Formal Aspects of Computing (1996) 3: 1-000
© 1996 BCS

Compositional Minimisation of Finite
State Systems Using Interface
Specifications

Susanne Graf', Bernhard Steffen?, and Gerald Liittgen?

1VERIMAG, Rue Lavoisier, F-38330 Monbonnot, France
2Fakultit fiir Mathematik und Informatik, Universitit Passau, D-94030 Passau, Germany

Keywords: Bisimulation; Distributed system; Interface specification; Minimi-
sation; State explosion problem

Abstract. We present a method for the compositional construction of the mini-
mal transition system that represents the semantics of a given distributed system.
Our aim is to control the state explosion caused by the interleavings of actions of
communicating parallel components by reduction steps that exploit global com-
munication constraints given in terms of interface specifications. The effect of
the method, which is developed for bisimulation semantics here, depends on the
structure of the distributed system under consideration, and the accuracy of the
interface specifications. However, its correctness is independent of the correctness
of the interface specifications provided by the program designer.

1. Introduction

Many tools for the automatic analysis or verification of finite state distributed
systems are based on the construction of the global state graph of the system
under consideration (cf. [CES83, CPS93, FSS83, Ste94]). Thus, they often fail
because of the state explosion problem: the state space of a distributed system
potentially increases exponentially in the number of its parallel components. To
overcome this problem techniques have been developed in order to avoid the
construction of the complete state graph (cf. [BFH90, CLM89, CR94, CS90b,
DGGI3, Fer88, GLI3, Jos87, KM89, Kru89, LSW94, LT88, LX90, Pel93, Pnu90,
SG89, SG90, Vaa90, Val93, Wal88, Win90, WL89]). In this paper we present

Correspondence and offprint requests to: Gerald Liittgen.

2 S. Graf, B. Steffen, and G. Liittgen

a method for the compositional minimisation of finite state distributed systems,
which is practically motivated by the following observation. For the verification
of a system it is usually sufficient to consider an abstraction of its global state
graph, because numerous computations are irrelevant from the observer’s point
of view. Such abstractions often allow us to reduce the state graph drastically by
collapsing semantically equivalent states to a single state without affecting the
observable behaviour. For example, the so obtained minimisation of a complex
communication protocol may be a simple buffer.

Let us refer to the size of the original state space of a system S as its
apparent complexity, and to the size of the minimised state space as its reduced
complexity. The intention of our method is to avoid the apparent complexity by
constructing the minimal system representation taking context information into
account. Unfortunately, the straightforward idea to just successively combine and
minimise the components of the system is not satisfactory, because such a “local”
minimisation does not take context constraints into account and, therefore, may
even lead to subsystems with a higher reduced complexity than the apparent
complexity of the overall system. This is mainly due to the fact that parts need
to be considered that can never be reached in the global context. Partial or
loose specifications allow us to “cut off” these unreachable parts. As in [CS90b,
Kru89, LT88, SG90, Wal88] we exploit this feature to take advantage of context
information. Furthermore, we refer to the size of the maximal transition system
that is encountered by our method as the algorithmic complexity.

Our method, called RM-Method,! is tailored for establishing P |= Spec, i.e.
whether P satisfies the specification or property Spec, when P is a system in
standard concurrent form, i.e. P = (p1||r; - - - |1, _1Pn){L) , which is annotated by
interface specifications, and Spec is consistent with the semantical equivalence
under consideration, i.e. P | Spec <= @ = Spec if P and () are semanti-
cally equivalent. To simplify the development of our theory, we assume that the
processes p; are already given as transition systems and that || represents the
parallel composition operator, (L) is a window or hiding operator that abstracts
from the activities considered as internal by transforming them into the unob-
servable action 7, and I; are interface specifications between R; =q¢ (p1]| ... ||ps)
and Q; =af (Pi+1|l---||pn) - Interface specifications are intended to describe su-
persets of the set of sequences that can be observed at the associated interfaces.
We represent interface specifications as processes with only observable behaviour
and that cannot perform any internal step. A central result of the paper is that
the branching structure of an interface specification is unimportant in our frame-
work. Only its associated language has an impact.

