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Abstract� We propose a framework for the formal speci�cation and veri�cation of

timed and hybrid systems� For timed systems we propose a speci�cation language

that refers to time only through age functions which measure the length of the most

recent time interval in which a given formula has been continuously true�

We then consider hybrid systems� which are systems consisting of a non�trivial mix�

ture of discrete and continuous components� such as a digital controller that controls

a continuous environment� The proposed framework extends the temporal logic ap�

proach which has proven useful for the formal analysis of discrete systems such as

reactive programs� The new framework consists of a semantic model for hybrid

time� the notion of phase transition systems � which extends the formalism of dis�

crete transition systems� an extended version of Statecharts for the speci�cation of

hybrid behaviors� and an extended version of temporal logic that enables reasoning

about continuous change�
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� Introduction

This paper concerns the development of formal approaches for the speci�cation� veri�ca�
tion� and systematic construction of reliable reactive systems� These are systems whose
role is to maintain some ongoing interaction with their environment rather than to com�
pute some �nal result on termination� The correct and reliable construction of reactive
programs is particularly challenging� Typical examples of reactive programs are con�
current and real�time programs� embedded systems� communication networks� air�tra�c
control systems� avionic and process control programs� operating systems� and many oth�
ers�

There is by now a general agreement that formal speci�cation of reactive systems
contributes signi�cantly to a better understanding of the expected functionality of the
contemplated system at an early stage� thereby leading to a more reliable and e�cient
construction of such systems� One of the promising and widely considered approaches to
the speci�cation of reactive systems is that of temporal logic� which provides a natural
and abstract way to describe the behavior of a reactive system�

Traditionally� temporal logic �and similar formalisms� use a discrete events approach
to model a reactive system� This means that the behavior of a reactive system is described
as a sequence of discrete events that cause abrupt changes �taking no time� in the state of
the system� separated by intervals in which the system	s state remains unchanged� This
approach has proven e
ective for describing the behavior of programs and other digital
systems� We refer the reader to �MP�
�� �Pnu���� �Lam���� and �EC��� for examples of
applications of the temporal approach�

The discrete event approach is justi�ed by an assumption that the environment� sim�
ilar to the system itself� can be faithfully modeled as a digital �discrete� process� This
assumption is very useful� since it allows a completely symmetrical treatment of the sys�
tem and its environment and encourages modular analysis of systems� where what is
considered an environment in one stage of the analysis may be considered a component
of the system in the next stage�

While this assumption is justi�ed for systems such as communication networks� where
all members of the network are computers� there are certainly many important contexts
in which modeling the environment as a discrete process greatly distorts reality� and may
lead to unreliable conclusions� For example� a control program driving a robot within a
maze or controlling a fast train must take into account that the environment with which
it interacts follows continuous rules of change�

This paper suggests an extension to the temporal logic framework that will enable
it to deal with continuous processes� This extension leads to an integrated approach to
hybrid systems� i�e�� systems consisting of a non�trivial mixture of discrete and continuous






components� such as a digital controller that controls a continuous environment� control
of process and manufacturing plants� guidance of transport systems� robot planning� and
many similar applications� Such an extension may enlarge the domain of systems that
yield to formal and rigorous development approaches to include such important practical
applications�

Recent Extensions to Real Time

An interesting step towards more realistic modeling and analysis of programs that interact
with a continuous environments has been made by various extensions of the temporal
framework to deal with real time �KKZ���� �RR���� �PH���� �Ost���� �AH���� �NRSV����
�HMP�
�� Many other approaches are represented in this volume� It is interesting to
note that� while some of these extensions are based on a dense model of time� the general
structure of the model is still that of interleaving transitions� each of which causes an
abrupt change of state� Some of the models even introduce a special time�passage �a tick�
transition� which is the only transition causing the clock to progress�

This extension of the methodology allows representation of many additional phenom�
ena in the world of programming �HMP�
�� We can now take into consideration the fact
that instructions take a nonzero time to complete� and represent the e
ect of delay com�
mands� as well as the phenomena of task scheduling according to time and priorities� and
so on�

However� this extension can be characterized as describing the interaction of a digital
system with a single continuously varying factor � the real time clock� When we have
several continuously varying parameters with more complex rules of change� the simple
interleaving model is no longer satisfactory�

Extending the Framework

The discrete temporal framework as described� for example� in �MP��� includes the fol�
lowing components�

� An underlying semantic model � This captures the notion of a possible behavior of
a system� In the case of discrete systems� this will be an in�nite sequence of states
or events that may occur in a possible run of the system�

� A generic computational model � This provides an e
ective representation of re�
alizable systems� In the discrete case we take a fair transition system �a timed
transition system �HMP�
� for the real�time case� and show how concrete program�
ming languages can be mapped onto this generic model� Transition systems provide
an abstract representation of reactive programs and systems�

� A speci�cation language� In the temporal framework we use temporal logic for
specifying properties of reactive programs� In some cases we may use equivalent
automata�based formalisms such as Statecharts �Har��� for specifying the detailed
behavior of a system�

� A veri�cation methodology� providing rules and axioms for formally proving that a
proposed system meets its speci�cation�
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In the extension of this framework to hybrid systems we propose to extend �or replace�
each of the discrete�framework components as follows�

� As an underlying semantic model we take hybrid traces� which are a mapping from
extended continuous time to system states�

� As a generic computational model we take phase transition systems which represent
the behavior of a system as a sequence of phases alternating between continuous
and discrete changes� A continuous phase takes positive time and allows continuous
change of variables governed� for example� by a set of di
erential equations� The
discrete phase consists of a �nite number of discrete transitions� each of which causes
a �possibly� discontinuous change in the value of the variables�

� We consider two speci�cation formalisms� For describing the detailed behavior of
a system� we use an extension of Statecharts in which basic �unstructured� states
may be labeled by a set of di
erential equations� used to describe a continuous
change that occurs as long as the system is in that state� For describing properties
and requirements of the system� we propose a modest extension of temporal logic�
enabling it to refer to continuous change and to time�

� In this preliminary work on hybrid systems� we present only a partial proposal for
an appropriate veri�cation methodology� consisting of a rule for safety properties�
and leave a more thorough investigation of the subject to subsequent research�

Related Work

The interest in formal treatment of systems that interact with continuous environments is
certainly not new� It received a new impetus by the extension of formalisms to deal with
real time� Indeed� several papers consider the speci�cation of such systems� some of which
are �MSB�
�� �CHR���� and �HRR�
�� While all of these works recommend extensions to
the speci�cation language� they do not propose changes to the basic underlying semantic
model� considering instead a discrete sequence of points which correspond to the points
at which the discrete system samples the continuous environment�

To the best of our knowledge� the paper which comes closest to our semantic model is
�San���� which proposes a piecewise smooth modeling of physical systems for the purpose
of qualitative reasoning about physics�

Our interest in hybrid systems was triggered by a presentation of Fred Schneider at the
workshop on real�time and fault tolerant systems held in Warwick in 
���� His approach
to the subject is presented in �MSB�
�� A closely related study of timed and hybrid
systems is presented in �NSY�
��

An important motivation for developing this theory came from applications to robotics
and to process control and embedded systems�

� Timed Systems

To deal with reactive systems whose behavior may depend on timing considerations� we
present the discrete framework of timed behaviors� The notions of timed trace and timed
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transition system are taken with some small changes from �HMP�
�� while the logic mtl
�which extends temporal logic by adding time�bounded temporal operators� is taken from
�AH��� and is based on �KVdR����

To model metric time� we assume a totally ordered time domain T which contains a
zero element � � T� and a commutative� associative operation �� for which � is a unique
identity element� and such that for every t�� t� � T�

t� � t� i
 there exists a unique t �� � �denoted by t� � t��� such that
t� � t � t��

We refer to the elements of T as time elements or sometimes as moments� In most cases
we will take T to be either the natural numbers N� or the nonnegative real numbers R���
We extend the domain T to T� � T � f�g� where it is assumed that � � t for all
t � T��

With a system to be analyzed we associate

� V � A �nite set of state variables�

� � � A set of states� Each state s � � is an interpretation of V � that is� it assigns
to every variable x � V a value s�x� in its domain�

� VT � V �fTg � A �nite set of situation variables� They are obtained by augmenting
V � the set of state variables� with a variable T representing the current time in each
situation�

� �T � A set of situations� Every situation s � �T is an interpretation of VT � In
particular� s�T � � T is the value of the real�time clock at situation s� We denote
by s�V � the state corresponding to the situation s� It is obtained by restricting the
interpretation s to the state variables V �

Timed Traces

A progressive time sequence is an in�nite sequence of time elements

� � t�� t�� � � � �

where ti � T� for each i � �� 
� � � � � satisfying

� t� � ��

� Time does not decrease� That is� for every i � �� ti � ti���

� Time eventually increases beyond any bound� That is� for every time element t � T�
ti � t for some i � �� This is called the Non�Zeno requirement in �AL�
��

A timed trace describing a potential behavior of a timed reactive system is an in�nite
sequence of situations

