F T : s. i) z € SN(f). ii) if the reduction is
on I'1, this is immediate. Else, by induction hypothesis, I'y - T” : s, and by the VAR rule,
Iy, [x:*T'+x:T'. We conclude by applying the CONvV rule.

Projet RNTL : AVERROES / Lot 4.3 / Fourniture 3 / V1.0 9
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA, LRI, LSV

AVERROES — Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

e [APP|. ie. t=uv, T=W{z— v}, Ttu: Vz: 2 V)W, T Fwv:V. If u—g, this is
immediate. If v —3 ¢/, then by induction hypothesis, I' - uv’ : W{z — v'}. By conversion
(W{x — v} ~p W{z +— v'}), we obtain T' - uv’ : W{z — v'}. Now, if u = [Az :* V']w and
wv —g w{xz — v}, by inversion, I, [z :* V'] F w : W/ with (Va :* V)W ~p (V2 :* V)W'.
Thus, by Lemma 9, V ~p V' and W ~r 5.0y) W’ with b = 4 a. By conversion, I' - v : V',
and by applying {z — v} to I',[z :* V] F w : W/, we have ' - w{z — v} : W' {x — v}.
Finally, by conversion, I' - w{z — v} F W{— v}.

e all other cases are straightforward. O

3.4 Logical consistency

Lemma 18 ($-normalization) Any well formed term is strongly normalizing for — 3.

Proof. Following [2], we will prove that ~ are proof irrelevant conversions. Let |-| : 7 — T U{o},
defined by:

|t] =0 ifteO

[v] =v if v e XPUFDU {x,0}

[tu] = |t||u] iftugg O

Mz @ Ut =[x 2@ |U])lt] if e Ult ¢ O

Assume that ¢ ~r u. By a simple induction on ¢ ~r u, we prove that [t| < |u| (here too, the
DED case is a corollary of Lemma 3). Hence, ~r are proof irrevelant relations and, from [2], all
well formed terms are strongly normalizing for —g. O

Corollary 4 (Logical consistency) If the first order theory embedded in the calculus is coher-
ent, there are no proofs of (VP :* x)P is the empty environment.

4 Further work

There are a lot of problems to be solved:

Implementation in the CoQ System. A basic prototype has been done in the MAUDE sys-
tem, and we know want to include decision procedures in CoQ. This part will required a
generalization of the abstract machine of Grégoire [12] in order to obtain a compiled version
of Coq.

Inductive Types. Prior to including decision procedures in CoQ, this work must be extended
to the Calculus of Inductive Constructions - the base logical framework of CoQ. This work
will be harder due to the presence of strong elimination which prevent us to use the proof
irrelevance in the proof of logical consistency.

References

[1] H. Barendregt. Lambda calculi with types. In S. Abramski, D. Gabbay, and T. Maibaum,
editors, Handbook of logic in computer science, volume 2. Oxford University Press, 1992.

[2] G. Barthe. The relevance of proof irrelevance, 1998. In Proc. of the 25th Int. Collog. on
Automata, Languages and Programming, LNCS 1443.

[3] F. Blanqui. Definitions by rewriting in the Calculus of Constructions, 2003. 57 pages. Math-
ematical Structures in Computer Science.

[4] F. Blanqui. Inductive types in the Calculus of Algebraic Constructions, 2004. 26 pages.
Fundamenta Informaticae.

Projet RNTL : AVERROES / Lot 4.3 / Fourniture 3 / V1.0 10
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA, LRI, LSV

AVERROES — Vérification de propriétés quantitatives et fonctionnelles
(Analysis and VERification for the Reliability Of Embedded Systems)

[5] F. Blanqui, J.-P. Jouannaud and P.-Y. Strub. A Calculus of Congruent Constructions, un-
published draft, 2005.

[6] Th. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-Lof and G.
Mints, editors, Proceedings of Colog’88, volume 417 of Lecture Notes in Computer Science.
Springer-Verlag, 1990.

[7] Coq-Development-Team. The Coq Proof Assistant Reference Manual - Version 8.0. INRIA
Rocquencourt, France, 2004. at URL http://coq.inria.fr/.

[8] T. Coquand and G. Huet. The Calculus of Constructions. Information and Computation,
76(2-3):95-120, 1988.

[9] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 6. North-Holland, 1990.

[10] E. Giménez. Structural Recursive Definitions in Type Theory. Proceedings of ICALP’98,
LNCS 1443, July 1998.

[11] G. Gonthier. The four colour theorem in Coq. Presentation at Types 2004.

[12] Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduction. Inter-
national Conference on Functional Programming 2002, pages 235-246, ACM Press.

[13] R. E. Shostak. An efficient decision procedure for arithmetic with function symbols. J. of the
Association for Computing Machinery 26(2):351-360, 1979.

[14] N. Shankar. Little Engines of Proof. Proc. FME 2002.

[15] Mark Oliver Stehr. Explicit substitutions and the Open Calculs of Constructions. Proc.
WRLA, 2002.

Projet RNTL : AVERROES / Lot 4.3 / Fourniture 3 / V1.0 11
CRIL Technology, France Télécom R&D, INRIA-Futurs, LIX, LaBRI, LORIA, LRI, LSV

