
Task Graph Scheduling using Timed Automata∗

Yasmina Abdeddaı̈m, Abdelkarim Kerbaa and Oded Maler

VERIMAG, Centre Equation, 2, av. de Vignate, 38610 Gières, France
Yasmina.Abdeddaim@imag.fr Abdelkarim.Kerbaa@imag.fr Oded.Maler@imag.fr

Abstract

In this paper we develop a methodology for treating the
problem of scheduling partially-ordered tasks on parallel
machines. Our framework is based on the timed automa-
ton model, originally developed for verification of real-time
programs and digital circuits and more recently adapted for
solving time-optimal scheduling problems. In this frame-
work, the scheduling problem admits a state-space repre-
sentation and an optimal schedule corresponds to a shortest
path in the timed automaton. We check our implementation
on numerous benchmarks and show how release times and
deadlines can be easily incorporated into the model.

1. Introduction

Timed Automata (TA) were introduced in [AD94] as a
model for real-time systems, that is discrete systems whose
behaviors are embedded in the real-time axis, where dis-
crete transitions interact with the passage of time. Using
this model one can express very naturally timing constraints
such as the duration of certain processes or the separa-
tion time between two events. In addition to the expres-
sive power, the reachability problem for timed automata
is decidable and hence they can be subject to algorithmic
verification (model-checking) [HNSY94], a fact exploited
in TA verification tools such as Kronos [Y97] and Uppaal
[LPW97b].

Although the initial motivation for TA models was veri-
fication of qualitative properties, for example, to show that
all behaviors of a given timed automaton never reach an un-
desired state, there is a growing interest in recent years to
extend the applicability of TA from verification to synthesis
and from qualitative to quantitative evaluation of behaviors.
In particular, the synthesis of schedulers that satisfy timing
constraints or that are optimal in some sense has attracted a

∗This work was partially supported by the Euro-
pean Community Project IST-2001-35304 AMETIST
http://ametist.cs.utwente.nl

lot of attention [MPS95, AMP95, AM99, AGP99, NTY00,
NY00, BFH+01].

In [AM01] we have initiated a research programme
intended to re-formulate in a systematic manner various
scheduling problems using TA. In this framework the runs
of the timed automaton correspond to feasible schedules
and finding a time-optimal schedule amounts to finding the
shortest path (in terms of elapsed time) in the automaton. In
[AM01] we have shown how this works nicely for the job-
shop scheduling problem which can be modeled by a certain
class of acyclic timed automata, having finitely many qual-
itative1 runs. Each such qualitative run is an equivalence
class of a non-countable number of quantitative runs, but as
we have shown, one of those (a “non-lazy” run which makes
transitions as soon as possible) is sufficient to find the opti-
mum over the whole class. These observations allowed us
to apply efficient search algorithms over single configura-
tions of clocks rather than work with zones.

In this work we extend these results to the problem
known as task graph scheduling, where one has to sched-
ule tasks on a limited number of identical machines, while
respecting some precedence constraints [C76]. A task graph
is thus a set of partially-ordered tasks, with an integer num-
ber (the task duration) associated with every node (see Fig-
ure 1). A task can be executed only if all its predecessors
in this graph have completed. This is a fundamental prob-
lem in parallel computation for which numerous algorithms
have been proposed (see [KI99] for a comparison of these
algorithms). The job shop problem can be viewed as a par-
ticular case where this graph is a set of linear chains, each
chain representing the precedence relation in one job (how-
ever in that problem the machines are not identical).

The rest of the paper is organized as follows. In section 2
we define the problem. Section 3 gives the basics of timed
automata. In section 4 we give two translation schemes for
transforming the scheduling problem into a timed automa-
ton, and mention briefly the algorithms used for the shortest
path problems. Experimental results with the implementa-

1By a qualitative run of a timed automaton we mean a sequence of
states and transitions without metric timing information.

1

2

1662

16 2

8

P2 P1

P6

P7 P5

P4P3

(a)

P2 P1

P6

P7 P5

P4P3

(b)

Figure 1. (a) A task graph. (b) A chain cover-
ing.

tion are described in section 5, followed by possible exten-
sions of the model, some of which (deadlines and release
times) already implemented.