� � s�� s�� � � � �

where si � �T � for each i � �� 
� � � � � We denote by ti � si�T � the moment at which
situation si was observed �sampled��

It is required that
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� The sequence t�� t�� � � � is a progressive time sequence�

� For every i � �� state and time do not change at the same time� i�e�� either si�V � �
si���V � or ti � ti��� This requirement ensures that each state change is precisely
timed�

To illustrate the motivation for the last requirement� assume for a moment that we allow
state and time to change in a single step� Then� the following would be an admissible
trace

hx � � � T � �i � hx � 
 � T � 
i � � �

This trace tells us that x was observed to equal � at time � while it was observed to
equal 
 at time 
� It does not provide answers to the questions of when precisely did x
change from � to 
 and how long it had been � before changing� The second requirement
above forces us to choose between several possibilities� such as

hx � � � T � �i � hx � 
 � T � �i � hx � 
 � T � 
i � � � � � or

hx � � � T � �i � hx � � � T � 
i � hx � 
 � T � 
i � � � � �

Or perhaps even

hx � � � T � �i � hx � � � T � ���i � hx � 
 � T � ���i � hx � 
 � T � 
i � � � � �

Timed Transition Systems

A timed transition system S � hV���T � l� ui consists of the following components�

� State variables V � We denote by � the set of all interpretations of V �

� The initial condition �� A satis�able assertion that characterizes the states that
can appear as initial states in a computation�

� A �nite set T of transitions� Every transition � � T is a function � � � 	
 ���
mapping each state s � � into a �possibly empty� set of � �successors � �s� � ��

A transition � is enabled on s i
 � �s� �� 	� Otherwise � is disabled on s�

� A minimal delay l� � T for every transition � � T �

� A maximal delay u� � T� for every transition � � T � We require that u� � l� for
all � � T �

Given the state variables V � we can obtain the corresponding set of situation variables
VT � V � fTg� and the set of situations �T interpreting VT �

With each transition � � T we associate an assertion 
��V� V ��� called the transition
relation� which refers to both an unprimed and a primed version of the state variables�
The purpose of the transition relation 
� is to express the relation holding between a state
s and its � �successor s� � � �s�� We use the unprimed version of variables to refer to values
in s� and the primed version to refer to values in s�� For example� the assertion x� � x� 

states that the value of x in s� is greater by 
 than its value in s�
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A computation of a timed transition system S � hV���T � l� ui is a timed trace

� � s�� s�� � � � �

where si � �T for each i � �� 
� � � � � which satis�es the following requirements�

� �Initiality� s� j� ��

� �Consecution� For all i � ��

	 Either ti � ti�� and there is a transition � � T such that si���V � � � �si�V ���
or

	 si�V � � si���V � and ti � ti���

In the �rst case� we say that � is taken at position i� In the second case� we say
that the clock has progressed at position i� Sometimes we refer to the second case
by saying that a �tick� step has been taken at position i�

� �Lower bound � For every transition � � T and position j � �� if � is taken at
j� there exists a position i� i � j� such that ti � l� � tj and � is enabled on
si�V �� si���V �� � � � � sj�V � and not taken at any of the positions i� i�
� � � � � j�
� This
implies that � must be continuously enabled for at least l� time units before it can
be taken�

� �Upper bound � For every transition � � T and position i � �� if � is enabled at
position i� there exists a position j� i � j� such that ti � u� � tj and

either � is not enabled at j�
or � is taken at j�

In other words� � cannot be continuously enabled for more than u� time units
without being taken�

As shown in �HMP�
�� the model of timed transition systems is expressive enough to
express most of the features speci�c to real�time programs such as delays� timeouts� pre�
emption� interrupts and multi�programming scheduling�

Example

Consider the simple timed transitions system given by�

� State Variables V � fx� yg�

� Initial Condition� � � �x � �� � �y � ���

� Transitions� T � f��� ��g where

� 
� l� u�
�� �y � �� � �x� � x � 
� 
 �
�� �y � �� � �y� � 
� � �
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We present two computations of this timed transitions system� The �rst computation ��
attempts to let x reach its maximal possible value� Therefore� we try to activate �� always
at the �rst possible position and ��� which causes both transitions to become disabled� as
late as possible�

�� � hx � � � y � � � T � �i
tick
�
 hx � � � y � � � T � 
i

���
 hx � 
 � y � � � T � 
i
tick
�


hx � 
 � y � � � T � �i
���
 hx � � � y � � � T � �i

tick
�
 hx � � � y � � � T � �i

���


hx � � � y � � � T � �i
���
 hx � � � y � 
 � T � �i

tick
�
 
 
 


The second computation �� attempts to keep the value of x as low as possible� Con�
sequently� it delays the activation of �� to the latest possible position and tries to activate
�� at the earliest possible position�

�� � hx � � � y � � � T � �i
tick
�
 hx � � � y � � � T � �i

���
 hx � 
 � y � � � T � �i
tick
�


hx � 
 � y � � � T � �i
���
 hx � 
 � y � 
 � T � �i

tick
�
 
 
 


There are several observations that can be made concerning the computational model
of timed transitions systems�

� Computations alternate between tick steps that advance the clock and sequences of
state�changing transitions that take zero time�

� Transitions wait together but execute separately in an interleaving manner�

De�ne wait��� j� to be the largest t such that for some i � j

� t � tj � ti�

� � is enabled on all of si�V �� � � � � sj�V �� and

� � is not taken at any of i� � � � � j � 
�

The function wait��� j� measures the length of time that � has been continuously enabled
but not taken up to position j �assuming it is enabled at j��

We say that

� is ready at position j if wait��� j� � l� � and

� is ripe at position j if wait��� j� � u� �

We observe that� in a computation of a timed transition system�

� Time can progress only after all ripe transitions are taken or become disabled�

� When time progresses� it can jump forward only by an amount on which all the
enabled transitions agree� That is� it must be such that it will not cause any enabled
transition to become �over�ripe��

�



Not every timed transition system is guaranteed to have computations that satisfy all the
requirements given above� For example� a TTS with a single transition � whose transition
relation is 
� � �x� � x � 
� with lower and upper bounds given by l� � u� � � does not
have a computation� This is because � is always ripe and does not ever allow time to
progress�

Let T� be the subset of transitions whose upper bound is �� A TTS is called progressive
if there does not exists an in�nite sequence of states

s�� s�� � � � �

such that for every i � �� 
� � � � � there exists a � � T�� such that si�� � � �si�� It is not
di�cult to see that every progressive TTS has at least one computation�

From now on� we restrict our attention to progressive transition systems�

Transitions that belong to T� are called immediate� Transitions that have a positive
upper bound are called nonimmediate� The set of all nonimmediate transitions is denoted
by T��

Speci�cation by Timed Statecharts

A very convenient speci�cation of timed systems can be obtained by extending the visual
notation of Statecharts �Har��� by annotating each transition with a pair of numbers �l� u��
denoting the lower and upper time bounds of that transition� As an example� we present
in Fig� 
 a timed speci�cation of two manufacturing machines which communicate by a
conveyer that holds only one item at a time� The conveyer is a mechanical device that
travels back and forth between the two machines�

The speci�cation consists of three automata� M�� M�� and Conveyer� which operate
concurrently� These components may represent a �rst machine that does the initial pro�
cessing of a part� a second machine which applies more advanced processing to the part�
and the conveyer device which moves the part from machine M� to machine M��

A general label of a transition in this Statechart speci�cation has the form

name � e�g �

where name is an optional name of the transition �with no semantic meaning�� e is a
triggering event which causes the transition to become enabled� and g is an optional
action which generates the event g when the transition is taken� When the transition has
no triggering event� such as transition good�part in the diagram� the transition is enabled
whenever the state from which it departs �state Busy in the diagram� is active�

In addition� each transition is optionally labeled by a pair of real numbers �l� u�� which
specify the minimal and maximal delays of the transition� Transitions which are not
explicitly labeled are considered to be immediate� i�e�� to have the time bounds ��� ���
We require that all transitions which have a triggering event be immediate� A transition
is called relevant if the state from which it departs is currently active� Non�immediate
transitions �which have no triggering event� are enabled whenever they are relevant� A
transition with a triggering event e is enabled if it is relevant and the event e has just
occurred� meaning that time has not progressed since the event was generated� More
elaborate trigger conditions such as put � ��rst are allowed� Such a condition is true if
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�l�� u��

take�l	� u	�

put � ��rst

ready�take  

Figure 
� Speci�cation of Two Machines with a Conveyer�

the event put has been generated since time has last progressed but the event �rst has
not been generated since then�

Some states are compound � For example� the state encompassing basic states m�� !��
and m� in the automaton Conveyer is compound� It is considered active whenever one
of the basic states it contains is active� A transition departing from a compound state
�such as the transition leading into Error� is relevant whenever the compound state is
active and� when taken� it makes the compound state and all of its substates inactive and
activates the state to which the transition leads �Error in the example above��

When a transition that generates an event e is taken� one or more immediate transitions
that have e as a triggering event and are currently relevant can be taken� This is the
mechanism by which the concurrent automata synchronize� For example� if M� takes
transition good�part while Conveyer is in state !
� then the transition labeled by put can
be taken next� Note that� since this transition is immediate and ready �therefore also
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ripe�� it must be taken before time can progress�
Consider for example the transition connecting state m� to state !�� Assume that

it is taken at position j while� at the same time� machine M� is in state Idle� On being
taken� this transition generates event ready� Machine M� responds to this generation by
taking the transition leading into state Busy� generating the event take� Since at this
point Conveyer is at state !�� it can respond immediately by moving to state m�� These
three transitions must be taken before the clock advances�

Another important element of the behavior of Statecharts is that events that are
generated at a certain step persist until time progresses� This allows more than one
transition triggered by an event e to respond to e before time progresses�

The given speci�cation describes the following possible scenarios� Both machines start
at an idle state� After some time ranging between l� and u�� machine M� concludes its
set�up procedure and moves to the busy state� While being busy� M� may either take
time between l� and u� to produce a bad part� or take time between l� and u� to produce
a good part� In both cases it moves to state Idle where it completes another set�up
procedure� If a good part is produced� the event put is generated� which triggers the
transition departing from state !
 in Conveyer if it is relevant� This transition represents
the initiation of movement of the conveyer between M� and M�� The movement itself may
take time between l� and u� to reach M�� Reaching M� is represented by the transition
connecting to state !�� which also generates the event ready� This event is sensed by M��
which removes the part from the conveyer and starts processing it in its Busy state�

If all timings are right� M� should never issue the put signal when the conveyer is not
at state !
� The diagram represents this expectation by having a transition that moves
to state Error in all other cases�

An interesting analysis question is what the relation between the various time con�
stants should be to ensure that this never happens� Various veri�cation tools� based on
algorithms similar to the one proposed in �ACD���� can answer such questions algorith�
mically�

It is important to note that the semantics of Statecharts presented here is not the
standard semantics considered� for example� in �PS�
�� The Statecharts presented here
are timed statecharts� and their behavior is somewhat di
erent than that given by the
standard semantics� One of the main di
erences is that the notions of macro� and micro�
steps no longer play such an important role in the semantics� Instead� there is a sequence of
steps that can be taken before time progresses� By de�nition� any signal that is generated
at a given time persists as long as time does not progress�

This explains the need for the signal �rst� which is emitted on entry to state moving�
and whose negation labels the exit to Error� The system may enter state moving only
when it senses the signal put� After the transition entering state moving is taken� signal put
is still available� If the transition exiting to Error were labeled only by put� it would have
always been taken following the entry to moving� Signal �rst� which is generated by the
transition entering moving� prevents the error transition from being taken immediately�
When time progresses� both put and �rst disappear� and the error transition will respond
only to a new put signal generated at a later time�

For a more detailed description of timed statecharts� the reader is referred to �KP����
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� Speci�cation and Veri�cation of Timed Transition

Systems

To specify properties of timed systems� we use the language of temporal logic with some
extensions�

Extensions to the Temporal Language

We assume familiarity with temporal logic and its operators as presented� for example� in
�MP�
�� The following extensions are introduced�

References to the Next Value

When evaluating a formula at position j of a computation �� it is often necessary to
evaluate terms that appear in atomic formulas� In the standard de�nition this evaluation
is based on the value of the variables in the situation sj� For a term r � we introduce the
notation

� r �

referring to the next value of r �
The precise de�nition uses the notation val��� j� r� which de�nes the value of the term

r at position j of computation ��

� For a constant c� val��� j� c� � c� where we use the same notation for a value and
its syntactic representation�

� For a variable x � Vt� val��� j� x� � sj�x�� i�e�� the interpretation of x in the situation
sj�

� For a term r � val��� j�� r� � val��� j � 
� r��

� For a function f and terms r�� � � � � rk�

val��� j� f�r�� � � � � rk�� � f�val��� j� r��� � � � � val��� j� rk��

� For a predicate p and terms r�� � � � � rk�

��� j� j� p�r�� � � � � rk� i
 p�val��� j� r��� � � � � val��� j� rk�� � t�

In �MP�
�� � r is denoted as r��

Age of a Formula

To refer to the passage of time� we introduce a temporal function that expresses the age
of a formula�

For a formula �� we introduce the term

"����

called the age of �� Its intended meaning is that the value of "��� at a ��position j
records the time length of the largest interval ending at j in which � holds continuously�
If � does not hold at j then "��� � � at j� Thus� we de�ne







� val��� j�"���� � The largest t such that� for some i � j� t � tj � ti and � holds
at all positions i� � � � � j� It is taken to be � if � does not hold at j�

Age functions can be viewed as an alternative and generalization of the delay counters

� introduced in �HMP�
�� which measure the length of time a transition � has been
continuously enabled and not taken�

A closely related concept is used in �SBM�
� to allow assertional reasoning about
real�time�

A notion similar to age functions is that of duration� proposed in �CHR��� to express
properties of continuous systems� One di
erence between the two notions� is that dura�
tions are introduced in the context of interval temporal logic while we use point�based
temporal logic� Another di
erence is that durations measure the accumulated time in
which a formula was true within an interval� while the age of a formula measures the
length of the largest time interval ending in the current position in which the formula
held continuously�

Interval
Bounded Operators

Following �HMP�
�� we introduce for each temporal operator �excluding � � �� � and the

weak previous operator f�� � a bounded version of the operator obtained by subscripting
the operator by an interval speci�cation I� An interval speci�cation may have one of the
forms

�l� u� �l� u� �l� u� �l� u��

In the �rst form� it is required that l � u� while in the others l � u� The semantic
meaning of these bounded operators is straightforward� For example� pU
l�u�q holds at
position i of a timed trace � � �s�� t��� �s�� t��� � � � � i
 there exists a j� i � j� such that
ti � l � tj � ti � u� q holds at j� and for all k� i � k � j� p holds at k�

We often use abbreviations such as ��u and � �u to stand for ����u
 and � ���u��

Two Styles of Speci�cation and Veri�cation

We refer to the logic obtained by the described extensions as mtl� standing for metric
temporal logic� This logic can be used to state both timed and untimed properties of
programs or even of detailed speci�cations� As an example� we will state three properties
of the bu
er system of Fig� 
� In the formulas describing these properties we use the name
of a state as a proposition holding precisely when the state is active�

The �rst property simply states that the system will never reach state Error� This is
stated by the untimed formula

�� � ��Error�

In order to verify this property� we may want to prove some lemmas that guarantee
that state Error will never be reached� Obviously� state Error can be reached if signal put
is issued while Conveyer is in state moving� The following liveness�like property states
that Conveyer cannot stay in moving too long� namely� at most u� � u	 time units� This
requirement can be expressed by the formula

�� � moving �� � �u��u��moving �
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Note that this formula is not always valid� since it depends on the fact that when Conveyer
generates the signal ready� M� is in state Idle ready to respond to it�

As a last property� consider the formula

�� � put �� �
��u��u���put�

This formula states that any two consecutive put signals are separated by a time distance
greater than u� � u	� This property� together with property ��� guarantees the validity
of property ���

The Age
based Approach

As explained in �HMP�
� and previously in �PH���� there are two di
erent approaches
to the speci�cation and veri�cation of timed systems� The bounded operators approach
expresses the dependency of properties on real time only through the bounded operators
introduced above� The preceding formulas illustrate speci�cations based on this approach�
and �HMP�
� presents several useful proof rules for establishing properties expressed in
this style�

An alternative approach can be described as the explicit clock approach� It does not
use any bounded operators� but allows instead explicit references to the clock variable
T � A possible methodology for explicit clock speci�cation and veri�cation is presented in
�HLP���� The formulas considered there allow arbitrary references to the clock variable
T within terms� A brief description of a the explicit clock approach is also included in
�HMP�
�� based on a transformation of a timed transition system into a fair transition
system in which the clock variable T is made into a normal state variable� and the tick
transition made a normal transition equal to the others�

This transformation introduces a special delay variable for each transition� which mea�
sures the time the transition has been continuously enabled and not taken� These delay
variables are updated by all transitions that may modify the enabling condition or the
waiting time of the transition with which they are associated� They are also updated by
the tick transition�

The bounded operators approach is adequately covered in �HMP�
�� In this paper
we develop further the explicit clock approach� There are some di
erences between the
presentation of this approach here and its presentation in �HMP�
�� The main di
erences
are that instead of introducing explicit delay variables� we work with the temporal function
"���� and all references to time must be expressed by this function�

We illustrate �rst the speci�cation style appropriate to this approach� Reconsider
the three properties that have been previously speci�ed using the bounded operators
approach� Property �� does not use bounded operators� so no changes are necessary� To
express property ��� stating that Conveyer cannot stay in the moving state too long� we
may use the formula

�� � ��"�moving � � u� � u	��

This formula states that proposition moving cannot hold continuously more than u� � u	
at a stretch�

