
CONTROLLER SYNTHESIS FOR TIMED AUTOMATA �

Eugene Asarin � Oded Maler �� Amir Pnueli ���

Joseph Sifakis ��

� Institute for Information Transmission Problems� �� Bol�
Karetnyi per� ������ Moscow� Russia� asarin�ippi�ras�ru

��
Verimag� 	� av� de Vignate� 
����� Gieres� France�

fOded�Maler�Joseph�Sifakisg�imag�fr
���Department of Computer Science� Weizmann Institute of

Science� Rehovot ������ Israel� amir�wisdom�weizmann�ac�il

Abstract� In this work we tackle the following problem� given a timed automaton�
restrict its transition relation in a systematic way so that all the remaining behaviors
satisfy certain properties� This is an extension of the problem of controller synthesis
for discrete event dynamical systems� where in addition to choosing among actions�
the controller have the option of doing nothing and let the time pass� The problem is
formulated using the notion of a real�time game� and a winning strategy is constructed
as a �xed�point of an operator on the space of states and clock con�gurations�

�� INTRODUCTION

The problem of synthesizing controllers for dis�
crete event systems has been studied extensively�
under di�erent titles� both by the computer sci�
ence 	e�g� 
BL��� 
TB��� 
PR��� and the con�
trol 	e�g� 
RW��� 
KG��� communities� In this
paper we extend the basic synthesis algorithm to
treat systems with quantitative timing informa�
tion� modeled using the powerful model of Timed
Automata 
AD��� In the rest of this section we
give a short tutorial to the game�theoretic for�
mulation of the synthesis problem� In section �
we de�ne formally and solve the problem for dis�
crete systems� In essence� this is just a state�based
	rather than language�based� reformulation of the
Ramadge�Wonham theory� Section � is devoted to
introducing the model of Timed Game Automa�
ton� the formulation of the synthesis problem� the
solution and a proof of its correctness� Finally we
discuss some implications of the results� Prelimi�
nary work on this topic has been reported by the
authors in 
MPS��� and in 
AMP�� where more
extensive introduction and bibliography appear�

��� Game�Theoretic view of Controller Synthesis

The interaction between a controller and the plant
it is supposed to supervise can be seen as some
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variant of the two�person antagonistic games in�
troduced already by von�Neumann and Morgen�
stern 
NM��� A strategy for a given game is a rule
that tells the controller how to choose between
several possible actions in any game position� A
strategy is winning if the controller� by following
these rules� always wins 	according to a given
de�nition of winning� no matter what the envi�
ronment does�

Strategy extraction for �nite�state games is done
using the max�min principle of 
NM��� disguised
sometimes as searching AND�OR trees or as the
elimination of an alternating pair of the logical
quanti�ers � and � � This principle is illustrated
using the game depicted at �gure �� The game
starts from position �� The controller can choose
between actions a� and a� while the environment
can choose between b� and b�� The winning con�
dition is speci�ed via some subset F of f�� �� �� �g�
A run of the game is winning if it ends up in
an element of F � Suppose F � f�� �g � in this
case the controller has no winning strategy at
state � because if it chooses a�� the adversary
can take b� and reach state �� If it chooses a� the
adversary can reach state � by taking b�� Hence� �
is not a winning position� If� however� we consider
a game with the same transition structure but
with F � f�� �g then there is a winning strategy
as the controller can� by making a�� �force� the
environment into F �



� �

�

�a�� b�� �a�� b�� �a�� b��

��

�a�� b��

Fig� �� A simple game�

Trivial as it might seem� this is the essence of any
synthesis algorithm� a fact which is sometimes ob�
scured by fancy technicalities� The mathematical
formulation of this notion for a game with a state�
space Q is via an operator � � �Q � �Q assign�
ing for every F � Q the set �	F � denoting its
controllable predecessors� that is� the set of states
from which the controller can force its adversary
into F � In the example above f�g �� �	f�� �g�
and f�g � �	f�� �g�� Calculating this operator�
together with some set�theoretical operations con�
stitutes the core of any synthesis algorithm� After
formalizing and solving the discrete problem in
the next section� we will turn to the timed case
where the state�space contains continuous clocks�
and see how the passage of time adds to the
problem complexity�

