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Abstract. In this paper we report some progress in applying timed automata
technology to large-scale problems. We focus on the problem of finding maximal
stabilization time for combinational circuits whose inputs change only once and
hence they can be modeled using acyclic timed automata. We develop a “divide-
and-conquer” methodology based on decomposing the circuit into sub-circuits
and using timed automata analysis tools to build conservative low-complexity
approximations of the sub-circuits to be used as inputs for the rest of the system.
Some preliminary results of this methodology are reported.

1 Introduction

It is well known that timed automata (TA) [AD94] are well suited for model-
ing delays in digital circuits [D89,L89,MP95]. Although some applications of
TA technology for solving timing-related problems for such circuits have been
reported [MY96,BMPY97,TKB97,TKY+98,BMT99,BJMY02], the state- and
clock-explosion associated with such models, restricted the applicability of TA
to small circuits. In this work we try to treat larger combinational circuits by
using the old-fashioned recipe of abstraction and approximation. When viewed
from a purely-functional point of view, combinational circuits realize instanta-
neous Boolean functions. However, when gate delays are taken into account, the
computation of that function is not considered anymore as an atomic action but
rather as a process where changes in the inputs are gradually propagated to the
outputs. The question of finding the worst-case propagation delay of the circuit,
that is, the maximal time that may elapse between a change in the inputs and the
last change in the outputs, is of extreme practical importance as it determines,
for example, the frequency of the clock with which a circuit can operate. Static
techniques currently practiced in industry are based on finding the longest (in
terms of accumulated delays) path from inputs to outputs in the circuit. While
these bounds are easy to compute (polynomial in the size of the circuit), they can
be over pessimistic because they abstract from the particular logic of the circuit
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which may prevent such longest paths from being exercised.1 On the other hand,
models based on timed automata do express the interaction between logic and
timing and hence can lead to more accurate results. Alas, TA-based techniques
are still very far from being applicable to industrial-size circuits.

The present paper attempt to find a better trade-off between accuracy and
tractability by using timed automata as an underlying semantic model and by
applying abstraction techniques to parts of the circuit in order to build for them
small over-approximating timed automata that can be plugged as inputs to other
parts of the circuit. Our abstraction technique takes advantage of the acyclic
nature of the circuits and their corresponding automata, which implies, among
other things, that every variable changes finitely many times before stabilization
in every run of the automaton.

The rest of the paper is organized as follows: in Section 2 we give a formal
definition of circuits, their “languages” and the maximal stabilization time prob-
lem. In section 3 we explain the modeling of such circuits as timed automata.
Section 4 is devoted to our abstraction technique, its properties and the way it is
implemented using the tools IF/Kronos and Aldebaran. Preliminary experimen-
tal results are reported in Section 5 followed by a discussion of related work and
future directions.

2 Timed Boolean Circuits

Throughout this paper we restrict ourselves to acyclic circuits.

Definition 1 (Boolean Circuits). A Boolean circuit is C = (V, �, F ) where V
is a set of nodes, � is an irreflexive and anti-symmetric binary relation and F
is a function that assigns to every non-input node v a Boolean function Fv

Here v � v′ means that v influences v′ directly. The transitive closure of �,
∗
�, induces a strict partial order (V,

∗
�) where the minimal elements are called

input nodes and are denoted by Vx. The rest of the nodes are called non-input
nodes and denoted by Vy. A subset Vz of V consists of output nodes, those that
are observable from the outside. An example appears in Figure 1-(a). The set of
immediate predecessors of a node is π(v) = {v ′ : v′ � v} and the set of its
predecessors (backward cone) is π∗(v) = {v′ : v′ ∗

� v}.
By substitution we define for every node v a function Gv defined on the in-

puts in its backward cone, for example, Gy3(x1, x2) = f3(x1, f2(x1, x2)). We
will use X = B

|Vx|, Y = B
|Vy | and Z = B

|Vz | to denote the sets of possible

1 A lot of effort has been invested in the problem of detecting such “false paths”.
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Fig. 1. (a) A Boolean circuit; (b) A timed Boolean circuit.

assignments to input, non-input and output nodes, respectively. The whole cir-
cuit can be viewed as computing a function G : X → Y . The stable state of the
circuit associated with an input vector x ∈ X is y = G(x).