2. The Problem

Definition 1 (Task Graph) A task graph is a triple G =
(P,≺, d) such that P = {P1, . . . , Pm} is a set of m tasks,
≺ is a partial-order relation on P and d : P → N is a
function which assigns a duration to each task.

We denote by Π(P) the set of immediate predecessors of P .
Given a set {M1, . . . , Mn} of n parallel identical machines,
we need to find the schedule that minimizes the total execu-
tion time and respects the following conditions: 1) A task
can be executed only if all its predecessors have completed;
2) Each machine can process at most one task at a time; 3)
Tasks cannot be preempted.

Definition 2 (Feasible and Optimal Schedules) A feasi-
ble schedule for a task graph G = (P,≺, d) and n ma-
chines is a function st : P → R+ (indicating the start time
of each task) satisfying:

1. For every P ∈ P st(P) ≥ maxP ′∈Π(P) st(P ′) +
d(P ′).

2. Every t ∈ R+ belong to at most n of set of intervals of
the form {[st(P), st(P) + d(P)] : P ∈ P}.

The length of the schedule is max{st(P)+d(P) : P ∈ P}.
An optimal schedule is a schedule whose length is minimal.

Note that in this paper we treat problems without commu-
nication costs so that the identity of the machines on which
a task is executed is not important.

If we have as many machines as we want, the optimal
schedule is obtained by starting every task as soon as its pre-
decessors terminate. In that case the length of the optimal
schedule is the length of the maximal path from a minimal
to a maximal element of (P,≺). The schedule of Figure 2-
(a) is an optimal schedule for the graph of Figure 1-(a) when
the number of machines is unlimited. Notice that 3 ma-
chines are sufficient to construct this schedule, because no
more than 3 tasks are enabled simultaneously, see Figure 2-
(b).

On the other hand, if we have only 2 machines the num-
ber of enabled tasks may exceed the number of available
machines and the conflict should be resolved by the sched-
uler. We can see in schedules S1 and S2 of Figure 3 that at
t = 2, P2 is already occupying M1 where both P3 and P4

become enabled. In S1 we give the remaining machine to
P3, and in S2 we give it to P4. Unlike the case of infinitely
many machines, an optimal schedule may be obtained by

0 2 18 20 268 16

P1

P3

P2

P4

P5

P6

P7

(a)

0 2 18 20 268 16

P1

M1

M2

M3

P3

P6P7

P5P4

P2

(b)

Figure 2. (a) An optimal schedule of the task
graph of Figure 1 when the number of ma-
chine is unlimited. (b) An optimal schedule
on 3 machines.

choosing at some point not to execute an enabled task. For
example, schedule S3 achieves the optimum while not start-
ing task P2 immediately although it is enabled at t = 0.

3. Timed Automata

Timed automata [AD94] are automata augmented with
continuous clock variables whose values grow uniformly at
every state. Clocks can be reset to zero at certain transitions
and tests on their values can be used as conditions for the
enabledness of transitions. Hence they are ideal for describ-
ing concurrent time-dependent behaviors.

Definition 3 (Timed Automaton) A timed automaton is a
tuple A = (Q, C, s, f,Δ) where Q is a finite set of states, C
is a finite set of clocks, and Δ is a transition relation con-
sisting of elements of the form (q, φ, ρ, q′) where q and q′

are states, ρ ⊆ C and φ (the transition guard) is a boolean
combination of formulae of the form (c ∈ I) for some clock
c and some integer-bounded interval I . States s and f are
the initial and final states, respectively.

A clock valuation is a function v : C → R+ ∪ {0}, or
equivalently a |C|-dimensional vector over R+. We denote
the set of all clock valuations by H. A configuration of the
automaton is hence a pair (q, v) ∈ Q × H consisting of
a discrete state (sometimes called “location”) and a clock
valuation. Every subset ρ ⊆ C induces a reset function

300 2 2418 222016

322018 248 16

24 282618820

20

P4

S2

P6

P3P2

P4

P1

P7

P2

S1

P7

P5

S3

P7P6P2

P5

P3

P1

P6

P5P3 P4P1

Figure 3. Three feasible schedules of the task
graph of Figure 1 on 2 machines.

