CONTROLLER SYNTHESIS FOR TIMED AUTOMATA !

Eugene Asarin* Oded Maler ** Amir Pnueli ***
Joseph Sifakis **

* Institute for Information Transmission Problems, 19 Bol.
Karetnyi per. 101447 Moscow, Russia. asarin@ippi.ras.ru
** VERIMAG, 2, av. de Vignate, 38610, Giéres, France.
{0ded.Maler,Joseph.Sifakis}@imag.fr
*** Department of Computer Science, Weizmann Institute of
Science, Rehovot 76100, Israel. amir@wisdom.weizmann.ac.il

Abstract: In this work we tackle the following problem: given a timed automaton,
restrict its transition relation in a systematic way so that all the remaining behaviors
satisfy certain properties. This is an extension of the problem of controller synthesis
for discrete event dynamical systems, where in addition to choosing among actions,
the controller have the option of doing nothing and let the time pass. The problem is
formulated using the notion of a real-time game, and a winning strategy is constructed
as a fixed-point of an operator on the space of states and clock configurations.

1. INTRODUCTION

The problem of synthesizing controllers for dis-
crete event systems has been studied extensively,
under different titles, both by the computer sci-
ence (e.g. [BL69], [TB73], [PR89], and the con-
trol (e.g. [RW87], [KG95]) communities. In this
paper we extend the basic synthesis algorithm to
treat systems with quantitative timing informa-
tion, modeled using the powerful model of Timed
Automata [AD94]. In the rest of this section we
give a short tutorial to the game-theoretic for-
mulation of the synthesis problem. In section 2
we define formally and solve the problem for dis-
crete systems. In essence, this is just a state-based
(rather than language-based) reformulation of the
Ramadge-Wonham theory. Section 3 is devoted to
introducing the model of Timed Game Automa-
ton, the formulation of the synthesis problem, the
solution and a proof of its correctness. Finally we
discuss some implications of the results. Prelimi-
nary work on this topic has been reported by the
authors in [MPS95], and in [AMP95] where more
extensive introduction and bibliography appear.

1.1 Game-Theoretic view of Controller Synthesis

The interaction between a controller and the plant
it is supposed to supervise can be seen as some

1 This research was supported in part by the European
Community projects HYBRID EC-US-043, INTAS-94-697,
VHS-26270 and by Research Grants 97-01-00692 and 96-
15-96048 of Russian Foundation of Basic Research.

variant of the two-person antagonistic games in-
troduced already by von-Neumann and Morgen-
stern [NM44]. A strategy for a given game is a rule
that tells the controller how to choose between
several possible actions in any game position. A
strategy is winning if the controller, by following
these rules, always wins (according to a given
definition of winning) no matter what the envi-
ronment does.

Strategy extraction for finite-state games is done
using the max-min principle of [NM44], disguised
sometimes as searching AND-OR trees or as the
elimination of an alternating pair of the logical
quantifiers 3 and V. This principle is illustrated
using the game depicted at figure 1. The game
starts from position 0. The controller can choose
between actions a; and as while the environment
can choose between b; and b,. The winning con-
dition is specified via some subset F of {1,2,3,4}.
A run of the game is winning if it ends up in
an element of F. Suppose F = {1,4} — in this
case the controller has no winning strategy at
state 0 because if it chooses a;, the adversary
can take by and reach state 2. If it chooses as the
adversary can reach state 3 by taking b,. Hence, 0
is not a winning position. If, however, we consider
a game with the same transition structure but
with F = {1,2} then there is a winning strategy
as the controller can, by making a;, “force” the
environment into F'.

(a1,b1) /' (a1,b2) (az,b1) (az,b2)

Fig. 1. A simple game.