This concludes the formalization of Boolean circuits and their functions.
These functions are instantaneous with no notion of time. The next step is to
lift them to functions (operators) on signals, that is, on functions that specify the
evolution of a value over (continuous) time.

Definition 2 (Signals). Let A be a set and let T = R+ be a time domain. An
A-valued signal over T is a partial function α : T → A whose domain of
definition is an interval [0, r) for some r ∈ T .

We use α[t] to denote the value of α at t, and α[t] = ⊥ to denote the fact that
a is not defined at t. When A is finite, signals are piecewise-constant and make
discontinuous jumps at certain points in time. This is formalized as follows. The
left limit of a signal α at time t is defined as α[t−] = limt′→t α[t′]. For every
piecewise-constant signal α we define:

– The ordered set of jump points, J (α) = {t : α[t−] �= α[t]} = {t0, t1, . . .}.
– The set of maximally-uniform intervals I(α) = {I1, I2, . . .} where Ii =

[ti−1, ti) for ti−1, ti ∈ J (α).

Clearly, the value of α is uniform over any subset of a maximally-uniform inter-
val. We restrict our attention to well-behaving signals i.e. those for which J (α)
has finitely-many elements in any finite interval. We denote the set of A-valued
signals by S(A).

When a gate or any other I/O device gets a signal as an input, it transforms
it into an output signal. This is captured mathematically by what is called a
transducer, or a signal operator, a function that maps signals to signals. We
restrict such functions to be causal, that is, the value of the output at time t can



depend only on the value of the input in times [0, t] and not on later values. The
simplest type of operators are memoryless (instantaneous) operators defined as
follows.

Definition 3 (Memoryless Operators). A memoryless signal operator is a func-
tion f : S(A) → S(B) obtained as a pointwise extension of a function f : A →
B, that is, β = f(α) if β[t] = f(α[t]) for every t in the domain of α.

In reality, since gates are realized by continuous physical processes, it takes
some time to propagate changes from input to output ports. To define this phe-
nomenon mathematically we need the basic operator with memory for discrete-
valued signals, the delay, which takes a signal and “shifts” it in time. One can
define a variety of delay operators differing from each other in complexity and in
physical faithfulness. The class of models that we consider is called bi-bounded
inertial delays [BS94] and is characterized by an interval I = [l, u] which gives
lower and upper bounds on the propagation delay. For the purpose of this pa-
per we will use the model introduced in [MP95] but since the choice of the
delay model is orthogonal to the rest of the methodology we will defer the ex-
act definition of the operator to Section 3 where it will be defined in terms of
its corresponding timed automaton and use meanwhile a general semi-formal
definition.

Definition 4 (Delay Operators). A delay operator is a non-deterministic func-
tion of the form DI : A × S(A) → 2S(A) where I = [l, u] is a parameter of the
operator with l > 0. A signal β is in ΔI(b, α) if

1. The value of β is b at the initial interval [0, t);
2. Changes in α are not propagated to β before l time elapses;
3. Changes in α must be propagated to β if they persist for u time;
4. Changes in α that persist for less then l time are not propagated at all to β.

Figure 2 illustrates such an operator which, typically, will have uncountably-
many output signals for an input signal. All signal operators can be lifted natu-
rally into operators on sets of signals.

A timed circuit model is obtained from a Boolean circuit by connecting
the output of every non-input node to a delay operator which models the delay
associated with the computation of that node (see Figure 1-(b). In other words,
a gate with a propagation delay is modeled as a composition of a memoryless
Boolean operator and a delay operator (see [MP95]).