Resetρ : H → H defined for every clock valuation v and
every clock variable c ∈ C as

Resetρ v(c) =
{

0 if c ∈ ρ
v(c) if c 	∈ ρ

That is, Resetρ resets to zero all the clocks in ρ and leaves
the other clocks unchanged. We use 1 to denote the unit
vector (1, . . . , 1) and 0 for the zero vector.

A step of the automaton is one of the following:

• A discrete step: (q, v) 0−→ (q′, v′), where there exists
δ = (q, φ, ρ, q′) ∈ Δ, such that v satisfies φ and v′ =
Resetρ(v).

• A time step: (q, v) t−→ (q, v + t1), t ∈ R+.

A run of the automaton starting from a configuration
(q0, v0) is a finite sequence of steps

ξ : (q0, v0)
t1−→ (q1, v1)

t2−→ · · · tn−→ (qn, vn).

The logical length of such a run is n and its metric length
is t1 + t2 + · · · + tn. Note that discrete transitions take no
time.

4. Modeling with Timed Automata

Our goal is to model the task graph scheduling problem
using a timed automaton so that every run corresponds to

p1 p2 p3

c1 = 2 c2 = 16 c3 = 6

p1/

c3 := 0c2 := 0c1 := 0

p1/

c4 := 0

c4 = 16

p4

p3 ∧ p4/

c5 := 0

p5

p1 ∧ p2/

c6 := 0

c6 = 2c5 = 8

p6

c7 := 0
p3 ∧ p6/

c7 = 2

p7

p2

p2

p3

p3

p1

p1

p4

p4 p5

p6

p6

p7

p7

p5

Figure 4. The automata for the task graph of
Figure 1

a feasible schedule and the shortest run gives the optimal
schedule. In order to compose timed automata we slightly
modify the definition of the transition relation Δ to include
tuples of the form (q, φ, ρ, q′) where φ is either, as before, a
combination of clock inequalities, or a formula specifying
states of other automata.

For every task P we build a 3-state automaton with one
clock c and a set of states Q = {p, p, p} where p is the
waiting state before the task starts, p is the active state where
the task executes and p is a final state indicating that the task
has terminated. The transition from p to p resets the clock
and can be taken only if all the automata corresponding to
the tasks in Π(P) are in their final states. The transition
from p to p is taken when c = d(p). The automata for the
task graph of Figure 1 appear in Figure 4.

Definition 4 (Timed Automaton for a Task)
Let G = (P,≺, d) be a task graph. For every task P ∈ P its
associated timed automaton is A = (Q, {c}, Δ, s, f) with
Q = {p, p, p} where the initial state is p and the final state
is p. The transition relation Δ consists of the two transi-
tions:

start : (p,
∧

P∈Π(P)

p′, {c}, p)

and
end : (p, c = d(p), ∅, p)

The global automaton representing all the feasible sched-
ules can be obtained as a composition of the individual task
automata, a composition that takes care that the start transi-
tions do not violate the precedence and resource constraints.
This is achieved by allowing such a transition in a global
state only if its guard is satisfied in that state and the num-
ber of active tasks (tasks in a p-state) in the resulting state
does not exceed the number of machines.

Although in terms of the number of reachable global
states this automaton is as good as we can get, it has some
features which make its analysis impractical and which can
be improved. The global states are m-tuples where m can
be very large and the number of clocks is m as well. In

reality, however, even when infinitely many machines are
available, the number of tasks that can be active simultane-
ously is bounded by the width of the task graph, the maxi-
mal number of elements incomparable with respect to ≺.

Definition 5 (Chain) A chain in a partially-ordered set
(P,≺) is a subset P ′ of P such that for every P, P ′ ∈ P ′

either P ≺ P ′ or P ′ ≺ P .

Definition 6 (Chain Cover) A chain covering of
a partially-ordered set (P,≺) is a set of chains
H = {H1, . . . Hk} satisfying

1. Each Hi is a linearly ordered subset of P .

2. Hi ∩ Hj = ∅ for every i 	= j.

3.
⋃

i≤k Hi = P

An example of a chain cover for our task graph appears in
Figure 1-(b). It is worth mentioning that chain covers are
related to the width of a partial order via Dilworth’s theorem
[D50].