Trivial as it might seem, this is the essence of any
synthesis algorithm, a fact which is sometimes ob-
scured by fancy technicalities. The mathematical
formulation of this notion for a game with a state-
space @ is via an operator 7 : 29 — 2% assign-
ing for every FF C () the set m(F) denoting its
controllable predecessors, that is, the set of states
from which the controller can force its adversary
into F. In the example above {0} ¢ w({1,4})
and {0} € m({1,2}). Calculating this operator,
together with some set-theoretical operations con-
stitutes the core of any synthesis algorithm. After
formalizing and solving the discrete problem in
the next section, we will turn to the timed case
where the state-space contains continuous clocks,
and see how the passage of time adds to the
problem complexity.

2. UNTIMED SYSTEMS

We assume two players A (controller) and B
(environment) who play on a state-space Q. At
every instant of the game, each player chooses
one admissible action and the game progresses
according to the mutual choice of the two players.
A strategy for A is a restriction of its set of
admissible actions at a given state in order that
all the remaining runs of the system meet certain
criteria.

1.1 Game Automata

Let @ be a finite set of states and A, B two finite
sets of actions.

Definition 1. (Game Automaton).

A game automaton (GA) is a tuple A
(Q,A,B, T4 T8 §) where TA CQx Aand TP C
Q % B are enabhng conditions for the two types
of actions, and the transition function § : @ X
AxB — Q indicates which state is reached when
performing a joint action.

1N

We always assume that (g, a,b) is defined when-
ever (q,a) € T4 and (¢,b) € TP.

Definition 2. (Steps and Runs). A joint step of A

is
¢y
(¢,a) € T4 and (¢,b) € TP such that ¢/ =

d(¢q,a,b). A run of A is a sequence (finite or
infinite) of joint steps of the form:

(al,bl)

£=q % q 2

— 2

We denote by L(A, P) the set of all runs starting
from some ¢ € P C (). The set of states reachable
by a run ¢ is denoted by Reach(§) and the set of
states reachable from P by some run in L(A, P)
is denoted by Reach(A, P).

An automaton is non-blocking if for every q € Q)
there are a € A and b € B such that (g,a) € T4
and (¢,b) € T®. In a non-blocking automaton
every finite run can be extended to an infinite
one. Given some T4 C @Q x A, we denote by
S(T#) the set of states on which T4 is defined.
The restriction of T4 to some Q' C Q is denoted
by T4 =T4N{(g,a) : g € Q"}

The GA defines the “arena” in which the two
players play. What is cosidered a winning run
is defined by different acceptance condition. Such
conditions classify a run as good or bad according
to the number of times certain states are visited.
A strategy for A is a restriction of T4 such that
all the remaining runs are accepting. In this ab-
stract, like in [AMP95], we focus on the most
basic condition of safety which essentially means
“avoid forbidden states”. In [MPS95] and in a
forthcoming paper, additional acceptance criteria
are discussed along with their corresponding syn-
thesis algorithms.

1.2 Safety Games

In a safety game, the goal of player A is to keep
the game inside a subset G of (). The winning
states of the game are thus the states from which
A can, by properly chosing its actions, prevent
the game from going outside G. A straightforward
solution would be to restrict the automaton to G
and remove for every g € G all the a choices which
might lead outside G. However, this procedure
might lead to a blocking situation and hence an
iterative procedure is needed in order to assure
that the winning states are indeed the state where
the automaton can proceed indefinitely without
leaving G.

Definition 3. (Controller Synthesis for O-Games).
Given a GA A = (Q,A,B,TA,T?,6) and a
set G C (@, the controller synthesis prob-
lem Synth(A,G,0) is: find the maximal sub-
set Q., Q. C G C @, and the maximal T/,
T# C T C T4, such that the automaton

X (Q*,A,B,T*A,TB‘Q*,d), is non-blocking
and Reach(As,@«) C G. (The latter fact is im-
plied by Q. C G.)