Definition 5 (Timed Boolean Circuits). A timed Boolean circuit is C = (V, �
, F, I) where (V, �, F ) is a Boolean circuit and I is a function assigning to
every non-input node v a delay interval Iv = [lv, uv] such that 0 < lv ≤ uv <
∞.
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Fig. 2. An input signal α and few of the elements of D[2,3](0, α).

The semantics of a timed circuit is given in terms of a non-deterministic
transducer FC : Y × S(X) → 2S(Y ) such that β ∈ FC(y, α) if α and β satisfy
the set of signal inclusions associated naturally with the circuit [MP95] and y is
the initial state of the non-input part of the circuit.

The stabilization time problem is motivated by the use of Boolean circuits
in synchronous sequential machines (the hardware name for automata). At the
beginning of every clock cycle new input values together with the values of
memory elements (computed in the previous cycle) are fed into the circuit and
the changes are propagated until the circuit stabilizes and the clock falls. The
“width” of the clock needs to be large enough to cover the longest possible stabi-
lization time of the circuit over all admissible inputs. In our modeling approach
we will consider primary inputs that change at most once and within a bounded
amount of time and hence, due to acyclicity and the finite upper-bounds associ-
ated with the delays, they induce finitely many changes throughout the circuit.

Definition 6 (Ultimately-Constant Signals). A signal α is ultimately-constant
(u.c.) if it has a finite number of jump points (i.e. there is some time t such
that the signal remains constant after t). The minimal such t for α is called
its stabilization time and is denoted by θ(α). This definition extends to sets of
signals by letting θ(L) = max{θ(α) : α ∈ L}.

The following properties hold for every u.c. signal α:

1. The signal f(α) is also u.c. for every Boolean function f .
2. For a delay operator DI with I = [l, u] and for every β ∈ DI(α), θ(β) ≤

θ(α) + u.

Consequently, u.c. inputs to acyclic timed circuits produce u.c. outputs. Con-
stant signals constitute a special class of u.c. signals and we will use αx to
denote a signal whose value is constantly x.

We can now define the problem of maximal stabilization time of a circuit
with respect to a pair of input vectors x and x′ where x is the input presented in
the preceding cycle, and which determines the initial (stable) state, and x ′ is the



value of a new constant signal. We denote by L(C, x, x′) the set of Y -signals
β ∈ FC(y, αx′) when the circuit is initialized with the stable state y = G(x).

Definition 7 (Stabilization Time of a Circuit). Given a timed Boolean circuit
C = (V, �, F, I) and two input vectors x, x′ ∈ X the stabilization time associ-
ated with (x, x′) is θ(C, x, x′) = max{θ(β) : β ∈ L(C, x, x′)} and the maximal
stabilization time of the circuit is θ(C) = max{θ(C, x, x′) : x, x′ ∈ X}.

3 Modeling with Timed Automata

Timed automata are automata augmented with continuous clock variables whose
values grow uniformly at every state. Clocks can be reset to zero at certain transi-
tions and tests on their values can be used in conditions for enabling transitions.

Definition 8 (Timed Automaton). A timed automaton is A = (Q, C, I, Δ)
where Q is a finite set of states, C is a finite set of clocks, I is the staying
condition (invariant), assigning to every q ∈ Q a conjunction Iq of inequalities
of the form c ≤ u, for some clock c and integer u, and Δ is a transition relation
consisting of elements of the form (q, φ, ρ, q ′) where q and q′ are states, ρ ⊆ C
and φ (the transition guard) is a conjunction of formulae of the form (c ≥ l) for
some clock c and integer l.

A clock valuation is a function v : C → R+ ∪ {0} and a configuration of
the automaton is a pair (q, v) consisting of a discrete state (location) and a clock
valuation. Every subset ρ ⊆ C induces a reset function Resetρ on valuations
which resets to zero all the clocks in ρ and leaves the other clocks unchanged.
We use 1 to denote the unit vector (1, . . . , 1) and 0 for the zero vector. We will
use the term constraints to refer to both guards and staying conditions. A step
of the automaton is one of the following:

– A discrete step: (q, v) δ−→ (q′, v′), for some transition δ = (q, φ, ρ, q′) ∈ Δ,
such that v satisfies φ and v′ = Resetρ(v).