The point of our method is the successive construction of partially defined
transition systems P; (for 1 <4 < n) with the following properties:

1. P; is less specified than R;, i.e. P; is smaller than R; with respect to the
specification preorder <. This guarantees the correctness of the R M-Method,
which states that P,, |= Spec implies P |= Spec, if Spec is consistent with the
kernel of < (i.e. <N >).

2. P, is semantically equivalent to the full system P, whenever the interface
specifications are correct.? This guarantees the completeness of the RM-
Method.

1 RM-Method stands for Reduction-Minimisation-Method.
2 This does not mean that, in general, P; and R; are semantically equivalent for 1 <4 <mn—1.

Compositional Minimisation of State Systems 3

3. P; has the least number of states and transitions in its semantic equivalence
class.

In this paper, we are dealing with a refinement ~9 of observational equiva-
lence [Mil80, Mil89]. However, the method also adapts to other equivalences.
Technically, we use a new operator, called reduction operator, in each step P;
where 1 < ¢ < n. The purpose of this operator is to cut off all states and tran-
sitions of the ‘intermediate’ transition systems that are not reachable according
to the corresponding interface specification I; .

An important factor in this approach are the interface specifications, which
should be provided by the program designer. However, the correctness of the
RM-Method does not depend on the correctness of these interface specifications.
They are only used to “guide” the reduction. Thus, wrong interface specifications
never lead to wrong results, i.e. if P,, |= Spec is valid, then P satisfies Spec, too,
provided that Spec is consistent with the kernel of <. Otherwise, if P, = Spec
is not provable, then P may or may not satisfy Spec. Therefore, wrong interface
specifications may only prevent a successful verification of a valid statement.
However, the RM-Method is complete in the following sense: if all the considered
interface specifications are correct and if Spec is a ~9-consistent property, then
Pn = Spec <= P = Spec. It should be noted that the total definedness of
P, already implies the semantical equivalence of P, and P and, therefore, the
completeness for all ~4-consistent properties. This criterion is sufficient for most
practical applications.

1.1. Related Work

A great effort has already been made in order to avoid the construction of
the complete state graph, and therefore to avoid the state explosion problem.
Roughly, the proposed methods can be split into two categories, compositional
verification and compositional minimisation. Characteristic for the former cat-
egory is that the global system need not be considered at all during the verifi-
cation process, and for the latter that a minimal semantically equivalent repre-
sentation of the global system is constructed. This minimal representation can
subsequently be used for all kinds of verification.

A pure approach to compositional verification has been proposed by Winskel
in [Win90], where rules are given to decompose assertions of the form P = &
depending on the syntax of the program P and the formula & . Unfortunately,
the decomposition rules for processes involving the parallel operator are very
restricted. Larsen and Xinxin [LX90] follow a similar line, however, their decom-
position rules are based on an operational semantics of contexts rather than the
syntax. In order to deal with the problems that arise from parallel compositions,
Pnueli [Pnu90] proposed a “conditional” inference system where assertions of the
form ¢Pvy can be derived, meaning that the program P satisfies the property ¢
under the condition that its environment satisfies ¢ . This inference system has
been used by Shurek and Grumberg in [SG90], where a semi-automatic modular
verification method is presented which, like ours, is based on “guesses” for context
specifications. However, in contrast to our method it requires a separate proof
of the correctness of these guesses. Another method based on interface specifica-
tions which must be proved correct separately is given in [Kru89]. Josko [Jos87]
also presented a method, where the assumptions on the environment of a com-

4 S. Graf, B. Steffen, and G. Liittgen

ponent are expressed by a formula, which must be proved in a separate step. The
main disadvantage of his method is that the algorithm is exponential in the size
of the assumptions about the environment. Other methods try to avoid the state
explosion problem using preorders for verification [GW91, Pel93, Val93] where
unnecessary interleavings of actions are suppressed. In [LSW94] a constraint-
oriented state-based proof methodology for concurrent software systems is pre-
sented which exploits compositionality and abstraction for the reduction of the
(possibly infinite) verification problem under consideration. There, Modal Tran-
sition Systems are used for fine-granular, loose state-based specifications of con-
straints.