Theorem 1 (Dilworth) The width of a partial order is
equal to the minimal number of chains needed to cover it.

The external predecessors of a task P ∈ Hi are the pre-
decessors of P outside its chain, i.e.

Π′(P) = Π(P) ∩ (P − Hi).

Given a chain H = P1 ≺ P2 ≺ · · · ≺ Pk its automaton
consists of a pair of state {pi, pi} for every Pi and a final
state f . The start transition from pi to pi is enabled if for
every j 	= i and P ′ ∈ Π′(P) ∩ Hj , the automaton for the
chain Hj is in a state beyond p′. We denote this condition
by: ∧

P ′∈Π′(P)

> p′.

After having constructed an automaton for every chain
(see Figure 5) we compose these together, while avoiding
global states when the number of active chains is larger than
the number of machines. A global state q = (q1, . . . , qn) of
the product automaton is said to be conflicting if it contains
more than n active components.

Definition 7 (Mutual Exclusion Composition)

Let H = {H1, . . . , Hn} be a chain cover of a task
graph and let Ai = (Qi, Ci, Δi, si, f i) be the automaton
corresponding to each Hi. Their mutual exclusion compo-
sition is the automaton A = (Q, C, Δ, s, f) such that Q
is the restriction of Q1 × . . . Qn to non-conflicting states,
C = C1 ∪ . . . ∪ Cn, s = (s1, . . . , sn), f = (f1, . . . , fn)

c1 = 2 c2 = 6

c1 := 0 c2 := 0

f

p2

p2

c1 = 16

p6

p6

p7

p7

c1 = 2

f

p1

c2 = 2

p1

p3

c2 := 0

p3

p5

p5

c2 = 6

f

p4

p4

c3 = 16

> p1/c3 := 0

> p1/c1 := 0

> p3/c1 := 0 > p4/c2 := 0

Figure 5. The automata for the chain cover of
Figure 1-(b)

and the transition relation Δ contains all the tuples of the
form

((q1, . . . , qa, . . . , qn), φ, ρ, (q1, . . . , pa, . . . , qn))

such that (qa, φ, ρ, pa) ∈ Δa for some a, the guard φ is sat-
isfied in (q1, . . . , qa, . . . , qn) and both (q1, . . . , qa, . . . , qn)
and (q1, . . . , pa, . . . , qn) are non-conflicting.

We say that a run of A is complete if it starts at (s, 0) and
the last step is a transition to f . The correspondence be-
tween run and schedules is straightforward (see [AM01]):
From every complete run ξ one can derive a schedule stξ
such that stξ(P) is the time where the automaton for the
chain containing P makes a start transition to state p. Like-
wise one can generate from a feasible schedule st a com-
plete run ξst of the same length.

Corollary 2 (Task Graph Scheduling and Timed Automata)
The optimal task graph scheduling problem can be reduced
to the problem of finding the shortest path in a timed
automaton.

The timed automaton of Figure 6 represents a part of the
timed automaton obtained by composing the automata of
Figure 5 when there are 2 machines. This automaton has

only 3 clocks (the number of chains in the cover). In the
initial state, where tasks P2, P1 and P4 are waiting, there are
only two possible successors, to start P2 (state (p2 p1 p4))
or to start P1 (state (p2 p1 p4)). The transition to the state
(p2 p1 p4) is disabled because task P1 has not terminated.
No start transition can be taken from (p2, p3, p4) because all
the machines are occupied in this state. Schedules S2 and
S3 of Figure 3 correspond, respectively, to the following
two runs of the automaton:

(p2, p1, p4,⊥,⊥,⊥)
0−→ (p2, p1, p4,⊥, 0,⊥)

0−→ (p2, p1, p4, 0, 0,⊥)
2−→ (p2, p1, p4, 2, 2,⊥)

0−→ (p2, p3, p4, 2,⊥,⊥)
0−→ (p2, p3, p4, 2,⊥, 0)