– A time step: (q, v) t−→ (q, v + t1), t ∈ R+ such that v + t1 satisfies Iq.

A run of the automaton starting from a configuration (q0, v0) is a finite sequence
of steps

ξ : (q0, v0)
t1−→ (q1, v1)

t2−→ · · · tn−→ (qn, vn).

We model timed circuits as a composition of timed automata such that each
automaton may observe the states of other automata and refer to them in its
transition guards and staying conditions.2 The automaton for a Boolean gate of

2 To avoid over-formalization we do not define “open” interacting automata. Such definitions
can be found in [MP95].



the form y = f(x1, x2) is just a trivial one-state automaton that has self-looping
transitions for all tuples (x1, x2, y) that satisfy the equation. In fact, this is not
really an automaton but an instantaneous logical constraint that must always be
satisfied. The automaton for the delay operator D[l,u] (Figure 3) has four states,
0, 0′, 1, 1′. The 0 and 1 states are stable, that is, the values of the output of the
delay is consistent with its input x. When at state 0, if the input changes to 1, the
automaton moves to an unstable state 0′ and resets a clock C to zero. It can stay
at 0′ as long as C < u and can switch to stable state 1 as soon as C ≥ l. If the
input changes back to 0 before the transition to 1 the automaton returns to 0. We
call these three types of transitions excite, stabilize and regret, respectively. Note
that states 0 and 0′ are indistinguishable from the outside and another automaton
will see a change from 0 to 1 only after the “stabilize” transition.

x = 0/C := 0

0

1

x = 1

x = 0
x = 1∧
C < u

x = 0∧
C < u

x = 1∧
l ≤ C∧
C ≤ u

x = 0 ∧ C < u

x = 1 ∧ C < u

x = 1/C := 0

x = 0∧
l ≤ C∧
C ≤ u

1′

0′

Fig. 3. The timed automaton for a delay element. The x variable refers to the observable state of
the input automaton which is 0 at {0, 0′} and 1 at {1, 1′}.

Composing all the automata, together with the model of their inputs we ob-
tain a closed automaton as in Definition 8 whose semantics is identical to that
of the timed circuit [MP95]. To be more precise, an automaton whose semantics
is L(C, x, x′) is obtained by letting the initial state be the stable state corre-
sponding to G(x) and composing it with a static automaton for the input x ′. The
obtained automaton is acyclic and all paths converge in finite time to the only
stable state that corresponds to G(x′). The maximal stabilization time is hence
the maximal time that the automaton can stay in any unstable state. Note that



in such a state at least one of the components is in a 0′ or 1′ state and hence its
staying condition forces it to leave the state.

We recall some definitions commonly-used in the verification of timed au-
tomata [HNSY94,Y97,LPY97,BDM+98,A99]. A zone is a set of clock valua-
tions consisting of points satisfying a conjunction of inequalities of the form
ci−cj ≥ d or ci ≥ d. A symbolic state is a pair (q, Z) where q is a discrete state
and Z is a zone. It denotes the set of configurations {(q, z) : z ∈ Z}. Symbolic
states are closed under the following operations:

– The time successor of (q, Z) is the set of configurations which are reachable
from (q, Z) by letting time progress without violating the staying condition
of q:

Postt(q, Z) = {(q, z + r1) : z ∈ Z, r ≥ 0, z + r1 ∈ Iq}.
We say that (q, Z) is time-closed if (q, Z) = Postt(q, Z).

– The δ-transition successor of (q, Z) is the set of configurations reachable
from (q, Z) by taking the transition δ = (q, φ, ρ, q ′) ∈ Δ:

Postδ(q, Z) = {(q′, Resetρ(z)) : z ∈ Z ∩ φ}.
– The δ-successor of a time-closed symbolic state (q, Z) is the set of configu-

rations reachable by a δ-transition followed by passage of time:

Succδ(q, Z) = Postt(Postδ(q, Z)).