Halbwachs et al. [BFH90] proposed a method of the second category. It con-
structs directly a transition system minimised with respect to bisimulations by
successive refinement of a single state. In this method symbolic computation is
needed in order to keep the expressions small which in general may grow ex-
ponentially. Another approach of this category was presented by Clarke et al.
[CLM89]. They exploit the knowledge about the alphabet of interest in order to
abstract and minimise the system’s components. By using (L) operators together
with an elementary rule for distributing them over the parallel operator (see
Proposition 2.7) our method covers this approach. Larsen and Thomsen [LT88],
and Walker [Wal88] use partial specifications in order to take context constraints
into account. Our method is an elaboration of theirs. It uses a more appropri-
ate preorder and defines a concrete strategy for (semi-)automatic proofs where
the required user support is kept to a minimum. Also Vaandrager [Vaa90] ob-
serves that in most situations partial information about the traces of processes is
sufficient to prove that part of a specification is redundant and can be omitted.

The methods proposed in [BCG86, KM89, SG89, WL8&9] are tailored to verify
properties of classes of systems that are systematically built from large numbers
of identical processes. These methods are somewhat orthogonal to ours. This
suggests to consider a combination of both types of methods.

In practice, Binary Decision Diagrams are used to code state graphs for an
interesting class of systems [Bry86]. These codings do not explode directly, but
they may explode during verification. All mentioned techniques can be accompa-
nied by abstraction. Parallel systems may be dramatically reduced by suppressing
constraints that are irrelevant for the verification of the particular property under
consideration [CC77, CGL92, CR94, DGG93, LGST95].

1.2. Structure of the Paper

The remainder of the paper is structured as follows. Section 2 presents the ba-
sic notions, and Section 3 the reduction operators on which our method, the
RM-Method, is based. Subsequently, Section 4 develops the RM-Method for
the compositional minimisation of finite state distributed systems, proves its
correctness and completeness, and illustrates its power by means of an example,
where the apparent exponential complexity is reduced to a linear algorithmic
complexity. Finally, Section 5 draws our conclusions. A version of this paper
including detailed proofs is available as technical report [GSL95].

Compositional Minimisation of State Systems 5
2. General Notions

Our framework is based on processes (systems) as labelled transition systems ex-
tended by an undefinedness predicate on states. Processes can be structured by
means of parallel composition and hiding, thus allowing a hierarchical treatment.
The introduction of undefinedness predicates naturally leads to a specification-
implementation preorder between processes, which induces a slightly finer se-
mantics on processes than observational equivalence [Mil80, Mil89]. This equiv-
alence is captured by our technique, which is based on the notion of interface
specification introduced subsequently.

2.1. Representation of Processes

We model distributed systems by extended transition systems, i.e. a transition
system which is extended by an undefinedness predicate that plays an important
role in the correctness proof of our RM-Method.

Definition 2.1. (Extended Transition Systems)
An extended (finite state) transition system is a quadruple (S, AU {7},—,1)
where

1. S is a finite set of processes or states,
2. A is a finite alphabet of observable actions, and T represents an internal or
unobservable action not in A,
3. — C SxAU{r} x S is a transition relation, and
4. 1C S x 2AV{T} ig a predicate expressing guarded undefinedness.>
Typically, S is a set of program states, and the relationship p - ¢ indicates that
p can evolve to ¢ under the observation of a. We write p — for 3g € S.p — q.
Moreover, we use for convenience the convention p — p for all p € Proc, i.e. €
denotes an ‘idling’ or ‘trivial’ step. Finally, p 1 a expresses that an a-transition
would allow p to enter an undefined state. We say that p is a-undefined in this
case. Thus, transition systems involving the undefinedness predicate are only
partially defined or specified. It is this notion of partial specification together
with its induced preorder which provides the framework for proving our method
correct.
Processes are rooted extended transition systems, i.e. they consist of an ex-
tended transition system and a designated start state.

Definition 2.2. (Processes)
Let T = (S, AU {r},—,1) be an extended transition system. A process is a
tuple (S,, A, U {7}, —,, 1y, p) for a state p € S where

o S is the set of states that are reachable from p in T,

® Ap =df .A, and

e —, and 1, are — and 1 restricted to S, , respectively.

p is called start state of the process. The set of all processes is denoted by P .

3 2M denotes the power set of the set M .