Property �� can be stated without using bounded operators by the formula

�� � �put � � put �� �"��put� � u� � u	��
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This formula states that if signal put is about to be generated� which means that in the
present situation it is still o
 but in the next situation it will be turned on� then put must
have been continuously o
 for a period exceeding u� � u	�

Axiomatization of Timed Transitions Systems

There are several ways to construct a proof system that will support proofs of properties
of timed transitions systems under the explicit clock approach� Some are based on the
translation �or a priori representation� of timed systems into conventional transition sys�
tems� Such a translation is described in �HMP�
�� A full description of such an approach
is presented in �AL�
�� See also �SBM�
� for a non�temporal proof approach which treats
the clock as another state variable�

A certain overhead is associated with the consideration of the clock variable as a
regular state variable� As a �rst step� several auxiliary variables are introduced which
measure how long each transition has been continuously enabled� These are called delay
variables in the translation of �HMP�
�� An alternative but equivalent approach de�nes
instead �deadline� variables which predict when each transition should be next activated�
The auxiliary variable associated with a transition � can be modi�ed by any transition
that may cause � to change its enabling condition� Consequently� each transition relation
must be augmented by a clause for each delay variable it may a
ect�

Another necessary element is the introduction of an explicit tick transition that causes
time to progress� This transition must update all the delay variables for the transitions
that are currently enabled� Furthermore� in order to compute the permissible time step
that can be taken� the tick transition must make sure that advancing the clock will not
cause any transition to be enabled longer than is allowed by its upper bound�

The approach presented here attempts to avoid the introduction of new auxiliary vari�
ables� Instead it uses the temporal age function " to express the same type of constraints�

We will present a set of axioms that are intended to characterize the set of admissible
computations for a given timed transition system� and which will serve as the basis for
proving its properties�

Axioms for the Progress of Time

The �rst set of axioms ensures that the sequence of values t�� t�� � � � forms a progressive
time sequence�

Tinit � T � �

T� � ���T � T �

T�Z � �n� �T � n�

TX � �x �� �x� �� �T � �T �

Axiom Tinit states that the initial value of T is �� Axiom T� states that time never
decreases from one situation to the next� Axiom T�Z expresses the Non�Zeno require�
ment by stating that for any natural number n �assuming that the natural numbers are
embedded within the time domain T�� T eventually grows beyond n� Axiom TX states
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that changes of state and changes of time are exclusive� Namely� if some state variable x
changes in the current step then the value of T is preserved�

Axioms for Age

This set of axioms deals with the age function "� They are stated for an arbitrary formula
��

Ginit � "��� � �

GF � ��� �� ��"��� � ��

GT � �� �� ��"��� � "��� � ��T � T ��

Axiom Ginit states that the initial value of all ages is �� Axioms GF and GT describe how
the next value of "��� is determined� For the case that � is false in the next situation�
GF states that the next value of "��� will be �� For the case that � is true in the next
situation� GT states that the next value of "��� will be its current value plus the time
increment �T � T � i�e�� the amount by which T will increase between the current and
the next situation�

Transitions and their Activation

The next set of axioms deals with the e
ect of the transitions in T on the computation�
We assume that each transition � � T is associated with a transition relation 
� �V� V ��
which expresses the relation between the values of the state variables in the present state
�represented by V � and their values in the next state �represented by V ���

We de�ne

enabled �� � � �V ��
��V� V
��

taken�� � � 
� �V� �V �

last�taken�� � � �� taken�� �

waiting �� � � "�enabled �� � � �last�taken�� ��

The formula enabled �� � expresses the fact that transition � is enabled at the current
situation� Formula taken �� � is true at a position j if the next situation sj�� can be
obtained by applying � to sj� Note that taken�� � may hold at a certain position for more
than one transition� Formula last�taken�� � holds at position j if j � � and � can account
for the passage between sj�� to sj� The value of function waiting�� � at position j is
equal to the length of time that � has been continuously enabled and not taken up to and
including position j�

In most of the timed transition systems we consider� all the transitions are self�
disabling� This means that for every state s and transition � � � �� �s�� � 	� i�e�� � cannot
be applied twice in succession to any state because it becomes disabled after the �rst
application� For this prevalent situation� enabled �� � entails �last�taken�� �� and we can
therefore take waiting �� � to be simply "�enabled �� ���
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The axioms dealing with the requirements of proper initiation and consecution of
computations are

Cinit � �

Ccons � �

�
��V � V � �T � T � �

�
��T

�waiting �� � � l� � taken�� �� � ��T � T �
�

Cupper � ��waiting �� � � u�� for every � � T

Axiom Cinit states that the initial condition � holds at position � of the computation�
Axiom Ccons describes what can happen on each step of the computation� One possibility
is that all state variables remain the same� which is described by the clause �V � V �
and time increases� Alternately� some transition � which has been waiting for at least
l� is taken� while time remains the same� Axiom Cupper ensures that all upper bound
requirements are respected by requiring that no transition � ever waits more than u� �

Derived Proof Rules

The axioms presented above are adequate for proving properties of timed transition sys�
tems expressed by temporal logic formulas that may use the age function "��� for asser�
tions ��

However� for concrete proofs� it is often useful to �rst derive some auxiliary proof rules
that encapsulate common modes of reasoning� Rule invt is such a rule and is useful for
establishing the validity of formulas of the form �q where q �and � appearing in the rule�
is an assertion� possibly containing terms of the form "�p� for assertions p�

invt I
� �
 q
I�� � 
 �

I�� �
� � "�enabled �� �� � l� � T � � T � �� 
 ��� for every � � T

I��

�BBB�
V � � V � T � � T � �

��
��T

�
enabled �� � 
 �"�enabled �� �� � T � � T � � u�

�
�CCCA
 ��

�q

The rule uses an auxiliary assertion � which is stronger than q �i�e�� implies q� and
is shown to be invariant� Premise I
 states that � implies q� Therefore� if � is invariant
over every computation� so is q� Premise I� requires that the initial condition � implies
�� This establishes that � holds at position � of every computation�

Premises I� and I� show that � is preserved over every possible step in the computa�
tion� Premise I� deals with a step that is caused by taking transition � � The antecedent
of the implication lists the conditions that are necessary for the current and next situation
to be � �related� It uses a primed version of the variables to refer to their values in the
next situation and an unprimed version to refer to their values in the current situation�
The clause T � � T is derived from axiom TX � which states that if variables change then
time remains constant� The right hand side of I� contains ��� the primed version of �� It
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is obtained by replacing all variables not appearing within a " context by their primed
version� and replacing the primed version of a " expression by

"��p� � if p� then
�
"�p� � T � � T

�
else ��

Assuming no nested " expressions� p� is obtained by priming all variables appearing within
p�

Premise I� deals with a step caused by the progress of time� Its antecedent contains the
clause V � � V � requiring that the state variables retain their values when time progresses�
The clause T � � T represents the requirement that time progresses by a positive amount�

In proving the premises	 implications� we may use freely primed and unprimed instan�
tiations of the axioms� For example� for a self�disbaling transition � � we may use the
instantiations of Cupper

"�enabled �� �� � u� and "��enabled �� �� � u� �

� A Veri�cation Example

In this section we demonstrate the style of proofs in the explicit clock approach�
Consider the program presented in Fig� ��

x� integer where x � �

P� ��

	







�

�� � noncritical

�� � await x � �
�� � x �� 

�� � skip

�� � await x � 

�	 � critical

�







�
P� ��

	







�

m� � noncritical

m� � await x � �
m� � x �� �
m� � skip

m� � await x � �
m	 � critical

�







�

Figure �� Coordination by Timing�

This program has been suggested by Fred Schneider as a minimal yardstick for as�
sessing the feasibility of proposed proof systems for real time� He attributes it to M�
Fischer�

The Associated TTS

As a �rst step� we should identify the timed transition system associated with this pro�
gram� For full details of the representation of programs as timed transition systems we
refer the reader to �HMP�
�� Here we will only provide the details necessary for the
treatment of this program�

As state variables we take

V � fx� �g�
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These consist of the data variable x and the control variable � ranging over sets of lo�
cations� A value � � f�i�mjg implies that control of P� is currently at location �i and
control of P� is currently at mj�

The initial condition is given by the assertion

� � �x � �� � �� � f���m�g��

requiring that the initial value of x is � and control starts at locations �� and m��
There is a transition associated with each statement of the program� Let


 
 
� � S� � � 
 
 


represent any of the statements� where � and � stand for the labels appearing before and
after the statement� For the case of the critical statements which appear last in the
program� � is taken to be empty� With each such statement we associate a transition �S�
whose transition relation 
S is de�ned according to the type of the statement�

� For S being noncritical� skip� or critical�


S � �� � �� � ��� � � � f�g � f�g��

Thus� the enabling condition for these statements is that control is in front of the
statement� When taken� control moves to the location following the statement� In
this and other transition relations� we follow the convention that variables �such
as x� whose primed versions do not appear in the formula are preserved by the
transition� That is� for each such variable x the clause x� � x is assumed�

� For S of the form x �� v�


S � �� � �� � ��� � � � f�g � f�g� � �x� � v��

� For S of the form await x � v�


S � �� � �� � �x � v� � ��� � � � f�g � f�g��

Thus� for these statements the enabling condition also includes the requirement
x � v�

The lower and upper bounds associated with the transitions are as follows�

� For the transitions associated with statements noncritical and critical the bounds
are ������ This means that they may be taken immediately or at any time�

� For all other transitions we assume uniform bounds �L�U �� with � � L � U �
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The Speci�cation and its Proof

Assuming that the time bounds satisfy � 
L � U � we are asked to prove mutual exclusion�
which can be stated by

�� � ���at��	 � at�m	��

This formula states that there will never be a state in which P� is executing at �	 while
P� is executing at m	� The formula uses the control predicates at��i and at�mj which
are abbreviations for �i � � and mj � �� respectively�

To apply rule invt� we identify q as ��at��	�at�m	�� The rule calls for a construction
of assertion � which is stronger than q and is inductive� i�e�� satis�es premises I�#I��
Usually� q as given is not inductive� Rather than present a complete inductive assertion�
we prefer to share with the readers the process by which such an assertion is constructed�

The main heuristic is strengthening a given assertion by adding pre�conditions that
must hold if the assertion is in fact invariant� For example� if q is not inductive� there
must exist some transition � such that q is not preserved under � � Form the assertion

p� � �V ��
� 
 q���

Assertion p� characterizes precisely the requirement on situation s so that every � �
successor of s will satisfy q� It is also clear that p� is not implied by q� so q � p� is
stronger than q� This is because the validity of q 
 p� is equivalent to the validity of
�
� � q� 
 q�� stating that q is preserved over � �

Thus� our next candidate for an inductive assertion is q� � q� p�� We proceed to check
whether q� is inductive� and if we �nd another transition that does not preserve q�� this
gives rise to an even stronger assertion� and so on� Hopefully this process will converge
to identify an inductive assertion that implies q�

This incremental strengthening of q is often coupled with additional heuristics that
attempt to simplify and generalize the precondition p��

In checking for the inductiveness of an assertion� we do not have to check all transitions
in great detail� There are certainly transitions that can be discarded after a cursory
syntactical examination� These are� for example� all the transitions that do not modify
any variable on which the assertion depends� In general� we only should investigate
transitions that look as though they may change the value of the assertion from false to
true� We refer to such transitions as potentially falsifying or� sometimes� as potentially
hazardous�

For assertions that have the form of an implication p 
 r� it su�cient to consider
transitions that may change p from false to true and those that may change r from true
to false�

The two transitions which are potentially hazardous to the validity of q� which can
also be written as the implication at��	 
 �at�m	� are m� while P� is at �	� and �� while
P� is at m	� We begin our analysis of the �rst case� The second case can be handled
symmetrically�

The precondition that excludes taking m� while P� is at �	 is

at��	 � at�m� �� x �� ��
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Indeed� if we believe q to be invariant� we must also believe �ignoring timing considerations
for the moment� that the above formula is invariant� Otherwise� m� could be taken and
lead to a violation of q�

With some generalization of this formula� we add to our assertion the requirement

�� � at��	 �� x � 


Checking the transitions that may endanger the validity of ��� we �nd m� which� when
executed� will set x to �� We therefore add the following requirement that guarantees
that m� cannot be taken while P� is at �	�

�� � at��	 �� �at�m�

To verify the validity of ��� we check all the transitions that may potentially threaten it�

� m� while at��	�
To prevent this from occurring� it is su�cient to show that

at��	 � at�m� �� x �� ��

We generalize this to the requirement

�� � at�����	 � at�m���� �� x � 
�

By checking all the transitions� we �nd out that �� is indeed inductive�

� �� while at�m��
An intuitive argument showing that this cannot happen is that by the time �� is
possible �ready�� x � 
 must have held continuously for at least � 
 L time units�
However� P� cannot wait at m� that long without moving on �since U � � 
 L��

Formalization of the Time
Dependent Reasoning

Up to this point� the part of the rule we have used and even the recommended heuristic
are not in$uenced by timing considerations� It is only the formalization of the intuitive
argument presented above that requires the stronger proof system that takes timing into
account�

We start by proving several lemmas�

�� � ��"�at�m�� � U�

This invariant is an instance of axiom Cupper and the fact that m� is self�disabling�
The next lemma claims

�� � at�m� �� "�at�m�� � "�x � 
��

The potentially endangering transitions are

� m�� Possible only if x � �� which implies "��x � 
� � ��

��



� m�� Making at�m
�
� � f�

� tick �passage of time�� Clearly if at�m� and "�at�m�� � "�x � 
� hold before the
tick� then

"��at�m�� � "�at�m�� � T � � T � "�x � 
� � T � � T � "��x � 
��

A �nal lemma is

�� � at��	 � at�m���� �� "�x � 
� � � 
 L�

This is proven by proving separately

at��� � at�m���� �� "�x � 
� � "�at����

at��� � at�m���� �� "�x � 
� � L � "�at����

All these invariants can be proven directly by rule invt taking � to be q�
We may assemble now the three lemmas to obtain

at��	 � at�m� �� U

��

� "�at�m��

��

� "�x � 
�

��

� � 
 L

Since � 
L � U � this shows that at��	�at�m� is impossible� leading to the validity of ���

� Hybrid Systems

As a �rst step in the development of semantics for hybrid systems we discuss the underly�
ing time model � From now on� we assume that the time domain T is R��� the nonnegative
real numbers�

Let � � t�� t�� � � � be a progressive time sequence� The time structure induced by � is
de�ned to be the set of pairs

T� � fhi� tij i � �� 
� � � � � t � ti � ti � t � ti��g

Thus� T� consists of all the pairs hi� tii� i � �� 
� � � � � corresponsing to the elements of ��
as well as the pairs hi� ti corresponding to intermediate points ti � t � ti���

We refer to the elements of T� as ��moments� or simply as moments when � is under�
stood� For each momentm � hi� ti we write time�m� for the value t� the time stamp of m�
We refer to moments of the form hi� tii as the discrete moments of T�� and to moments
of the form hi� ti� where ti � t � ti�� as the continuous moments of T�� The set T� is
ordered by the lexicographic ordering

hi� ti � hi�� t�i i� i � i� or �i � i� and t � t���

We writem� � m� for the case that eitherm� � m� or m� � m�� Note that if hi� ti � hi�� t�i
then i � i� and t � t��

The following diagram represents a pre�x of a time structure induced by the time
sequence � � �� 
��� 
��� �� �� �� �� �� �� � � � �

�




h�� �i h�� �ih�� �ih�� �ih�� 
��ih
� 
��ih�� �i

In this diagram� we have only marked the discrete moments� but any two discrete moments
with di
erent time stamps are seperated by uncountably many continuous moments� For
example� h�� 
��i and h�� �i are separated by all �continuous� moments of the form h�� ti
for 
�� � t � ��

A time structure can be viewed as consisting of alternations between discrete and con�
tinuous phases� A discrete phase is a maximal subsequence hi� tii� hi � 
� ti��i� � � � � hj� tji�
for i � j� where ti � ti�� � 
 
 
 � tj� A continuous phase consists of a nonempty
open interval of the form Oi � fhi� ti j ti � t � ti��g� for ti � ti��� Sometimes we re�
fer to the closed interval Ci � fhi� tiig � Oi � fhi � 
� ti��ig or to the half�open interval
Hi � fhi� ti j ti � t � ti��g�

For any closed interval Ci� we denote by Ki � �ti� ti��� the set of time values associated
with the moments of Ci� A closed interval Ci such that ti � ti�� is called a nontrivial
interval�

Hybrid Traces

The state variables of a hybrid system are partitioned into V � Vc � Vd� where

� Vc is the set of continuous variables� These variables are modi�ed by continuous
activities in the behavior of a hybrid system�

� Vd is the set of discrete variables� These variables are changed by discrete steps�

As before� we de�ne � the set of states to consist of all interpretations of V � and �T the
set of situations to consist of all interpretations of VT � V � fTg�

A hybrid trace is a pair ��� ��� where

� � is a progressive time sequence� and

� � � T� 	
 � is a function assigning a state ��m� � � to each ��moment m � T�� We
extend � to map moments into situations by taking ��hi� ti��T � � t�

For ease of notation� we will write ��i� t� for ��hi� ti��
Consider a nontrivial closed interval Ci� For each state variable y � V � � induces a

function y� from Ki � �ti� ti��� to the domain of y� which is de�ned by

y��t� �

�
��i� t��y� for ti � t � ti��

��i� 
� ti����y� for t � ti��

Thus� the value of y� at the left and right boundaries of Ki are taken to be the values of
y at the delimiting discrete moments hi� tii and hi � 
� ti��i� respectively�

For each variable y � V and each nontrivial closed interval Ci� it is required that

� If y is a discrete variable then y� is a constant function over Ki� This means that
discrete variables do not change over continuous phases�

��



� If y is a continuous variable� then y� is a continuous function over Ki� For the end
points ti and ti�� it is only required that y� be continuous from the right and from
the left� respectively�

Thus� if we consider the time domain depicted above� y� should have a right limit at 
��
which equals the value of y at the state corresponding to the moment h�� 
��i�

A hybrid trace can be described as a continuous activity interspersed with countably
many bursts of discrete activity which take zero time�

Phase Transition Systems

The generalization of a timed transition system to the hybrid domain is called a phase
transition system� Phase transition systems allow an e
ective description of systems that
can generate hybrid traces as previously described�

Before presenting the formal de�nition� we make the observation that changes in a
phase transition system are governed by the dual constructs of transitions and activities�
The table below compares some of the features of these two constructs�

Transitions Activities

Govern Discrete Change Continuous Change
Take No Time Positive Time
Execute By Interleaving In parallel
De�ned by Transition Relations Di
erential Equations

Transitions and activities interact� Transitions start and stop activities and modify the
parameters on which the behavior of activities depends� Activities may generate events
and conditions that enable or trigger transitions� A typical scenario is that a transition
is triggered by the event becomes�x � ��� which occurs precisely at the moment in which
x switches from a negative value to a non�negative one� An immediate transition that
depends on this event for its activation will interrupt the continuous change and execute
at this precise time point�

A phase transition system % consists of hV���T �A� l� ui� where

� V � Vc � Vd is the set of state variables� partitioned into the continuous variables
Vc and the discrete variables Vd�

� � is an assertion� characterizing the admissible initial states�

� T is a �nite set of transitions� each transition � � T � mapping each state s � �
into a set of successors � �s� � �� Each transition � is associated with a transition
relation 
� which characterizes the relation between states and their � �successors�
Transitions are allowed to change the values of continuous variables�

� A is a �nite set of activities� Each activity � � A is associated with a conditional
di
erential equation of the form

a	 
 E	�

��



where a	 is a boolean expression over the discrete variables� called the activation
condition� and E	 is a di
erential equation of the form &y � r� where y is a continuous
variable and r is a term over V � We say that the activity constrains the variable y�
It is required that the activation conditions of di
erent activities that constrain the
same variable be exclusive�

An activity � is called operational in a state if a	 holds there�

� l is a lower bound assigning to each transition � a minimal delay l� � R���

� u is an upper bound assigning to each transition � a maximal delay u� � R
�
��� We

require that u� � l� for all � � T �

Hybrid Computations

A hybrid trace ��� �� is a computation of a phase transition system % if it satis�es the
following requirements�

� �Initiality� ���� �� j� ��

� �Discrete Consecution� For each i � � such that ti � ti��� there exists a � � T � such
that

��i� 
� ti��� � � ���i� ti���

We say that � is taken at hi� tii�

� �Lower bound � If � is taken at hj� t�i� there exists a moment hi� ti � hj� t�i such that
t � l� � t� and � is enabled on ��m� for all m� hi� ti � m � hj� t�i and not taken at
any m� hi� ti � m � hj� t�i�

� �Upper bound � If � is enabled at hi� ti� there exists a moment hj� t�i � hi� ti such that
t � u� � t� and either � is not enabled at hj� t�i� or � is taken at hj� t�i�

� �Continuous change� For every nontrivial closed interval Ci� the functions y��t� for
each y � Vc are continuous functions that satisfy all the activities � � A� Note
that if a	 is false at a state then activity � is satis�ed by any functions� For each
discrete variable y � Vd� the function y��t� is constant in the interval� implying
that discrete variables retain their value throughout the interval� Note that� since
activation conditions only depend on discrete variables� an activity is operational at
one point in the interval i
 it is operational at all points of the interval�

By default� the function y��t�� for a continuous variable y � Vc which is not con�
strained by any activity that is operational in the interval� is also constant�

Let T� denote the set of all immediate transitions� i�e�� transitions whose upper bound
is �� and T� denote the set of transitions whose upper bound is positive� To simplify
matters we require that all transitions whose enabling condition depends on continuous
variables be immediate� Let � � T� be an immediate transition� A careful examination of
the upper bound requirement shows that � cannot be enabled at a moment that belongs
to a half�open continuous interval� i�e�� at a moment hi� ti� such that ti � t � tj� This is

��



because the only moment hj� t�i � hi� ti such that t� u� � t� is hj� t�i � hi� ti �u� � �� and
� is neither disabled nor taken there�

Example

Consider a phase transition system %� de�ned as follows�
The state variables consist of a continuous variable x ranging over the reals� and a

discrete variable y ranging over the naturals�
The initial condition is

� � �x � �� � �y � ��

There is a single transition � � with transition relation


 � �x � 
� � �y � �� � �y� � 
�

The time bounds for � are ��� ���
There is a single activity � given by

� � y � � 
 &x � 
�

The computations of this phase transition system are all of the form

hx � �� y � �� i � �� T � �i� fhx � t� y � �� i � �� T � ti j � � t � 
g� hx � 
� y � �� i � 
� T � 
i�
hx � 
� y � 
� i � �� T � 
i� fhx � 
� y � 
� i � �� T � ti j 
 � t � t�g� hx � 
� y � 
� i � �� T � t�i�
fhx � 
� y � 
� i � �� T � ti j t� � t � t�g� 
 
 


for a progressive time sequence � � 
 � 
 � t� � t� � 
 
 
 � The presentation of these
computations lists� for each moment hi� ti� a tuple consisting of ��i� t��x�� ��i� t��y�� i� and
t�

All of these computations have a continuous phase in the time interval ��� 
� in which
activity � is operational and causes x to rise from � to 
 continuously� The phase stops
at t � 
 because the immediate transition � becomes enabled� This transition is taken at
moment h
� 
i� leading to the state ���� 
� in which y � 
� Beyond this moment neither �
nor � can be active� and the only thing that happens is that time progresses� The progress
of time is described by an alternation of discrete states and continuous intervals in which
all state variables remain constant and the only changing parameter is time itself�

Not every phase transition system has computations� For example� if we replace the
transition relation in the preceding example by the relation


 � �x � 
� � �y � �� � �y� � 
��

then the resulting phase transition system has no computations� The reason is that while
x is increasing uniformly� there is no de�nite value of T in which the predicate x � 

precisely becomes true� Thus� we cannot let the continuous phase extend beyond 
� On
the other hand� if we stop it at 
 then x � 
� and � is not enabled yet�

Consequently� consider an assertion ��x� which depends on a continuous variable x�
We say that � is sharp in x if for every t� and t� and every function f�t� continuous for
t � �t�� t�� such that ��f�t��� is false and ��f�t��� is true� there exists a t� t� � t � t�
such that ��f�t�� is true and for every t�� t� � t� � t� ��f�t��� is false� This guarantees

��



a de�nite point at which � changes from false to true� If all the enabling conditions of
every transition are sharp then the problem encountered above is not possible� For the
case that � depends on two or more continuous variables� e�g�� on x�� x�� � � � � we require
that a similar condition holds for every list of continuous functions f��t�� f��t�� � � � �

This is not the only obstacle to having a computation� There are other cases when
we can obtain a pair ��� �� which satisfy all the requirements of a computation except
that the elements of � are bounded by some integer N � This violates the requirement of
Non�Zeno� Additional conditions may be required to avoid this situation�

An Example of a Hybrid Speci�cation

To give a better picture of how phase transition systems operate� we provide an example of
a speci�cation of a hybrid system� The �rst presentation of the speci�cation uses a State�
chart augmented with a notation that annotates some basic states by a set of di
erential
equations� The implied meaning is that� whenever the state is active� the associated dif�
ferential equations are operational� Thus� activities are associated with annotated states
of the Statechart while transitions are associated with the arrows connecting the states�

The example can be described as follows� at time T � �� a mouse starts running from
a certain position on the $oor in a straight line towards a hole in the wall� which is at a
distance X� from the initial position� The mouse runs at a constant velocity Vm� After a
delay of ' time units� a cat is released at the same initial position and chases the mouse
at velocity Vc along the same path� Will the cat catch the mouse� or will the mouse �nd
sanctuary while the cat crashes against the wall(

The Statechart in Fig� � describes the possible scenarios�
The speci�cation �and underlying phase transition system� uses the continuous state

variables xm and xc� measuring the distance of the mouse and the cat� respectively� from
the wall� It refers to the constants X�� Vm� Vc� and '�

A behavior of the system starts by setting the distance variables xm and xc to their
initial value X�� Then each of the players begins its local behavior� The mouse proceeds
immediately to the state of running� in which his variable xm changes continuously ac�
cording to the equation &xm � �Vm� The cat waits for a delay of ' before entering its
running state� Then there are several possible scenarios� If the event xm � � happens
�rst� the mouse reaches sanctuary and moves to state safe� where it waits for the cat to
reach the wall� As soon as this happens� detectable by the condition xc � � becoming
true� the system moves to state Mouse�Wins� The other possibility is that the event
xc � xm � � occurs �rst� which means that the cat overtook the mouse before the mouse
reached sanctuary� In this case they both move to state Cat�Wins�

This diagram illustrates the typical interleaving between continuous activities and
discrete state changes� which in this example only involves changes of control�

Note that the condition xc � xm � � is not sharp according to our de�nition� For
the current system it is obvious �under the assumption that ' � �� that if the condition
changes from false to true it always happens at a de�nite moment� Consequently� in the
presented speci�cation� we should not be concerned with the fact that this condition is
not sharp� However� an alternative sharp condition that can replace xc � xm � � is

�xc � xm� �Mouse�running �

��



safe

runningrunning

restrest

Start

xc � �

Cat�WinsMouse�Wins

xc � xm � �

xm � �

&xc � �Vc&xm � �Vm

�'�'�

CatMouse

�xc �� X�� xm �� X�

Figure �� Speci�cation of Cat and Mouse�

The idea of using Statecharts with continuous activities associated with certain states
�usually basic ones� was already suggested in �Har���� According to this suggestion�
these states are associated with activities that represent physical �and therefore possibly
continuous� operations and interactions with the environment�

The Underlying Phase Transition System

Following the graphical representation� we will now identify the phase transition system
underlying the picture of Fig� ��

As state variables we take Vc � fxc� xmg and Vd � f�g� The variable � is a control
variable whose value is a set of basic states of the statechart�

The initial condition is given by

� � � � fStartg

��



There are several transitions� Following is a list of transitions and the transition relations
associated with them� We name transitions according to the states from which they
depart�

Start � �Start � �� � ��� � fMouse�rest� Cat �restg� � �x�c � x�m � X��
Mouse�rest � �Mouse�rest � �� � ��� � � � fMouse�restg � fMouse�runningg�

Cat �rest � �Cat �rest � �� � ��� � � � fCat�restg � fCat �runningg�
Mouse�running � �Mouse�running � �� � �xm � ���

��� � � � fMouse�runningg � fMouse�safeg�
Mouse�safe � �Mouse�safe � �� � �xc � �� � ��� � Mouse�Wins�
Cat �running � �Cat �running � �� � �xc � xm � �� � ��� � Cat�Wins�

There are two activities �m and �c representing the running activities of the two partici�
pants� Their equations sets are given by

�m � �Mouse�running � �� 
 &xm � �Vm
�c � �Cat �running � �� 
 &xc � �Vc

The time bounds for transition Cat�rest are �'�'�� All other transitions are immediate�

Temporal Speci�cation and Veri�cation

At this preliminary stage of research on hybrid systems� we consider as speci�cation
language a minimally extended version of temporal logic� The two main extensions are�

� The underlying time domain are time structures of the form T�� Since the basic
temporal operators U and S are de�ned on arbitrary totally ordered domains�
there is no problem in interpreting them over the hybrid time structures�

More care is needed to deal with the operators � and �� � Some �but not all�
moments in T� have successors or predecessors� For any pair of moments hi� tii
and hi � 
� ti��i such that ti � ti��� hi � 
� ti��i is the successor of ti � ti��� while
ti � ti�� is the predecessor of hi � 
� ti��i� We de�ne the formula � p �respectively�
�� p� to hold at moment m � T� if m has a successor �respectively� predecessor� m�

and p holds at m��

� The other extension is allowing references to age formulas of the form "�p�� We
restrict these reference to formulas p that only refer to discrete variables�

A Rule for Invariance

We propose rule invh for proving invariance properties of hybrid systems�
Premise I� of the rule claims that if there is a continuous phase starting at some

moment m and leading to another moment m�� then it preserves �� The premise refers to
variables at m in their unprimed version and to variables at m� in their primed version�

The clause T � t� � T � � t� names the time at m as t� and the time at m� as t�� It
also states that time has increased between m and m�� The clause � states that � holds
at m�

��



invh

I
� �
 q
I�� � 
 �

I�� �
� � "�enabled �� �� � l� � T � � T � �� 
 ��� for every � � T

I��

�BBBBBBBBBBBBBBBBB�

�T � t� � T � � t�� � � �
�
	�J

a	 �
�

	�A�J

�a	

�

�VJ � bVJ �t��� � �V �
J � bVJ �t��� � �VJ � V �

J
�

�

��t � �t�� t���bEJ �t� � ��t � �t�� t���
h �
��T�

� denabled �� �
i

��
��T�

�
enabled �� � 
 �"�enabled �� �� � t� � t�� � u�

�
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 �� for every J � A

�q

Let J � A be a subset of activities� The premise considers the case that the set of
activities that are operational in the considered phase is J � The conjunction�

	�J

a	 �
�

	�A�J

�a	

states that the activation conditions that hold at m correspond precisely to the activities
that are in J �

Let EJ be the set of all equations that appear in E	 for � � J � We denote by VJ the
set of all continuous variables that appear on the left hand side of equations in EJ � and by
VJ the set of all other variables� which includes all discrete variables and some continuous
variables that do not appear on the left hand side of equations in EJ �

Clearly� if J is the set of equations that are active in a continuous phase� then the only
state variables that can change their values are the variables in VJ � while the variables in VJ
retain their old values� Assume that for each variable x � VJ there exists a �di
erentiable�
function bx�t� de�ned for t � �t�� t��� The conjunction

�VJ � bVJ �t��� � �V �
J � bVJ �t��� � �VJ � V �

J
�

is an abbreviation for�
x�VJ

�x � bx�t��� �
�

x�VJ

�x� � bx�t��� �
�

x�V
J

�x� � x��

These clauses state that� for each variable x � VJ � its value at m is equal to the value of
the function bx at t�� and the value of x at m� equals the value of bx at t�� Thus� x andbx agree on the endpoints of the phase� In addition� the third clause states that variables
not in VJ retain their values from m to m��

��



The clause ��t � �t�� t���bEJ �t� states that the set of di
erential equations EJ holds for
t � �t�� t��� This set is obtained by replacing each x � VJ by the function bx�t��

The clause
��t � �t�� t���

h �
��T�

� denabled �� �
i

states that no immediate transition is enabled at any intermediate momentm���m � m�� �

m�� The assertion denabled �� � is obtained from enabled �� � by replacing each variable x � VJ
by bx�t��

The clause �
��T�

�
enabled �� � 
 �"�enabled �� �� � t� � t�� � u�

�

states that the time step taken in this phase� i�e�� t�� t� is such that no enabled transition
becomes overripe during the phase�

The primed assertion �� is obtained by priming all variables in VJ and replacing each
occurrence of "�p� by

"��p� � if p� then "�p� � T � � T else ��

Example of Veri�cation

Consider the phase transition system %� presented in the preceding section� We wish to
verify that it satis�es the invariant

��x � 
��

We use rule invh with q � x � 
� In this case we can take � � q� which trivially satis�es
premise I
� Premise I� is similarly obvious since initially x � � � 
� Premise I� is also
immediate since the �only� transition is enabled only when x � 
� and it preserves the
value of x� It therefore remains to verify premise I�� There are two candidates for the set
of operational activities J � 	 and f�g� The case J � 	 is trivial since in this case VJ � 	
and therefore �� � ��

Let us examine the case J � f�g� In this case� VJ � fxg� VJ � 	� and EJ contains
only &x � 
� Writing I� with these concrete values we obtain the implication�BBBBBB�

�T � t� � T � � t�� � �x � 
� � �y � ��
�

�x � bx�t��� � �x� � bx�t��� � �y � y��
�

��t � �t�� t���
h
&bx�t� � 


i
� ��t � �t�� t���

h
�bx�t� �� 
� � �y �� ��

i

�CCCCCCA
 �x� � 
�

Since x� � bx�t��� we have to show that bx�t�� � 
� From x � 
� x � bx�t��� y � �� and
the fact that for all t� t� � t � t�� either bx�t� �� 
 or y �� �� we infer that bx�t�� � 
 and
that for all t � �t�� t��� bx�t� �� 
� Since bx�t� is a continuous function for t � �t�� t��� bx�t��
cannot be greater than 
 because� by the intermediate value theorem� there would be a
t � �t�� t�� such that bx�t� � 
� contradicting one of the previous conditions�

Thus bx�t�� and� therefore� x� must be lesser than or equal to 
�

��



An Invariant for the Cat and Mouse Speci�cation

A more interesting invariant concerns the Cat and Mouse example� Here we may want to
determine conditions under which the cat will never catch the mouse� A simple calculation
leads to the requirement

X�

Vm
� ' �

X�

Vc
�
�

The condition states that the time it takes the mouse to reach the wall is smaller
than the time it takes the cat to reach the wall� Since both run at constant speed� this
guarantees that they will not meet� except at the wall� the mouse arriving there �rst�

Assume that condition �
� is given and that ' � ��� We then would like to establish
the invariant

Cat �running � �xc � xm� �� xm � �� ���

To prove this invariant we use an auxiliary assertion � given by a conjunction of the
following implications