The forward reachability algorithm for TA starts with an initial zone and gener-
ates all successors until termination, while doing so it generates the reachability
graph (also known as the simulation graph).

Definition 9 (Reachability Graph). The reachability graph associated with a
timed automaton starting from a state s is a directed graph S = (N,→) such
that N is the smallest set of symbolic states containing Postt(s, {0}) and closed
under Succδ. The edges are all pairs of symbolic states related by Succδ.

The fundamental property of the reachability graph is that it admits a path from
(q, Z) to (q′, Z ′) if and only if for every v′ ∈ Z ′ there exists v ∈ Z and a run of
the automaton from (q, v) to (q′, v′). Hence the union of all reachable symbolic
states gives exactly the reachable configurations.

To compute the maximal stabilization time we add an auxiliary clock T
which is never reset to zero and hence in every reachable configuration its value
represents the total time elapsed since the beginning of the run. The maximal
value of T over all reachable symbolic states (q, Z) with q unstable is the max-
imal stabilization time (note that due to acyclicity the value of T is bounded in
all unstable states). Hence, the problem of maximal stabilization time can, in
principle, be solved using standard TA verification tools.



4 The Abstraction Technique

Given the complexity of TA verification we move to an abstraction methodology
based on the following simple idea. We decompose the circuit into sub-circuits
small enough to be handled completely by TA verification tools. We take the
automaton A which corresponds to such a sub-circuit and use its reachability
graph to construct an automaton Â having two important properties:

1. The set L(Â) of signals that it generates is a reasonable over-approximation
of the projection of L(A) on the output variables of the circuit.

2. It is much smaller than A in terms of states and clocks.

Hence if we replace A by Â as a model of the sub-circuit we are guaranteed
to over-approximate the semantics of the circuit and hence to over-approximate
the stabilization time.

/C2 := 0

C1 ∈ [l1, u1] C2 ∈ [l2, u2] T ∈ [l1, u1] T ∈ [l1 + l2, u1 + u2]

(a) (b)

Fig. 4. Projection on the absolute time introduces spurious runs.

To better understand the technique it is worth looking at the reachability
graph from a different angle. In timed automata, as in any other automata aug-
mented with auxiliary variables, the transition graph is misleading because a
discrete state stands for many possible clock valuation which may differ in the
constraints they satisfy and hence in the behaviors that can be generated from
them. It might be the case that a state q will never be reached with a clock val-
uation satisfying some transition guard and hence the corresponding transition
will never be taken. By performing the reachability algorithm for A starting
from an initial state we obtain a graph which represents the “feasible part” of
A, excluding behaviors that violate timing constraints. Figure 5-(a) shows the
reachability graph for the circuit of Figure 1-(b) where the inputs change from
(0, 1) to (1, 0). In fact the reachability graph can serve as a skeleton of another
timed automaton A′ whose semantics in terms of runs is equivalent to that of A.
To see that, one just has to associate with each symbolic state (q, Z) the staying

condition Z and label each transition (q, Z) δ−→ (q′, Z ′) by the guard and reset
of δ. The resulting automaton A′ differs from A in two aspects: certain states of
A are split into several copies according to clock values, and all transitions that
are not possible in A due to timing constraints do not appear in A ′ at all.



Now if we relax some timing constraints in A′ we may introduce spuri-
ous behaviors that violate these constraints, however we will not add any new
qualitative behavior (sequence of events) that was not possible in A because
such behaviors have already been eliminated while computing the reachability
graph. The most straightforward way to relax timing constraints is to project
the constraints on a subset of the clocks and discard the rest. In particular if we
throw away all clocks except T which measures the absolute time, the relaxed
guard for any transition will be of the form T ∈ [t1, t2]. Clearly, a transition
can be taken in the new automaton iff there is a run of the original automaton
in which the corresponding transition could be taken at some time t ∈ [t1, t2].
However, this abstraction can add additional runs which are impossible in the
original automaton as the following example shows. Consider the automaton of
Figure 4-(a) where the first transition could take place in [l1, u1] while the sec-
ond can take place between l2 and u2 after the occurrence of the first. Applying
the above procedure we obtain the automaton of Figure 4-(b) where the second
transition could be taken anywhere in [l1 + l2, u1 +u2] regardless of the time of
the first.