6 S. Graf, B. Steffen, and G. Liittgen

In future, obvious indices are dropped, and we write p for (Sp, A, U {7}, —p,
1p,P) - The following property characterises the subset of “standard” transition
systems: a process p is totally defined if its undefinedness predicate 1, is empty.
Otherwise it is called partial. Moreover, if p,q € P are identical up to renamings
of states, we call p and g isomorphic, in signs p=q . If no confusion arises with
syntactic equality, we simply write p = ¢. A process p is called deterministic if
Vg € Sp,a € Ay U{T}. |{d'lg —=p ¢'}| < 1. Otherwise p is called nondetermin-
1stic.

As usual, processes can be assigned a language which we need when dealing
with interface specifications. Since we want the language of a process only to
contain observable actions and not the internal, invisible action 7, we define the
following weak transition relation and weak undefinedness predicate.

Definition 2.3. (Weak Transition Relation and Undefinedness)
Let (S, AU {7},—,1) be an extended transition system. The weak transition

relation => C Sx AU{e} x S and the weak undefinedness predicate f C S x 2AY{¢}
are defined as the least relations satisfying for all p,g € S and all a € A.

T * a T * . . a
1. p— — — ¢ implies p = ¢,
2. p—=" ¢ implies p == ¢,
3. ¢t aand p == ¢ implies p f} a,
4. g1 7 and p == q implies p f} €,
5. ¢t € and p == ¢ implies p {} a, and
6. p{ € implies pfr a.

Now, we are able to define the language of processes.

Definition 2.4. (Language of Processes)

The language, L(p), of a partially defined process p is defined as the least fixed
point of the following equation system.

Ap if p 1)
L) = { Ufa-La(p) | Lalp) # 0} U {e} otﬁerviise

and

A ifpfta
Lalp) = { Up{E(p’) | p==>p'} otherwise

for any action a € AU {e}. Furthermore, given a language £, we denote the
language of its a-suffixes, {w | a-w € L}, by L, .

The well-definedness of the above definition follows from elementary fixed point
theory. Note that this definition is standard for totally defined processes. The
language of an a-undefined process includes any sequence of actions starting with
a and the language of an e-undefined process p is A which reflects our intuition
that the language of an undefined state is unconstraint. Therefore, we make the
worst case assumption that the language of an undefined process contains all
possible sequences of actions.

Compositional Minimisation of State Systems 7
2.2. Parallel Composition and Hiding

We now introduce a binary parallel operator || and unary hiding or window oper-
ators (L) on processes, where L is the set of actions remaining visible. Intuitively,
p|lg is the parallel composition of the processes p and ¢ with synchronisation of
the actions common to both of their alphabets and interleaving of the others
(like in CSP [Hoa85]), and p{L) is the process in which only the actions in L are
observable.

Definition 2.5. (Operational Semantics)

Let p = (Sp,Ap U {T},—>p,Tp,p), q = (Squq U {T}a—>q7Tq7Q) € P, let
p,p" €8y, ¢',¢" €Sy, and let L be a set of visible actions. We define the alpha-
bets of the processes p(L) and p|lq by A,y =ar ApNL and Ay, =ar ApUA,, re-
spectively. Their state sets are defined as the subsets of states of {p'(L) | p' € Sp}
and {p'|l¢' | p' € Sp,q' € Sy} which are reachable from the initial states p(L)
and pl|q, respectively, according to the following transition relations defined in
Plotkin style notation.

Py p” P~ p
1. - 3 " a€L . - = - a¢ L
(L) —rpry P(L) (L) —rpry P(L)
, a 17 r _@ "
P —p P qg —q ¢
3. ! 2 "l ot a€Aq 4. g 2 e IIQ.Ap
?'lld —p1q P'lla Plld —pq Plla
;7 _@ " r 2 "
— —
5. L p P a a 9 aFT.