0−→ (p2, p3, p4, 2,⊥, 0)
14−→ (p2, p3, p4, 16,⊥, 14)

0−→ (p6, p3, p4,⊥,⊥, 14)
0−→ (p6, p3, p4,⊥, 0, 14)

2−→ (p6, p3, p4,⊥, 2, 16)
0−→ (p6, p3, f,⊥, 2,⊥)

0−→ (p6, p3, f, 0, 2,⊥)
2−→ (p6, p3, f, 2, 4,⊥)

0−→ (p7, p3, f,⊥, 4,⊥)
2−→ (p7, p3, f,⊥, 6,⊥)

0−→ (p7, p5, f,⊥,⊥,⊥)
0−→ (p7, p5, f, 0,⊥,⊥)

0−→ (p7, p5, f, 0, 0,⊥)
0−→ (p7, p5, f, 2, 0,⊥)

2−→ (f, p5, f,⊥, 2,⊥)
6−→ (f, p5, f,⊥, 8,⊥)

0−→ (f, f, f,⊥,⊥,⊥)

(p2, p1, p4,⊥,⊥,⊥)
0−→ (p2, p1, p4,⊥, 0,⊥)

2−→ (p2, p1, p4,⊥, 2,⊥)
0−→ (p2, p3, p4,⊥,⊥,⊥)

0−→ (p2, p3, p4,⊥, 0,⊥)
0−→ (p2, p3, p4,⊥, 0, 0)

6−→ (p2, p3, p4,⊥, 6, 6)
0−→ (p2, p5, p4,⊥,⊥, 6)

0−→ (p2, p5, p4, 0,⊥, 6)
10−→ (p2, p5, p4, 10,⊥, 16)

0−→ (p2, p5, f, 10,⊥,⊥)
0−→ (p2, p5, f, 10, 0,⊥)

6−→ (p2, p5, f, 16, 6,⊥)
0−→ (p6, p5, f,⊥, 6,⊥)

0−→ (p6, p5, f, 0, 6,⊥)
2−→ (p6, p5, f, 2, 8,⊥)

0−→ (p7, p5, f,⊥, 8,⊥)
0−→ (p7, f, f,⊥,⊥,⊥)

0−→ (p7, f, f, 0,⊥,⊥)
2−→ (p7, f, f, 2,⊥,⊥)

0−→ (f, f, f,⊥,⊥,⊥)

5. Implementation and Experimental Results

We have first implemented an algorithm for finding a
chain covering for a given partial order. Although the com-
putation of the width and its associated cover is known to
be polynomial (via reduction to the max-flow problem), we
do not compute it exactly but use a fast and simple algo-
rithm to approximate it. Then we construct an automaton
for each chain and apply a variant of the our shortest paths
algorithm for finding algorithm for acyclic timed automata
developed in [AM01]. This algorithm works on-the-fly and
generates global states during the search. Since the schedul-
ing problem is NP-hard, we cannot find the optimal solu-
tion for large problems and we use a sub-optimal algorithm,
based on a combination of best-first search and breadth-first,
where at each level of the search tree, a fixed number of suc-
cessors is explored (see [AM01]).

To test our approach we took several benchmark prob-
lems from [TKK00] having up to few thousands of tasks.2

For each of them we applied the above procedure for around
1 minute. As one can see from Table 5, our results are very
close to the optimal results reported in [TKK00].