The next step is to hide transitions which are not observable from the out-
side, i.e. all transitions of non-output variable and all non-visible transitions
(“excite” and “regret”) of the output variables y2 and z. The one-clock automa-
ton thus obtained for our example appears in Figure 5-(b). We then apply a min-
imization algorithm which merges states that are indistinguishable with respect
to the remaining visible transitions. More formally we consider the congruence
relation ∼ on the nodes of the labeled reachability graph defined as the largest
relation satisfying:

q1 ∼ q2 iff ∀δ, I q1

τ∗·(δ,I)

−→ q′1 ⇒ (∃q′2 s.t. q2

τ∗·(δ,I)

−→ q′2 ∧ q′1 ∼ q′2). (1)

Here (δ, I) stands for a transition-interval pair and τ ∗ to an arbitrary sequence of
unobservable transition. This relation is the “safety bisimulation” of [BFG+91].
The minimized automaton, whose states are congruence classes of ∼, can be
seen in Figure 6-(a).

Relation (1) looks at transition labels in a purely-syntactic manner, that is,
the label −y2[20, 30] in Figure 6-(a) is considered distinct from −y2[20, 40] and
hence the transitions are not merged. To obtain a more aggressive abstraction
we define a weaker equivalence ∼′ that ignores differences in intervals:

q1 ∼′ q2 iff ∀δ, I q1

τ∗·(δ,I)

−→ q′1 ⇒ (∃q′2, I
′ s.t. q2

τ∗·(δ,I′)
−→ q′2 ∧ q′1 ∼′ q′2). (2)

The states of the minimized automaton are equivalence classes of ∼ ′ and the
transitions between these classes are labeled by (δ, Ī) where Ī is the join (con-
vex hull) of all the intervals Ii such that there are transition labeled by (δ, Ii)



between elements of the corresponding classes (see Figure 7).3 The result of
minimization with respect to ∼′ appears in Figure 6-(b) and one can see that it
gives a succinct over-approximation of the behavior of y2 and z.

We have implemented the above mentioned technique. Our tool chain starts
with a circuit description as Boolean equations with delays and generates from
it automatically a network of interacting timed automata written in the IF for-
mat [BGM02]. After generating the reachability graph with the interval labels
we apply the Aldebaran tool set ([BFKM97]), slightly modified to implement
minimization with respect to ∼′ to obtain the abstract model.

5 Experimental Results

We have conducted some preliminary experiments with our approach on some
sample circuits that we have constructed. First, to demonstrate the semantic ad-
vantage of timed automata we analyzed the circuit of Figure 8 which has a false
path. We use delays of [83, 85] for all gates (except the inverters that have zero
delay) and compare our results with static timing analysis which gives stabiliza-
tion time of 7× 85 = 594. Since our method works for the moment for one pair
of input vectors, we repeat the analysis for all 12 pairs and obtain the results
of Table 1. As one can see, the TA-based analysis discovers that the maximal
stabilization time is only 6 × 85 = 510.

x 00 01 10 11
x′ 10 01 11 11 00 10 00 11 01 01 10 00
stab-time 510 340 340 170 510 425 510 0 255 255 0 510

Table 1. Maximal stabilization time for all input pairs for the circuit of Figure 8.