P'llg’ L,p”q 2" |lg"

The undefinedness predicates of p{L) and p||q are defined by:

P 1pa P tpa
6. —— P2 4¢cL 7. — 2 2% 44L
p'(L) Tpry @ PUL) Tp(ry T
p' Tpa P Tra a
8. —L 2% 424 — L
@' lld) tpjiq @ ‘ ®'lg") Tpiiq @ !
4 1tqa g fqa =
10. —————— ad A 1. ————— p —
@lg") tpyiq @ Y ®11g') Tpiiq @ !
19. p’ Tp a q, Tq a

(@' llg") Tp)1q @

Thus, p’ 15 a (¢' 14 a) implies (p'||g') T4 @, whenever ¢' (p') does not preempt

the execution of a, i.e. whenever a ¢ A, or ¢ =, (a & A, or p' —,).
Remember that 7 € A, for any p. The exact meaning of this definition becomes
clear in Section 3, where we introduce reduction operators. We may immediately
conclude from Definition 2.5 the following properties.

Proposition 2.6. (Associativity & Commutativity)
The parallel operator || is associative and commutative in the following sense.

1. Vp,q,r € P. (pllg)|lr = pl/(¢||r) , and
2. Vp,qeP.pllg=qllp.

8 S. Graf, B. Steffen, and G. Liittgen

4 tk2 /

Fig. 1. Communication diagram of the example system

Thus, processes of the form (p1]|...||pn)(L) are well-defined. Our method con-
centrates on this form which is called standard concurrent form in CCS [Mil80,
Mil89)].

Usually, the following correspondence between the parallel operator and the
window operators is exploited in compositional minimisation techniques.

Proposition 2.7. (Window Operator Law)
Let p,q € P and let L, L' be sets of visible actions satisfying L' D LU(A,NA,) .

Then (pllg){L) = (p{L"}||g){L) -

This proposition allows us to localise global hiding informations. In fact, this
localisation is the essence of the construction of interface processes in [CLM89).
The proof of the proposition is done by induction similar to the proof of The-
orem 3.9 including a case analysis according to Definition 2.5 in the induction
step.

We finish this section by presenting a simple example, which accompanies
the development of our method.

Example 2.8. Our example system System =4 (Pi|B|P)({tk1,tk2}), pre-
sented in Figure 1, consists of three processes P, B, and P, with alphabets
Ap, = {tk1,tk2,rbl,sbl}, Ap = {rbil, sbl,rb2,sb2}, and Ap, = {tkil, tk2,
rb2,sb2}, respectively. I; and I indicate interface specifications which are pre-
sented and explained in Section 2.4. Process B models a buffer which is used
by the processes P; and P, to exchange data, i.e. P; reads data from and sends
data to P, via B and vice versa. To guarantee mutual exclusion of the “shared”
buffer a token is passed through the channels tk1 and tk2 between P; and Ps.
If P; possesses the token, it may read some data from B via rbi and write some
data to B via sbi. The exact definitions of P, , B, and P» are given in Figure 2.
The ‘incoming’ arrows point to the start states of the processes.

2.3. Semantical Equivalence and Preorder

In this section we define a semantical equivalence of extended labelled transi-
tion systems in terms of observational equivalence [Mil80, Mil89] and establish a
specification-implementation relation in terms of a preorder, which is compatible
with this semantics. This preorder plays a key role in the correctness proof of
our RM-Method.

Compositional Minimisation of State Systems 9

Ltk R B tkl /B

P

1 Pa
sbl rb2

tk] R shl tk2 R sh? b by
rbl b, sh2

Ao rbl Ps P rb2 P

Fig. 2. Definition of P;, P>, and B

As already mentioned in Section 1, the minimisation of transition systems
is based on the fact that many computations are irrelevant from the observer’s
point of view. Our notion of semantics, which is defined by means of the following
equivalence relation, reflects this intuition by using the weak transition relation
and the weak undefinedness predicate as defined in the previous section.*

Definition 2.9. (Semantical Equivalence)
Let (S, AU{7},—,1) be an extended transition system. Then ~9 is the union
of all relations R C S x S satisfying that (p,q) € R implies for all a € AU {e}.

1. pftaif and only if g f} a,
2. p=a>p’ implies E|q'.q=a>q'/\ (p';q') € R, and
3. ¢ == ¢ implies Ip'.p == p' A (p',¢') € R.