2The benchmarks can be found in
http://www.kasahara.elec.waseda.ac.jp/schedule/

p6 p5 f

p6 p5 f

p7 p5 f

p7 f f

p7 f f

p2 p3 p4p2p1p4p6 p1 p4

p2 p1 p4

c2 := 0

c2 := 0

c2 = 2
c1 := 0

c1 := 0

c1 = 16

c2 := 0
c1 = 16

c2 = 2
c1 := 0

c2 := 0 c3 := 0

c3 := 0
c1 := 0

p2 p5 f

p2 p3 p4p6 p1 p4 p2 p3 p4

p2 p3 p4

p2 p3 p4

p2 p3 p4p6 p3 p4 p2 p3 fp2 p3 p4

p6 p3 p4 p2 p5 p4p6 p3 p4 p2 p3 f p2 p5 p4

p6 p3 p4

p6 p3 f

p6 p3 f

p7 p3 f

p7 p5 f

p7 p5 f

p7 p5 f

f p5 f

p2 p5 p4

p2 p5 f

c1 := 0

c3 = 16

c2 = 6 c1 = 2
f f f

c2 := 0

p6 p3 p4

p6 p3 p4 p2 p3 f

p2 p1 p4 p2 p1 p4

c1 := 0

c1 = 2

c2 = 6

c1 := 0

c2 := 0

c1 = 2

c3 = 16 c3 = 16

c2 := 0

c1 = 16

c1 := 0

c1 = 2

c2 = 6

c1 := 0

c1 := 0

c2 := 0c3 = 16c3 := 0c1 = 16

c2 := 0
c2 = 6

c2 = 2

c3 = 16 c2 = 6

c3 = 16
c1 := 0

c2 := 0
c2 = 6

c1 = 16

c3 := 0

c1 := 0

c1 := 0
c2 := 0

c1 = 16

c3 := 0

p2 p5 fp6 p3 f

c1 := 0 c3 = 16

p2 p5 p4

Figure 6. Part of the timed automaton ob-
tained by composing the automata of Fig-
ure 5 for the case of 2 machines. The two
runs corresponding to the schedules S2 and
S3 are indicated by the dashed and dotted
lines, respectively.

name #tasks #chains # machines optimal TA
001 437 125 4 1178 1182
000 452 43 20 537 537
018 730 175 10 700 704
074 1007 66 12 891 894
021 1145 88 20 605 612
228 1187 293 8 1570 1574
071 1193 124 20 629 634
271 1348 127 12 1163 1164
237 1566 152 12 1340 1342
231 1664 101 16 t.o. 1137
235 1782 218 16 t.o. 1150
233 1980 207 19 1118 1121
294 2014 141 17 1257 1261
295 2168 965 18 1318 1322
292 2333 318 3 8009 8009
298 2399 303 10 2471 2473

Table 1. Computation of optimal schedules
for benchmark problems. Our results appear
in the TA column.

6. Extensions and Conclusions

We extend our model to include two additional feature
that are often present in computer scheduling problems,
deadlines and release times. For every task Pj a deadline
λ(j) indicates that the task must imperatively terminate
before time t = λ(j). The release time r(j) indicates that
the task can not be executed before time t = r(j). Hence
a feasible schedule st must respect, in addition, two new
constraints:

• ∀Pj ∈ P st(Pj) + d(j) ≤ λ(j).

• ∀Pj ∈ P st(Pj) ≥ r(j).

These features are easily integrated into the model by
making reference to an additional clock t which is never re-
set and hence it measures absolute time (Figure 7). This
clock is used already by the shortest path algorithm. This
way a complete run corresponds to a feasible schedule re-
specting the additional constraints (a run fragment violating
a deadline cannot be completed). The results of [AM01]
concerning non-lazy schedules hold in this setting as well.
We have implemented these features.

There are some useful features that are not yet covered
by our model and which are subject to ongoing work:

1. Relative deadlines: in some applications constraints of
the form st(P) − st(P ′) ≤ λ should be satisfied. Al-
though in terms of modeling such an extension is not
difficult to implement, it makes the nature of the so-
lutions more complicated. Roughly speaking, without

p

p

p

t ≥ r ∧

c = d ∧ t ≤ λ

∧
P ′∈Π(P) > p′/c := 0

Figure 7. An automaton for a task with re-
lease time r and deadline λ.

relative deadlines the scheduling has a “monotone” na-
ture and if a schedule st is feasible, so is and schedule
st′ ≤ st obtained from st by moving forward the start
time of one or more tasks. With relative deadlines, it
can make sense to delay the beginning of P ′, not in or-
der to give the machine to another task but in order not
to start it too early relative to a later task P .

2. Communication costs: if the tasks communicate with
each other to transfer data, the cost of this commu-
nication may depend on whether they execute on the
same machines. To capture this phenomenon we need
a model in which the identity of the machines on which
tasks are executed is represented, and in which the
structure of the task may vary according to scheduler
decisions. For example, if P ≺ P ′ and they run on
different machines, a new “communication” task has
to be inserted between them.