The relation T4 is called a winning strategy for A
and the set @), is the set of corresponding winning
states. Usually Q. will be smaller than G as states
from which leaving G is unavoidable are removed.
Also T2 will be smaller than T, because
transitions that can lead to bad consequences are
removed. The calculation of A, from A and G is
performed by an iterative process which removes

bad transitions (and states) from T, using the
following operator:

Definition 4. (Controllable Predecessor). Let A be
a GA. The operator 7 : 29 — 2¢*4 is defined as

7(P) ={(¢,a) : Vb€ B (¢,b) e TP = ¢ (a,b) P}

In other words, (¢,a) € «(P) iff by doing a at
q, A forces the game into P no matter what B
does. The algorithm for calculating T2 proceeds

by calculating a sequence A[i] of automata, A[i] =
(Q[i], A, B,TA[i], T®,6) as follows:

Algorithm 1. (Winning Strategy for O-Games).

T40] :=T%
QU :=G
fori=1,2,..., repeat

TAL] =T — 1] N 7(Q[i — 1))
QL] := S(T[a))

until Q[i] = Qi — 1]

T = T[]

Qs = Q[l]

Claim 5. (Properties of Algorithm 1). For every i:
1) The automaton A[i] is well-defined and non-
blocking and Q[i] € G. 2) If (g,a) & T[], then
whatever A does after chosing a at ¢, B can drive
the automaton outside G within at most i steps.

Proof: By induction: the base case follows triv-
ially from the initialization of the algorithm. Sup-
pose it is true for 7 — 1. Then, by definition we
have: 1) if ¢ € Q[i] then there exists at least one a
such that (¢,a) € TA[i], and 2) from =Q[i] there
is an unavoidable step leading to =Q[i — 1] and
hence, by the induction hypothesis: 1) all runs can
be extended to length i, and 2) from every state
in =Q[i + 1] there is an unavoidable run of A of
length not greater than i leaving G. d

Since 29 is a finite set and the sequences Q[i]
and T[] are monotone decreasing, the algorithm
converges after a finite number of steps to a fixed-
point T4 = 7(Q.).

Corollary 6. (Correctness of Algorithm 1). Let
A, be the result of algorithm 1. Then: 1) A, is
non-blocking and Reach(A.,Q.) € G. 2) Any
ot}ller subset of T4 satisfying (1) is included in
TA.

3. TIMED SYSTEM

3.1 Real-Time Games

In real-time games the outcome of the players’
actions depend also on their timing because per-
forming the same action “now” or “later” might
have completely different consequences. For such
games we take the model of timed automata
[AD94], in which automata are equipped with
auxiliary continuous variables called clocks which

grow uniformly when the automaton is in some
state. The clocks interact with the transitions by
participating in pre-conditions (guards) for cer-
tain transitions and they are possibly reset when
some transitions are taken.

In this continuous-time setting, a player might
choose at a given moment to wait some time ¢
and then take a transition. In this case, it should
consider not only what the adversary can do after
this action but also the possibility that the latter
will not wait for t time, and perform an action at
some t' < t.

While synthesizing a controller for timed au-
tomata one should be careful not letting any of the
players win by “Zenonism”, that is, by preventing
the time from progressing as does the Tortoise in
its race against Achilles.

3.2 Timed Game Automata

Let Q be a finite set of states and let X = IR?
for some integer d be the clock space. We denote
elements of X asx = (x1, ..., 24) and use 0 for the
zero vector and x +¢ for x+ (¢,¢,...,t). Elements
of Q@ x X are called configurations. A subset of X is
called a k-zone if it can be obtained as a boolean
combination of inequalites of the form z; < ¢,
z; < ¢, x; —xj <c, where c € {0,1,...,k}. The
set of zones is denoted by Z(X). These properties
of subsets of X extend naturally to subsets of
@ x X, e.g. we say that P C @ x X is a zone
if it can be written as finite union of sets of the
form {¢;} x P; such that all the P;’s are zones.
A function p : X — X is a reset function if it
sets some of the coordinates of its argument to 0
and leaves the others intact. The set of all such
functions is denoted by F(X). We assume two
finite sets of actions A and B, a special empty
action € and let A°* = AU {e} and B = BU {¢}.