Two processes p,q € P with the same alphabet are equivalent if and only if their
extended transition systems can be combined into one extended transition system
and the states p and ¢ are equivalent according to the above definition. Moreover,
~¢ coincides with the well-known observational equivalence ~ [Mil80, Mil89] if
the first of the three defining requirements is dropped. Especially, isomorphic
processes are ~d-equivalent.

The following preorder which intuitively defines a “less defined than” rela-
tion between processes is the basis of the framework in which we establish the
correctness of our RM-Method (cf. [CS90a]).

Definition 2.10. (Specification Preorder)

Let (S, AU{r},—,1) be an extended transition system. The specification pre-
order < is the union of all relations R C S x S satisfying (p,q) € R implies for
all a € AU {e} with =(pft a).

L —(gfa),

2. p=% p' implies I¢.q == ¢' A (v, ¢') € R, and

3. ¢ == ¢ implies Ip'.p == p' A (p',¢') € R.

= is a variant of the divergence preorder [Wal88] in which a-divergence does not

require the potential of an a-move. Our modification serves for a different in-
tend. We do not want to cover divergence, i.e. the potential of an infinite internal

4 This definition of semantical equivalence is adapted from [CS90b] where it is presented for
processes expressed in a CCS-based algebra.

10 S. Graf, B. Steffen, and G. Liittgen

computation, but (guarded) undefinedness. This establishes < as a specification-
implementation relation: a partial specification p is met by an implementation ¢
if and only if p < ¢; in contrast to [CS90a, Wal88] we do not require an implemen-
tation of an a-undefined process to possess any a-transition. This modification
enhances the practicality of the preorder as specification-implementation rela-
tion. A more detailed discussion can be found in [CS90a].

Observational equivalence & and our specification-preorder < induce slightly
different semantics on processes. However, by definitions of ~4, ~, and < we
have that ~¢ is a refinement of both.

Proposition 2.11. For all processes p,q € P we have p~? q implies p~ ¢ and
p=q, and for totally defined processes ~9, <, and =~ coincide.

Moreover, it can be proved in the usual way that both || and (L) preserve <
and ~¢ which is of particular importance for our minimisation method.

Proposition 2.12. (Compositionality)
For all processes p,q,r € P and all sets L of visible actions we have:

1. p=g implies p|r < ¢|Ir,

2. p~9dq implies p||r =4 q|r,

3. p=q implies p(L) < ¢(L), and
4. pr4q implies p(L) =~ ¢(L) .

The relationship between the notions preorder, semantic equivalence, and lan-
guages is characterised by the following lemma.

Lemma 2.13. For all processes p,q € P we have:

1. p<gq implies L(p) 2 L(q), and
2. p~dq implies L(p) = L(q) .

The proof of the first part is a consequence of the Definitions 2.10 and 2.4,
whereas the second part is an immediate consequence of the first one and Propo-
sition 2.11.

The RM-Method presented in Section 4 works for every equivalence relation
er and every preorder po satisfying Propositions 2.12 and Lemma 2.13, when-
ever er C poNpo~! and er and or coincide on totally defined processes (cf.
Proposition 2.11).

2.4. Interface Specifications

In this section we introduce our notion of interface specification together with a
notion of correctness, which guarantees the success of the RM-Method. These
notions concentrate on the set of observable sequences that may pass the inter-
face. Thus, the exact specification of the interface between processes p and q is
the language of (p||q)(Ap N Ay), i.e. its set of observable sequences.

We are going to use interface specifications in order to express context con-
straints. Therefore, interface specifications are correct or safe if the correspond-
ing exact interface specification is more constraint. This motivates the following
definition.

Definition 2.14. (Interface Specifications)
Given two processes p,q € P we define:

Compositional Minimisation of State Systems 11

Fig. 3. Interface specifications I1; and I

1. A totally defined process I € P without 7-transitions is an interface spec-
ification for p iff Ay C A,. It is an interface specification for p and q iff
Ar = .Ap N .Aq .

2. An interface specification I for p and ¢ is called correct for p and q iff

L((pllg){Ap N Ag)) € L(T).

The set of all interface specifications for p is denoted by Z(p), and the set
of all correct interface specifications for p and ¢ by Z(p,q) . Finally, we write
Z for U{Z(p) | p € P}, i.e. the set of all totally defined processes without 7-
transitions.