3. Other resources: a task may need additional resources
such as disks and printers that are taken and released at
certain points in its execution. This feature can be inte-
grated into the model by annotating states with the sets
of resources their associated tasks occupy and modify
the definition of composition accordingly.

To summarize, we have shown how “formal” state-based
models can be used to express parallel scheduling problems
and support efficient algorithmics for solving these prob-
lems. A more comprehensive description of the automata-
theoretic approach to scheduling can be found in [A02]. We
are currently working on various extensions of our model-
ing framework in order to get closer to real-world problems.

References

[A02] Y. Abdedadı̈m, Scheduling with Timed Au-
tomata, PhD Thesis, INPG, Grenoble, 2002.

[AM01] Y. Abdeddaı̈m and O. Maler, Job-Shop
Scheduling using Timed Automata in
G. Berry, H. Comon and A. Finkel (Eds.),
Proc. CAV’01, 478-492, LNCS 2102,
Springer 2001.

[AGP99] K. Altisen, G. Goessler, A. Pnueli, J. Sifakis,
S. Tripakis and S. Yovine, A Framework for
Scheduler Synthesis, Proc. RTSS’99, 154-
163, IEEE, 1999.

[AD94] R. Alur and D.L. Dill, A Theory of Timed Au-
tomata, Theoretical Computer Science 126,
183-235, 1994.

[AM99] E. Asarin and O. Maler, As Soon as Possi-
ble: Time Optimal Control for Timed Au-
tomata, Proc. HSCC’99, 19-30, LNCS 1569,
Springer, 1999.

[AMP95] E. Asarin, O. Maler and A. Pnueli, Sym-
bolic Controller Synthesis for Discrete and
Timed Systems, Hybrid Systems II, LNCS
999, Springer, 1995.

[BFH+01] G. Behrmann, A. Fehnker T.S. Hune,
K.G. Larsen, P. Pettersson and J. Romijn,
Efficient Guiding Towards Cost-Optimality
in UPPAAL, Proc. TACAS 2001, 174-188,
LNCS 2031, Springer, 2001.

[C76] E.G. Coffman, Computer and Job-Shop
Scheduling Theory, Wiley, 1976.

[D50] R.P. Dilworth, A Decomposition Theorem for
Partially Ordered Sets, Ann. Math. 51, 161-
166, 1950.

[HNSY94] T. Henzinger, X. Nicollin, J. Sifakis, and
S. Yovine, Symbolic Model-checking for
Real-time Systems, Information and Compu-
tation 111, 193-244, 1994.

[KI99] K.-Y. Kwong, A. Ishfaq, Benchmarking and
Comparison of the Task Graph Scheduling,
Journal of Parallel and Distributed Comput-
ing 59, 381-422, 1999.

[LPW97b] K.G. Larsen, P. Pettersson and W. Yi, UP-
PAAL in a Nutshell, International Journal
of Software Tools for Technology Transfer 1,
1997

[MPS95] O. Maler, A. Pnueli and J. Sifakis. On the
Synthesis of Discrete Controllers for Timed
Systems, Proc. STACS’95, LNCS 900, 229-
242, Springer, 1995.

[NTY00] P. Niebert, S. Tripakis S. Yovine, Minimum-
Time Reachability for Timed Automata, IEEE
Mediteranean Control Conference, 2000.

[NY00] P. Niebert and S. Yovine, Computing Opti-
mal Operation Schemes for Chemical Plants
in Multi-batch Mode, Proc. HSCC’2000, 338-
351, LNCS 1790, Springer, 2000.

[TKK00] T. Tobita, M. Kouda and H. Kasahara, Per-
formance Evaluation of Minimum Execu-
tion Time Multiprocessor Scheduling Algo-
rithms Using Standard Task Graph Set, Proc.
PDPTA’2000, 745-751, 2000.

[Y97] S. Yovine, Kronos: A Verification Tool for
Real-time Systems, International Journal of
Software Tools for Technology Transfer 1,
123-133, 1997.