Definition 7. (Timed Game Automaton).

A Timed game automaton (TGA) is a tuple A =
(Z,A,B, T4, T8 5, p) where Z C Q x X is a zone,
@ and X are the state and clock spaces, A and B
are two distinct action alphabets, T4 C Q x X X
A® and TP C Q x X x B® are timing constraints
for the two types of actions, the functions ¢ : @ X
A®* x B° = Q and p : Q x A x B°* —» F(X)
indicate which state is reached when performing
a (possibly joint) action and which clocks are reset
in that occasion.

Further requirements are the following: for every
state ¢ and action a € A%, the set T4(q,a) =
{x : (¢,x,a) € T} is a k-zone. We assume k
to be fixed throughout the paper — it is the
largest constant in the definition of the TGA.
Similar requirements hold for T®. We assume that
0(g,e,e) = ¢ and that p(g,e,¢) is the identity
function (if both sides refrain from action nothing
happens). Finally we require that the automaton
is strongly non-Zeno, that is, in every cycle in the
transition graph of the automaton (induced by §),
there is at least one transition which resets a clock

variable x; to zero, and at least one transition
which can be taken only if x; > 1. This is a very
important condition as it prevents the controller
and the environment to achieve their goals using
unrealistic tricks that stop time. The restriction
of T to some set of configurations Z' is denoted
by TA‘ 2z and the set of configurations on which

T4 is defined is denoted by S(T4).

Intuitively, when the automaton is at a configura-
tion (g¢,x), time can progress as long as both play-
ers agree, that is, (¢,x,e) € TP NT4. As soon as
one of them can take an action, i.e. (g,x,a) € T4
for some a € A or (¢,x,b) € T? for some b € B,
or both, a transition can be taken. This can be
formalized as follows:

Definition 8. (Steps and Runs). A joint step of a
TGA Ais (¢,x) — (¢',x") which is either

(1) a time step (of duration t):

(¢,%) = (¢,% +1)

such that ¢ > 0, and for every t' < t,
(¢, x+t,e) e TANTE.
(2) a discrete step

a,b
(4:%) “3 (¢ %)
such that (a,b) # (g,¢), (¢,x,a) € T4,
!

(qvva) € TB7 = 6((170'7[))7 and x' =
p(q,a,b)(x).

A run of a TGA A starting from (go,Xo) is a
sequence of joint steps

€:(qo,%0) — (qu,%x1) — ...

such that either ¢ is finite and arbitrarily large
time steps are enabled after the last configuration,
or ¢ is infinite and the sum of the durations of the
time steps diverges.

Note that (¢,x,e) € T4 N TP means that both
A and B agree to let time progress by a positive
amount. On the other hand it is possible to reach
a state where ¢ is not permitted by one or more
of the two players: in this case, the only thing
that can happen then is a transition. A TGA is
non-blocking if every finite perfix of a run can be
extended to a full run.

The set of all runs of A, starting at some (go, Xo) €
P is denoted by L(.A, P). The set of configurations
reachable by a discrete step is {(g,x), (¢’,x)} and
by a time step it is {(¢,x +t') : t' € [0,t]}. The
configurations reachable by the run, Reach(§) is
the union of the reachable configurations of the
steps. By Reach(A, P) we denote the configura-
tions reachable by all runs starting from P. We
use the notation (¢,x) — P as before.

3.3 Timed Safety Games

Definition 9. (Controllers for Timed O-Games).
Given a TGA A = (Z,A,B,TA,T8,5,p) and
a zone G C @ x X, the controller synthesis

problem Synth(A, G, 0O) is: find the maximal sub-
set Z, Z, € G C Z, and the maximal T*A,
TA C TAG C T4 such that the automaton
A, = (Z*,A,B,T*A,TB‘Z*,(S, p), is non-blocking
and Reach(Ax, Z,) C G.