The major set of experiments was conducted on circuits consisting of a se-
quential concatenation of an increasing number of copies of the circuit of Fig-
ure 1-(a) (the y3 and y4 of stage n are the x1 and x2 of stage n + 1). We assume
that input x1 may rise anywhere in [10, 35] and x2 in [15, 63]. In general, the
complexity of the reachability graph is sensitive to the choice of delay bounds:
for an interval [l, u], the larger is the ratio (u − l)/l, more “scenarios” are pos-
sible and transitions at “deep” gates can precede transitions in gates closer to
the input.4 Table 2 shows the performance of our technique (computation time
and size of the reachability graph) as a function of the number of stages for three

3 Another choice might be to join only intervals that have a non-empty intersection.
4 In fact, if we assume no lower-bound on the delay (the “up-bounded” model of [BS94]), events

can happen in any order.
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Fig. 5. (a) The reachability graph for the circuit of Figure 1-(b). The transition labels exc z, reg
z, +z and -z correspond, respectively, to excitation, regret, rising and falling of the variable z. (b)
The corresponding one-clock automaton after hiding internal transitions. The label +z[20,30]
means that z may change from 0 to 1 anytime inside the interval [20, 30].
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choices of gate delay intervals [1, 2], [10, 12] and [100, 102]. All the experiments
were stopped upon memory overflow (1GB). For the [100, 102] interval we were
able to analyze up to 22 stages (88 gates).

[l, u] [1, 2] [10, 12] [100, 102]

no. states min time states min time states min time
1 71 4 0:01 65 3 0:01 65 3 0:01
2 934 12 0:02 270 7 0:02 270 7 0:02
3 – – – 2690 11 0:03 2690 11 0:04
4 5397 23 0:05 4080 16 0:06
5 217951 144 9:44 21498 30 0:12
6 – – – 50543 39 0:30
7 73502 48 1:01
8 95619 57 1:54
9 117736 66 3:12

10 139853 75 5:08
11 161970 84 7:32
12 184087 93 10:05
13 206204 102 14:42
14 228321 111 20:39
15 250438 120 28:15
16 272555 129 36:46
17 117736 138 49:36
18 316789 147 1:04:04
19 338906 156 1:21:48
20 361023 165 1:42:59
21 383140 174 1:58:56
22 405257 183 2:30:31
23 – – –

Table 2. Testing our technique with varying delay bounds. The ‘states’ column indicates the
number of symbolic states in the model of stage n before the last minimization and the ‘min’
columns indicate the number of states after minimization. The ‘time’ column indicates the time
for computing the abstraction of all stages up to n − 1 and the reachability graph for stage n.

As the results show, currently the analysis of circuits with few dozens of
gates for one pair of input vectors is feasible using our technique. This is a sig-
nificant improvement for TA technology but still a small step toward industrial-
size circuits. The current bottleneck is the memory consumption while generat-
ing the reachability graph and we believe the situation can be improved signifi-
cantly if we modify the algorithm to take advantage of the acyclic nature of the
automata.



6 Discussion

There have been numerous publications on abstraction in general and abstrac-
tion of timed systems in particular, e.g. [AIKY95,WD94,B96,PCKP00], some
based on relaxing the timing constraints and refining them successively if the ab-
stract system cannot be verified. In [TAKB96] an assume-guarantee framework
is defined for timed automata, which is used later to verify a multi-stage asyn-
chronous circuit [TB97] by using small abstractions for each stage. These ab-
stractions are generated manually. The closest work to ours is [ZMM03] which
uses timed Petri nets for describing circuits and their desired properties. To ab-
stract a circuit they apply “safe transformations” that consist of hiding of inter-
nal actions and clocks, and possibly over-approximating the set of behaviors.
This work does is not specialized to acyclic circuits and the formal properties of
the abstraction (defined in terms of trace theory) seem to be more complicated.
Other attempts to solve the maximal stabilization time using TA are reported in
[TKB97,TKY+98].

Due to space limitation we do not discuss here possible variation of the
techniques such as different abstraction styles, nor other important ingredients
of the methodology such as the partitioning strategy. The adaptation of the tech-
nique to cyclic circuits and to open systems in general is a very challenging goal
whose achievement can have a big impact on the design of timed systems.
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pakis helped us a lot in understanding various aspects of the verification of timed
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