Mouse�rest 
 xm � X�

Mouse�running 
 xm � X� � Vm 
 "�Mouse �running� � � ���

Mouse�safe 
 xm � � ���

Cat�rest 
 xc � X�

Cat �running 
 xc � X� � Vc 
 "�Cat �running� � � ���

Cat�rest 
 Mouse�rest �Mouse�running �Mouse�safe

Cat �running 
 Mouse�running �Mouse�safe ���

Mouse�rest � Cat�rest 
 "�Mouse�rest� � "�Cat �rest� � �

Mouse�running � Cat�rest 
 "�Mouse�running� � "�Cat �rest� � '

Mouse�running � Cat �running 
 "�Mouse�running� � "�Cat �running� � ' ���

Assuming that � has been shown to satisfy premises I�#I�� we will show that it implies
q � �Cat �running � �xc � xm�� 
 xm � �� By implication ���� when the cat is running
the mouse is either in state running or in state safe� If it is in state safe then� by
implication ���� xm � �� If it is in state running� then the assumption xc � xm with
implications ���� ���� and ���� leads to Vc 
 "�Cat �running� � Vm 
 �"�Cat �running� � '��
From this� we can conclude Vc � Vm and

"�Cat �running� �
Vm 
'

Vc � Vm
�

On the other hand� from implication ��� we obtain X� � Vc 
 "�Cat �running� � � which
can be written as

"�Cat �running� �
X�

Vc
�

Comparing the equality and inequality involving "�Cat �running�� we obtain

Vm 
'

Vc � Vm
�

X�

Vc
�

�




which can be rewritten as
X�

Vm
� ' �

X�

Vc
�

contradicting condition �
��
This shows that� under condition �
�� if the cat is in state running and xc � xm� then

the mouse can only be in state safe with xm � �� implying assertion q�

A more careful analysis shows that the weaker requirement

X�

Vm
� ' �

X�

Vc
���

is already a su�cient condition for the cat not catching up with the mouse except possibly
at the wall� A proof of this fact follows similar lines to the proof presented above�

� Sampling Computations of Hybrid Systems

The notions of hybrid trace and hybrid computation presented in the preceding section
are based on extending the discrete sequence structure of timed computations into the
dense time structure T�� An alternative approach that we will now consider takes a less
radical step and bases the description of hybrid behavior on sequences of situations� very
similar to timed traces�

The Continuous Step

Assume a given phase transition system % with state variables V � Vc � Vd� Consider
two situations s� s� � �T � We characterize the relation holding between s and s� if they
are possible left and right endpoints of a continuous phase in the behavior of %� The
characterization uses the notation of premise I� of rule invh� This notation writes

J for a set of activities
EJ for the set of di
erential equations appearing in E	 for some � � J
VJ for the set of �continuous� variables appearing on the left hand side of some

equation in EJ
VJ for V � VJbx�t� for a function representing the value of x � VJ over the continuous phasebVJ for the set of functions bx�t�� x � J �

The formula 
cont expresses the relation holding between the situations at the two end�
points of a continuous phase� It is de�ned by


cont � �J� bVJ � t�� t�

�BBBBBBBBBB�

�T � t� � T � � t�� � � �
�
	�J

a	 �
�

	�A�J

�a	

�

�VJ � bVJ �t��� � �V �
J � bVJ�t��� � �VJ � V �

J
�

�

��t � �t�� t���bEJ �t� � ��t � �t�� t���
h �
��T�

� denabled �� �
i
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As usual� unprimed situation variables refer to their values in s while primed variables
refer to their values in s�� For detailed explanation of the various clauses appearing in

cont � we refer the readers to the explanations following rule invh� Note that we have
omitted the clause �

��T�

�
enabled �� � 
 �"�enabled �� �� � t� � t�� � u�

�
from the de�nition of 
cont � This is because it will be implied by other requirements�

Sampling Computations

In close analogy with the notion of timed computations� we de�ne a sampling computation
of a phase transition system % to be an in�nite sequence of situations

� � s�� s�� � � � �

where si � �T for each i � �� 
� � � � � and the time stamps� s��T �� s��T �� � � � form a progres�
sive time sequence� which satis�es the following requirements�

� �Initiality� s� j� ��

� �Consecution� For all i � ��

	 Either ti � ti�� and there is a transition � � T such that si���V � � � �si�V ���
or

	 si and si�� jointly satisfy 
cont �

In the �rst case� we say that � is taken at position i� The second case is described
as a continuous step being taken at position i�

� �Lower bound � For every transition � � T and position j � �� if � is taken at
j� there exists a position i� i � j� such that ti � l� � tj and � is enabled on
si�V �� si���V �� � � � � sj�V � and not taken at any of the positions i� i�
� � � � � j�
� This
implies that � must be continuously enabled for at least l� time units before it can
be taken�

� �Upper bound � For every transition � � T and position i � �� if � is enabled at
position i� there exists a position j� i � j� such that ti � u� � tj and

either � is not enabled at j�
or � is taken at j�

In other words� � cannot be continuously enabled for more than u� time units
without being taken�

A temporal axiomatization of sampling computations can be easily obtained by taking
all the axioms for timed systems presented in Section �� except for Ccons � which has to
be modi�ed� Writing the continuous step relation as 
cont �VT � V

�
T �� the axiom for hybrid

consecution replacing Ccons is given by

Hcons � �

h

cont �VT � �VT � �

�
��T

�waiting �� � � l� � taken�� ��
i
�

This axiom states that� at any position� either a continuous step or a transition is taken�

��



How Faithful is the Sampling Model�

The main di
erence between continuous computations based on dense time structures� as
presented in the previous section� and the more conservative notion of sampling compu�
tations is in the amount of formally visible details given about the change of continuous
variables over continuous phases�

Consider two moments mi � hi� tii and mi�� � hi � 
� ti��i in a computation of a hybrid
system� such that ti � ti��� Obviously there is a continuous phase delineated by mi and
mi�� in which some continuous variables� say x � Vc� change continuously� Continuous
computations represent the history of change of x in this phase by recognizing a continuum
of intermediate momentsm�mi � m � mi��� and specifying a state ��m� for each of them�
A sampling computation� on the other hand� o�cially recognizes only the endpoints mi

and mi�� and hides the history of continuous change between them inside the de�nition
of 
cont �

What are the implications of this di
erence( One aspect to be considered is the
degree of correspondence with our intuition� Clearly� both approaches admit that there
is continuous change occurring in the continuous phase� Why not represent it explicitly(

There is� however� another point which we would like to address and clarify� Assume
that for a continuous variable x we claim an invariant such as ��x �� 
�� and that a given
computation satis�es this requirement� In the continuous computation case� this implies
that x di
ers from 
 at any time point including the continuous phases� On the other
hand� if a sampling computation � � s�� s�� � � � is claimed to satisfy ��x �� 
�� we only
know that x di
ers from 
 at the discrete sampling points but can infer nothing about its
value within the continuous phases�

Example

Consider a phase transition system %� de�ned as follows�

V � Vc � fxg
� � �x � ��
Transitions� a single transition � with 
� � �x� � �� and time bounds

�l� u� � �
� 
�

Activities� a single activity � with conditional equation &x � ���

This system has the sampling computation

� � hx � � � T � �i
cont
�
 hx � � � T � 
i

�
�
 hx � � � T � 
i

cont
�


hx � � � T � �i
�
�
 hx � � � T � �i

cont
�
 
 
 


In each continuous phase x drops continuously from � to �� and therefore� at time
points T � ���� 
��� ���� � � � its value is 
� On the other hand� the formula ��x �� 
�
obviously holds over ��

However� this problem arises only when we consider formulas that hold over individual
computations� If we consider speci�cations not at the level of individual computations
but at the system level� and restrict our attention to safety properties� this apparent

��



discrepancy disappears� Namely� if ��x �� 
� is claimed to be valid over all sampled
computations then it is guaranteed that x di
ers from 
 at all time points� including
those falling within continuous phases�

This is because� in taking a continuous step� we do not necessarily have to take the
maximal time step possible� The de�nition allows us to stop at any earlier time point�
Thus� while %� has � as one of its computations� it also has the computation

�� � hx � � � T � ���i
cont
�
 hx � 
 � T � ���i

cont
�
 hx � � � T � 
��i

�
�
 hx � � � T � 
��i

cont
�


hx � 
 � T � 
��i
cont
�
 hx � � � T � ���i

�
�
 hx � � � T � ���i

cont
�
 
 
 


which does not satisfy ��x �� 
��
It follows that� at the system level� ��x �� 
� is not a valid speci�cation for %��

This observation suggests that the sampling model provides faithful representation of all
invariance properties of the form �p� where p is a state formula� that are valid for the
hybrid system�

On the other hand� this is not true if we consider other properties� Consider the
speci�cation

� �x � 
�

which states that x eventually equals 
� This formula is valid over all continuous com�
putations of %� and therefore should be considered a valid property of this system� On
the other hand� while it is satis�ed by ��� it is not satis�ed by �� This shows that non�
invariance properties are not fully captured by the sampling model�

The sampling model has been studied in �MSB�
� and recommended by Lamport as
a simple way to represent hybrid systems�
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