The calculation of A,, its winning strategy T4
and its set of winning configuratuions Z, is, in
principle, similar to the untimed case. However
the predecessor operator should be adapted to
treat the passage of time. Instead of the single
operator m we had in the untimed case we will have
two operators, one indicating the active transition
that A can take and force the game into P and
the other indicating when it is safe to do nothing
and wait. A non-trivial combination of both will
be used by the iterative procedure.

Definition 10. (Timed Controllable Predecessor).
Let A be a TGA. The operators

71'6 . 2Q><X N 2Q><)(><AE

(active predecessors) and

ﬂ,t . 2Q><X N 2Q><X><A5
(passive predecessors) are defined as follows:

m(P) =
(¢,x,a) :
Vb e B® (¢,x,0) € TP = (¢,x) (a—’bQP/\
(a€A) Vv (q,x,z—:)gTB)

7t(P) =

(¢,x,¢) :
Vbe B° (¢,x,0) e TP = (¢,x) (E—7b;P

The intuition behind this definition is the follow-
ing. The operator 7° is like the untimed 7 except
for some small technical subtlety in the third line,
where € is considered an active transition of A
when B must make a transition. The 7! operator
defines the configuration in which it is safe for A
to do nothing because either B can do nothing
and the configuration is already in P, or B can
take other transitions, but they all lead to P.

However, not from every configurations (¢q,x) €
S(7t(P)) can A force the game to stay in P.
This is true only if (¢,x +t) € S(x!(P)) for
every t or at least this is true until some point
(¢,x +t) where an active transition can be taken.
Configurations in which A can gain only a bounded
amount of time are losing. This motivates the
following definition.

Definition 11. (Until Operator). The operator
U 2 2055 x 29X, o@xX

is defined as follows: for every Z;, Z5

Z\UZy = {(g,x) :
(Ft>0(g,x+1t) € Zy A
V' <t (g, x+t) € Z)V
Vit >0(g,x+t) € Z1}.

In other words, a configuration is in Z1U Z, if by
letting time pass we are guaranteed not to leave
77 before reaching Zs.

Definition 12. (Timed O-Predecessors). The op-
erator 7 : 29%X _y 2@QXXXA% ig defined as
2(P) =x°(P) U

{(g,x,2) : (¢,%) € S(x"(P))US(n° (P))}.

Lemma 13. (Properties of 7). 1) If (¢,x,a) €
75(P) then every run of at most one discrete
transition, starting from (¢,x) by A making a,
has all its reachable condifurations in P. 2) If
(¢,x,a) & WD(P) there is an unavoidable run of
at most one discrete step leaving P.

The algorithm for calculating T2 is the following:

Algorithm 2. (Strategy for Timed O-Games).

T40] = T4
Z[0] =G
fori=1,2,..., repeat

T :==T4i —1] N #2(Z[i - 1))
Z[i] := S(Ti])

until Z[i| = Z[i — 1]

TA := T4

Zy = Z]i]

Claim 1/. (Properties of Algorithm 2). For every
i: 1) If (¢,x,a) € TA[i] then every run of A[i]
having at most ¢ steps, starting by doing a at
(¢,x), will keep the automaton inside G. 2) If
(¢,x,a) ¢ TAJi], then whatever A does after
chosing a at (g,x), B can drive the automaton
outside G within at most i steps.

Proof: By induction: the base case follows triv-
ially from the initialization of the algorithm. Sup-
pose it is true for i. Then, by lemma 13 we know
that: 1) from Z[i + 1] every step leaves the au-
tomaton inside Z[i], and 2) from —Z[i 4+ 1] there
is an unavoidable step leading to —Z[i] and hence,
by the induction hypothesis: 1) all runs of length
not greater than ¢ + 1 starting from Z[i + 1] stay
in G, and 2) from every state in =Z[i + 1] there
is an unavoidable run of length not greater than
i+ 1 leaving G. o

Corollary 15. (Partial Correctness of Algorithm 2).