�� UNTIMED SYSTEMS

We assume two players A 	controller� and B
	environment� who play on a state�space Q� At
every instant of the game� each player chooses
one admissible action and the game progresses
according to the mutual choice of the two players�
A strategy for A is a restriction of its set of
admissible actions at a given state in order that
all the remaining runs of the system meet certain
criteria�

��� Game Automata

Let Q be a �nite set of states and A� B two �nite
sets of actions�

De�nition �� 	Game Automaton��
A game automaton 	GA� is a tuple A �
	Q�A�B� TA� TB� �� where TA � Q�A and TB �
Q � B are enabling conditions for the two types
of actions� and the transition function � � Q �
A�B � Q indicates which state is reached when
performing a joint action�

We always assume that �	q� a� b� is de�ned when�
ever 	q� a� � TA and 	q� b� � TB�

De�nition 	� 	Steps and Runs�� A joint step of A
is

q
�a�b�
	� q�

	q� a� � TA and 	q� b� � TB such that q� �
�	q� a� b�� A run of A is a sequence 	�nite or
in�nite� of joint steps of the form�

� � q�
�a��b��
	� q�

�a��b��
	� q� � � �

We denote by L	A� P � the set of all runs starting
from some q � P � Q� The set of states reachable
by a run � is denoted by Reach	�� and the set of
states reachable from P by some run in L	A� P �
is denoted by Reach	A� P ��

An automaton is non�blocking if for every q � Q
there are a � A and b � B such that 	q� a� � TA

and 	q� b� � TB � In a non�blocking automaton
every �nite run can be extended to an in�nite
one� Given some TA � Q � A� we denote by
S	TA� the set of states on which TA is de�ned�
The restriction of TA to some Q� � Q is denoted
by TA

jQ� � TA 
 f	q� a� � q � Q�g

The GA de�nes the �arena� in which the two
players play� What is cosidered a winning run
is de�ned by di�erent acceptance condition� Such
conditions classify a run as good or bad according
to the number of times certain states are visited�
A strategy for A is a restriction of TA such that
all the remaining runs are accepting� In this ab�
stract� like in 
AMP��� we focus on the most
basic condition of safety which essentially means
�avoid forbidden states�� In 
MPS�� and in a
forthcoming paper� additional acceptance criteria
are discussed along with their corresponding syn�
thesis algorithms�

��� Safety Games

In a safety game� the goal of player A is to keep
the game inside a subset G of Q� The winning
states of the game are thus the states from which
A can� by properly chosing its actions� prevent
the game from going outside G� A straightforward
solution would be to restrict the automaton to G
and remove for every q � G all the a choices which
might lead outside G� However� this procedure
might lead to a blocking situation and hence an
iterative procedure is needed in order to assure
that the winning states are indeed the state where
the automaton can proceed inde�nitely without
leaving G�

De�nition 
� 	Controller Synthesis for ��Games��
Given a GA A � 	Q�A�B� TA� TB� �� and a
set G � Q� the controller synthesis prob�
lem Synth	A� G��� is� �nd the maximal sub�
set Q�� Q� � G � Q� and the maximal TA

� �
TA
� � TA

jG � TA� such that the automaton

A� � 	Q�� A�B� T
A
� � T

B
jQ�

� ��� is non�blocking
and Reach	A�� Q�� � G� 	The latter fact is im�
plied by Q� � G��

The relation TA
� is called a winning strategy for A

and the set Q� is the set of corresponding winning
states� Usually Q� will be smaller than G as states
from which leaving G is unavoidable are removed�
Also TA

� will be smaller than TA
jQ�

because
transitions that can lead to bad consequences are
removed� The calculation of A� from A and G is
performed by an iterative process which removes



bad transitions 	and states� from TA� using the
following operator�

De�nition �� 	Controllable Predecessor�� LetA be
a GA� The operator � � �Q � �Q�A is de�ned as

�	P � � f	q� a� � �b � B 	q� b� � TB � q
�a�b�
	� Pg

In other words� 	q� a� � �	P � i� by doing a at
q� A forces the game into P no matter what B
does� The algorithm for calculating TA

� proceeds
by calculating a sequence A
i of automata�A
i �
	Q
i� A�B� TA
i� TB� �� as follows�

Algorithm �� 	Winning Strategy for ��Games��

TA
� �� TA
jG

Q
� �� G
for i � �� �� � � � � repeat

TA
i �� TA
i	 � 
 �	Q
i	 ��
Q
i �� S	TA
i�

until Q
i � Q
i	 �
TA
� �� TA
i

Q� �� Q
i

Claim �� 	Properties of Algorithm ��� For every i�
�� The automaton A
i is well�de�ned and non�
blocking and Q
i � G� �� If 	q� a� �� TA
i� then
whatever A does after chosing a at q� B can drive
the automaton outside G within at most i steps�

Proof� By induction� the base case follows triv�
ially from the initialization of the algorithm� Sup�
pose it is true for i 	 �� Then� by de�nition we
have� �� if q � Q
i then there exists at least one a
such that 	q� a� � TA
i� and �� from �Q
i there
is an unavoidable step leading to �Q
i 	 � and
hence� by the induction hypothesis� �� all runs can
be extended to length i� and �� from every state
in �Q
i � � there is an unavoidable run of A of
length not greater than i leaving G�

Since �Q is a �nite set and the sequences Q
i
and TA
i are monotone decreasing� the algorithm
converges after a �nite number of steps to a �xed�
point TA

� � �	Q���

Corollary �� 	Correctness of Algorithm ��� Let
A� be the result of algorithm �� Then� �� A� is
non�blocking and Reach	A�� Q�� � G� �� Any
other subset of TA satisfying 	�� is included in
TA
� �

�� TIMED SYSTEM

��� Real�Time Games

In real�time games the outcome of the players�
actions depend also on their timing because per�
forming the same action �now� or �later� might
have completely di�erent consequences� For such
games we take the model of timed automata

AD��� in which automata are equipped with
auxiliary continuous variables called clocks which

grow uniformly when the automaton is in some
state� The clocks interact with the transitions by
participating in pre�conditions 	guards� for cer�
tain transitions and they are possibly reset when
some transitions are taken�

In this continuous�time setting� a player might
choose at a given moment to wait some time t
and then take a transition� In this case� it should
consider not only what the adversary can do after
this action but also the possibility that the latter
will not wait for t time� and perform an action at
some t� � t�

While synthesizing a controller for timed au�
tomata one should be careful not letting any of the
players win by �Zenonism�� that is� by preventing
the time from progressing as does the Tortoise in
its race against Achilles�

��� Timed Game Automata

Let Q be a �nite set of states and let X � IRd

for some integer d be the clock space� We denote
elements ofX as x � 	x�� � � � � xd� and use � for the
zero vector and x� t for x�	t� t� � � � � t�� Elements
of Q�X are called con�gurations� A subset ofX is
called a k�zone if it can be obtained as a boolean
combination of inequalites of the form xi  c�
xi � c� xi 	 xj  c� where c � f�� �� � � � � kg� The
set of zones is denoted by Z	X�� These properties
of subsets of X extend naturally to subsets of
Q � X � e�g� we say that P � Q � X is a zone
if it can be written as �nite union of sets of the
form fqig � Pi such that all the Pi�s are zones�
A function � � X � X is a reset function if it
sets some of the coordinates of its argument to �
and leaves the others intact� The set of all such
functions is denoted by F	X�� We assume two
�nite sets of actions A and B� a special empty
action 	 and let A� � A � f	g and B� � B � f	g�

De�nition �� 	Timed Game Automaton��
A Timed game automaton 	TGA� is a tuple A �
	Z�A�B� TA� TB � �� �� where Z � Q�X is a zone�
Q and X are the state and clock spaces� A and B
are two distinct action alphabets� TA � Q�X �
A� and TB � Q�X �B� are timing constraints
for the two types of actions� the functions � � Q�
A� � B� � Q and � � Q � A� � B� � F	X�
indicate which state is reached when performing
a 	possibly joint� action and which clocks are reset
in that occasion�

Further requirements are the following� for every
state q and action a � A�� the set TA	q� a� �
fx � 	q�x� a� � TAg is a k�zone� We assume k
to be �xed throughout the paper � it is the
largest constant in the de�nition of the TGA�
Similar requirements hold for TB� We assume that
�	q� 	� 	� � q and that �	q� 	� 	� is the identity
function 	if both sides refrain from action nothing
happens�� Finally we require that the automaton
is strongly non�Zeno� that is� in every cycle in the
transition graph of the automaton 	induced by ���
there is at least one transition which resets a clock



variable xi to zero� and at least one transition
which can be taken only if xi � �� This is a very
important condition as it prevents the controller
and the environment to achieve their goals using
unrealistic tricks that stop time� The restriction
of TA to some set of con�gurations Z � is denoted
by TA

jZ� and the set of con�gurations on which

TA is de�ned is denoted by S	TA��

Intuitively� when the automaton is at a con�gura�
tion 	q�x�� time can progress as long as both play�
ers agree� that is� 	q�x� 	� � TB 
 TA� As soon as
one of them can take an action� i�e� 	q�x� a� � TA

for some a � A or 	q�x� b� � TB for some b � B�
or both� a transition can be taken� This can be
formalized as follows�

De�nition �� 	Steps and Runs�� A joint step of a
TGA A is 	q�x� 	� 	q��x�� which is either

	�� a time step 	of duration t��

	q�x�
t
	� 	q�x � t�

such that t 
 �� and for every t� � t�
	q�x� t�� 	� � TA 
 TB �

	�� a discrete step

	q�x�
�a�b�
	� 	q��x��

such that 	a� b� �� 		� 	�� 	q�x� a� � TA�
	q�x� b� � TB� q� � �	q� a� b�� and x� �
�	q� a� b�	x��

A run of a TGA A starting from 	q��x�� is a
sequence of joint steps

� � 	q��x�� 	� 	q��x�� 	� � � �

such that either � is �nite and arbitrarily large
time steps are enabled after the last con�guration�
or � is in�nite and the sum of the durations of the
time steps diverges�

Note that 	q�x� 	� � TA 
 TB means that both
A and B agree to let time progress by a positive
amount� On the other hand it is possible to reach
a state where 	 is not permitted by one or more
of the two players� in this case� the only thing
that can happen then is a transition� A TGA is
non�blocking if every �nite per�x of a run can be
extended to a full run�

The set of all runs of A� starting at some 	q��x�� �
P is denoted by L	A� P �� The set of con�gurations
reachable by a discrete step is f	q�x�� 	q��x��g and
by a time step it is f	q�x � t�� � t� � 
�� tg� The
con�gurations reachable by the run� Reach	�� is
the union of the reachable con�gurations of the
steps� By Reach	A� P � we denote the con�gura�
tions reachable by all runs starting from P � We
use the notation 	q�x� 	� P as before�

��� Timed Safety Games

De�nition �� 	Controllers for Timed ��Games��
Given a TGA A � 	Z�A�B� TA� TB� �� �� and
a zone G � Q � X � the controller synthesis

problem Synth	A� G��� is� �nd the maximal sub�
set Z� Z� � G � Z� and the maximal TA

� �
TA
� � TAjG � TA such that the automaton
A� � 	Z�� A�B� T

A
� � T

B
jZ�

� �� ��� is non�blocking
and Reach	A�� Z�� � G�

The calculation of A�� its winning strategy TA
�

and its set of winning con�guratuions Z� is� in
principle� similar to the untimed case� However
the predecessor operator should be adapted to
treat the passage of time� Instead of the single
operator � we had in the untimed case we will have
two operators� one indicating the active transition
that A can take and force the game into P and
the other indicating when it is safe to do nothing
and wait� A non�trivial combination of both will
be used by the iterative procedure�

De�nition ��� 	Timed Controllable Predecessor��
Let A be a TGA� The operators

�� � �Q�X � �Q�X�A
�

�active predecessors� and

�t � �Q�X � �Q�X�A
�

�passive predecessors� are de�ned as follows�

��	P � ���
�
	q�x� a� �

�b � B� 	q�x� b� � TB � 	q�x�
�a�b�
	� P �

	a � A� � 	q�x� 	� �� TB�

��
�

�t	P � ��
	q�x� 	� �

�b � B� 	q�x� b� � TB � 	q�x�
���b�
	� P

�

The intuition behind this de�nition is the follow�
ing� The operator �� is like the untimed � except
for some small technical subtlety in the third line�
where 	 is considered an active transition of A
when B must make a transition� The �t operator
de�nes the con�guration in which it is safe for A
to do nothing because either B can do nothing
and the con�guration is already in P � or B can
take other transitions� but they all lead to P �

However� not from every con�gurations 	q�x� �
S	�t	P �� can A force the game to stay in P �
This is true only if 	q�x � t� � S	�t	P �� for
every t or at least this is true until some point
	q�x� t� where an active transition can be taken�
Con�gurations in which A can gain only a bounded
amount of time are losing� This motivates the
following de�nition�

De�nition ��� 	Until Operator�� The operator

U � �Q�X � �Q�X � �Q�X

is de�ned as follows� for every Z�� Z�

Z�UZ� � f	q�x� �
	�t 
 � 	q�x� t� � Z� �
�t� � t 	q�x� t�� � Z�� �
�t 
 � 	q�x� t� � Z�g�



In other words� a con�guration is in Z�UZ� if by
letting time pass we are guaranteed not to leave
Z� before reaching Z��

De�nition �	� 	Timed ��Predecessors�� The op�
erator �� � �Q�X � �Q�X�A

�

is de�ned as

��	P � � ��	P � �
f	q�x� 	� � 	q�x� � S	�t	P ��US	��	P ��g�

Lemma �
� 	Properties of ���� �� If 	q�x� a� �
��	P � then every run of at most one discrete
transition� starting from 	q�x� by A making a�
has all its reachable condifurations in P � �� If
	q�x� a� �� ��	P � there is an unavoidable run of
at most one discrete step leaving P �

The algorithm for calculating TA
� is the following�

Algorithm 	� 	Strategy for Timed ��Games��

TA
� �� TA
jG

Z
� �� G
for i � �� �� � � � � repeat

TA
i �� TA
i	 � 
 ��	Z
i	 ��
Z
i �� S	TA
i�

until Z
i � Z
i	 �
TA
� �� TA
i

Z� �� Z
i

Claim ��� 	Properties of Algorithm ��� For every
i� �� If 	q�x� a� � TA
i then every run of A
i
having at most i steps� starting by doing a at
	q�x�� will keep the automaton inside G� �� If
	q�x� a� �� TA
i� then whatever A does after
chosing a at 	q�x�� B can drive the automaton
outside G within at most i steps�

Proof� By induction� the base case follows triv�
ially from the initialization of the algorithm� Sup�
pose it is true for i� Then� by lemma �� we know
that� �� from Z
i � � every step leaves the au�
tomaton inside Z
i� and �� from �Z
i � � there
is an unavoidable step leading to �Z
i and hence�
by the induction hypothesis� �� all runs of length
not greater than i� � starting from Z
i� � stay
in G� and �� from every state in �Z
i � � there
is an unavoidable run of length not greater than
i� � leaving G�

Corollary ��� 	Partial Correctness of Algorithm ���
Suppose the algorithm convereges to TA

� and let
A� � 	Z�� A�B� T

A
� � T

B
jZ�

� �� �� be the associated

TGA� Then� �� Reach	A�� T
A
� � � G� �� Any other

subset of TA satisfying 	�� is included in TA
� �

��� Closure of Zones under ��

It remains to show that the algorithm converges�

Claim ��� 	Properties of zones��

	�� There are �nitely many k�zones�
	�� The set of zones is closed under the boolean

operations�

	�� If F is a zone and � � F	X� a reset� then
the inverse image ���	F � � fx � �	x� � Fg
is also a zone�

	�� If F is a zone then its �projection to the past�
Past	F � � fx � �t � � 	x � t � F �g is also
a zone�

	�� If F andG are zones and 	q� S� � 	q� F �U	q�G�
then S is also a zone�

The �rst four properties are standard in the
context of timed automata � see 
AD��� The
operation used in the last statement is the only
novelty introduced by the ��operator� In order to
prove statement � of the claim we rewrite the set
S as�

fx � d	x��F � 
 d	x� G� �
d	x��F � � d	x� G� �� �
	d	x��F � � d	x� G� � d � x� d � G�g

where d	x� C� � infft � x � t � Cg � the
�distance� from x to C� Note that if x �� Past	C�
then d	x� C� � �� We leave it to the reader to
prove that the second and the third terms 	which
correspond to some boundary e�ects� are zones�
We concentrate on the �main� �rst term of the
formula� and in order to state that it is a zone
we �nd a special representation of this distance
function� using an auxiliary notion�

De�nition ��� We call a function f � X � IR� �
f�g piecewise trivial if it can be represented in
the form�

f	x� �

	
di 	 xki when x � Di� i � I

� when x � D��

where I is a �nite set� di stand for some integer
constants and Di for some zones�

Lemma ��� Let f and g be piecewise trivial� then
�� the functions min	f� g� and max	f� g� are piece�
wise trivial� and �� the set fx � f	x� 
 g	x�g is a
zone�

Proof� �� Suppose

f	x� �

	
di 	 xki when x � Di

� when x � D��

and

g	x� �

	
ej 	 xlj when x � Ej

� when x � E��

then

max	f� g� �

��
�
di 	 xki when x � Di 
 Ej 
 Fij
ej 	 xlj when x � Di 
 Ej 
 �Fij

� when x � D� � E��

Where Fij � fx � di 	 xki 
 ej 	 xljg is� of
course� a zone� By de�nition and closure of zones
under intersection� max	f� g� is piecewise trivial�
The proof for min	f� g� is similar� �� Consider f
and g and Fij as before� The desired set is the
union of all sets of the form Di 
 Ej 
 Fij �

Lemma ��� 	Distance to zone is piecewise trivial��
Let C be a zone� Then the function d	x� C� is
piecewise trivial�



Proof� Consider �rst the case when C is convex�
It can be represented as an intersection of half�
spaces xi�c or xi 	 xj�c� where � stands for
��
� or �� We proceed by induction on the
number N of half�spaces 	i�e� the number of faces
of F �� Consider �rst a single half�space H � There
are two cases�

� H � fx � xi � cg or H � fx � xi 	 xj�cg� In
this case

d	x� H� �

	
� when x � H
� when x �� H�

because Past	H� � H in this case�
� H � fx � xi 
 cg� For such H

d	x� H� �

	
� when x � H

c	 xi when x �� H�

Suppose now that the result holds for a given N �
Consider a zone C with N � � faces� It can be
represented as C � C� 
 C� where Ci have at
most N faces� It is easy to see that d	x� C� ���
�
� when x � C
� when x �� Past	C�
max	d	x� C��� d	x� C��� when x � Past	C�	 C

By virtue of Lemma �� and the inductive hypothe�
sis max	d	x�C��� d	x�C��� is piecewise trivial� The
piecewise triviality of d	x� F � is immediate�

Arbitrary non�convex F can be represented as a
�nite union of convex zones� C �

S
i Ci� In this

case d	x�C� � min
i
	d	x�Ci�� and the result is

immediate from the convex case and Lemma ���
This concludes the proof of Claim ��� The closure
properties of zones imply that S is a zone�

Corollary 	�� 	Termination�� Algorithm � termi�
nates after a �nite number of steps�

Proof� According to the previous claim� the set of
k�zones is �nite and closed under the � operator�
Hence all the iterations work on a �nite set and a
�xed point is guaranteed�

Theorem 	�� 	Main Result�� The controller syn�
thesis for timed safety games is decidable� and is
solved using algorithm ��

Other results on timed controller synthesis were
based on weaker models� which correspond roughly
to a timed automaton with one clcok� The only
exception we are aware of is 
WH�� where the
Ramadge�Wonham approach was applied to a
�nite�state quotient of a timed automaton 	the
�region graph� of 
AD����

�� DISCUSSION

Timed automata can model a variety of phe�
nomena� including approximations of continuous
dynamical systems� digital circuits with delays�

scheduling problems in manufacturing and multi�
media as well as timing analysis of embedded
software� The algorithm described in this paper
can be useful in all these application domains�
A prototype version has been implemented at
Verimag and the experimental results will be
reported elsewhere�

These techniques can be applied� in principle� to
more general classes of hybrid synamical systems�
where the continuous dynamics is more compli�
cated than that of a clock� In such cases� of
course� there is no hope for an algorithm which
is guaranteed to terminate� Wong�Toi 
W�� de�
scribes a similar procedure for �linear� hybrid
systems� that is� systems where in each state� the
continuous variables evolve according to a �xed
derivative� In 
LTS�� the authors combine our
approach with concepts from optimal control in
order to treat more general hybrid systems�
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