Suppose the algorithm convereges to T2 and let
A, = (Z*,A,B,T*A,TB‘Z*,& p) be the associated
TGA. Then: 1) Reach(A,,T#) C G. 2) Any other
subset of T4 satisfying (1) is included in TA.

3.4 Closure of Zones under 70

It remains to show that the algorithm converges.

Claim 16. (Properties of zones).

(1) There are finitely many k-zones.
(2) The set of zones is closed under the boolean
operations.

(3) If Fis a zone and p € F(X) a reset, then
the inverse image p~'(F) = {z : p(z) € F}
is also a zone.

(4) If F'is a zone then its “projection to the past”
Past(F) ={x: 3t >0 (x+t € F)}is also
a zone.

(5) If F and G are zones and (¢, S) = (¢, F)U(q,G)
then S is also a zone.

The first four properties are standard in the
context of timed automata — see [AD94]. The
operation used in the last statement is the only
novelty introduced by the m-operator. In order to
prove statement 5 of the claim we rewrite the set
S as:
{x:d(x,~F) >d(x,G) V
d(x,-F)=d(x,G) = o0 V
(d(x,~F)=d(x,G)=d N x+deqG)}

where d(x,C) = inf{t : x +¢t € C} — the
“distance” from x to C. Note that if x ¢ Past(C)
then d(x,C) = oco. We leave it to the reader to
prove that the second and the third terms (which
correspond to some boundary effects) are zones.
We concentrate on the “main” first term of the
formula, and in order to state that it is a zone
we find a special representation of this distance
function, using an auxiliary notion.

Definition 17. We call a function f: X — R4 U
{00} piecewise trivial if it can be represented in
the form:
. di_mki when x € D;,i €1
f(x)—{ 0o when x € D,
where [is a finite set, d; stand for some integer
constants and D; for some zones.

Lemma 18. Let f and g be piecewise trivial, then
1) the functions min(f, g) and max(f, g) are piece-
wise trivial, and 2) the set {x: f(x) > g(x)} is a
zone.

Proof: 1) Suppose

. d; — T, when x € D;
f(x)—{ 0o when x € Dy,

and
_ Jej—x;, when x € Ej
9(x) = { o0 when x € Eo,
then
d; — T, when x € D; N Ej ﬁFij
max(f,g) =4 e; —x;; when x € D; N E; N —F;

oo when x € Doy U Eo,

Where Fjj = {x : d;j —xp, > ej — xy;} is, of
course, a zone. By definition and closure of zones
under intersection, max(f, g) is piecewise trivial.
The proof for min(f, g) is similar. 2) Consider f
and g and Fj; as before. The desired set is the

union of all sets of the form D; N E; N Fj;. "

Lemma 19. (Distance to zone is piecewise trivial).
Let C be a zone. Then the function d(x,C) is
piecewise trivial.

Proof. Consider first the case when C is convex.
It can be represented as an intersection of half-
spaces x;#c or T; — Tj#c, where # stands for
<,>,< or >. We proceed by induction on the
number N of half-spaces (i.e. the number of faces
of F'). Consider first a single half-space H. There
are two cases:

e H={x:2;<clor H={x:2; —x;#c}. In
this case

_ 0 when x € H
d(x, H) = { oo when x € H,

because Past(H) = H in this case.
o H={x:z; > c}. For such H

d(x, H) = {

Suppose now that the result holds for a given V.
Consider a zone C' with N + 1 faces. It can be
represented as C' = C; N Cy where C; have at
most N faces. It is easy to see that d(x,C) =

0 when x € H
¢—x; when x ¢ H,

0 when x € C
00 when x ¢ Past(C)
max(d(x,C4),d(x,Cs)) when x € Past(C) — C

By virtue of Lemma 18 and the inductive hypothe-
sis max(d(x, C1),d(x,C2)) is piecewise trivial. The
piecewise triviality of d(x, F') is immediate.

Arbitrary non-convex F' can be represented as a

finite union of convex zones: C' = J, C;. In this

case d(z,C) = min(d(z,C;)) and the result is
13

immediate from the convex case and Lemma 18.
This concludes the proof of Claim 16. The closure
properties of zones imply that S is a zone.

Corollary 20. (Termination). Algorithm 2 termi-
nates after a finite number of steps.

Proof: According to the previous claim, the set of
k-zones is finite and closed under the 7w operator.
Hence all the iterations work on a finite set and a
fixed point is guaranteed. o

Theorem 21. (Main Result). The controller syn-
thesis for timed safety games is decidable, and is
solved using algorithm 2.

Other results on timed controller synthesis were
based on weaker models, which correspond roughly
to a timed automaton with one clcok. The only
exception we are aware of is [WH92] where the
Ramadge-Wonham approach was applied to a
finite-state quotient of a timed automaton (the
“region graph” of [AD94]).

4. DISCUSSION

Timed automata can model a variety of phe-
nomena, including approximations of continuous
dynamical systems, digital circuits with delays,

scheduling problems in manufacturing and multi-
media as well as timing analysis of embedded
software. The algorithm described in this paper
can be useful in all these application domains.
A prototype version has been implemented at
VERIMAG and the experimental results will be
reported elsewhere.

These techniques can be applied, in principle, to
more general classes of hybrid synamical systems,
where the continuous dynamics is more compli-
cated than that of a clock. In such cases, of
course, there is no hope for an algorithm which
is guaranteed to terminate. Wong-Toi [W97] de-
scribes a similar procedure for “linear” hybrid
systems, that is, systems where in each state, the
continuous variables evolve according to a fixed
derivative. In [LTS98] the authors combine our
approach with concepts from optimal control in
order to treat more general hybrid systems.

5. REFERENCES

[AD94] R. Alur and D.L. Dill; A Theory of Timed
Automata, Theoretical Computer Science 126,
183-235, 1994.

[AMP95] E. Asarin, O. Maler and A. Pnueli,
Symbolic Controller Synthesis for Discrete and
Timed Systems, in Hybrid Systems II, LNCS
999, Springer, 1995.

[BL69] J.R. Biichi and L.H. Landweber, Solving
Sequential Conditions by Finite-state Opera-
tors, Trans. of the AMS 138, 295-311, 1969.

[KG95] R. Kumar and V.K. Garg, Modeling and
Control of Logical Discrete FEvent Systems,
Kluwer, 1995.

[MPS95] A. Maler, O. Pnueli and J. Sifakis. On
the Synthesis of Discrete Controllers for Timed
Systems, Proc. STACS’95, LNCS 900, 229-242,
Springer, 1995.

[NM44] J. von Neumann and O. Morgenstern,
Theory of Games and FEconomic Behavior,
Princeton University Press, 1944.

[PR89] A. Pnueli and R. Rosner. On the Synthesis
of a Reactive Module, In Proc. 16th ACM Symp.
Princ. of Prog. Lang., pages 179-190, 1989.

[RW87] P.J. Ramadge and W.M. Wonham, Super-
visory Control of a Class of Discrete Event Pro-
cesses, SIAM J. of Control and Optimization 25,
206-230, 1987.

[LTS98] C. Tomlin, J. Lygeros and S. Sastry,
Synthesizing Controllers for Nonlinear Hybrid
Systems, in Hybrid Systems: Computation and
Control, LNCS 1386, 360-373, Springer, 1998.

[TB73] B.A. Trakhtenbrot and Y.M. Barzdin, Fi-
nite Automata: Behavior and Synthesis, North-
Holland, Amsterdam, 1973.

[W97] H. Wong-Toi, The Synthesis of Controllers
for Linear Hybrid Automata, Proc. CDC’97,
1997.

[WH92] H. Wong-Toi and G. Hoffmann, The Con-
trol of Dense Real-Time Discrete Event Sys-
tems, Technical report STAN-CS-92-1411, Stan-
ford University, 1992.