Theorem 3.5 shows that these language-based definitions are adequate for our
purpose. The following example illustrates the intuition-guided way of deriving
interface specifications.

Example 2.15. (Interface Specifications for the Example System)

An interface specification I; for the system of Example 2.8 can be constructed
according to the following intuition: process P; waits for the token passed via
tk1 before it reads data from and writes data to B via rbl and sb1, respectively.
Subsequently, P; passes the token to P, via tk2 and waits until it receives the
token again.

This intuition would already result in an exact interface specification for P,
and B||P,, which is identical to the process P; itself. Note that in more compli-
cated examples it is hardly possible to give an exact interface specification. Thus,
unprecise interface specifications are often used. For example, the definition of
I, given on the left in Figure 3 is not exact but still correct since it describes a
superset of the exact interface language (cf. Definition 2.14). A similar argument
shows the correctness of the definition of I, (cf. Figure 3, right) for P> and B||P; .

The languages of I; and I result from the following equation systems (cf.
Definition 2.4).

;C(Il) = 5(113) = tkl- ,C(Ilz) U {6}

E(I12) = 1rbl-: E(Ill) U tk2- 5(113) U {E}

[,(111) = sbl-: [,(112) U {6}

,C(I2) = E(IZQ) =tkl- -tk2- ,C(I22) Urb2:sb2- E(IQZ) @]

{tk1} U{rb2} U {e}.
Note, however, that our method does not require to compute £(I;) and £(I3).

Applying Lemma 2.13, Definition 2.14, and Propositions 2.11 and 2.12, we obtain
the following lemma.

Lemma 2.16. (Properties of Interface Specifications)
For all processes p,p’,q € P we have:

1. p<p' implies Z(p,q) C I(p',q) , and

12 S. Graf, B. Steffen, and G. Liittgen

2. p~dp' implies Z(p, q) = Z(p',q) -

The following proposition, which is particularly important for the completeness
proof of the RM-Method, is a consequence of Definition 2.14, Proposition 2.7,
and Lemma 2.13(2.).

Proposition 2.17. For all processes p,q € P and all sets L of visible actions
we have: Z(p,q) = Z(p{(Ap N Ag) UL),q)

3. Reduction Operators

Here, we propose a general notion of reduction operators, and a special instance
of it, IT, which is suitable for our purposes (cf. Section 3.1). II is analysed from
two different views, the theoretical view (cf. Section 3.2) and the algorithmic
view (cf. Section 3.3).

3.1. General Definitions and Properties

Reduction operators are characterised by three properties.

Definition 3.1. (Reduction Operators)
A partial mapping IT: Z x P — P is called reduction operator if

(i) Vpe P,I € Z(p). II(1,p) X p (Correctness for arbitrary interfaces)

(i) Vp,q € P,I € Z(p,q). II(I,p)||g~% p||q (Context preservation for
correct interfaces)

(iii) Vp € P,I € Z(p). | Sur,p) | <1 Sp | and |—r)| < |—5| (Reduction)®
In the following we often write II;(p) instead of II(Z, p) .

The intuition behind this definition is the following: a reduction operator IT
should eliminate those states and transitions of a process p € P which are not
reachable in each global context satisfying the interface specification I € Z(p) .
This ‘algorithmic’ intuition guarantees the first two conditions, which are essen-
tial for a sensible notion of reduction operator: the first condition is a correctness
requirement. The reduction always yields a process which behaves on its defined
part as p. The second condition guarantees that the reduction does not affect
the behaviour of p in a context satisfying the (correct) interface specification.
Finally, the third condition reflects the primary intuition of reduction: the num-
ber of states and transitions shall be reduced. This is by no means guaranteed
by a decrease in the preorder!

The following technical proposition follows easily from Definition 3.1, Propo-
sition 2.12 and Lemma 2.16 (2.).

Proposition 3.2. Let II be a reduction operator. Then we have for all p,p’, q €
P and I € Z(p,q): p~*p' implies TI; (p)|lg~* T; (p')llg -

As we show in Section 3.2, the following operator II satisfies the conditions of
Definition 3.1.

5 |M| denotes the cardinality of the set M .

Compositional Minimisation of State Systems 13

Definition 3.3. (The Reduction Operator II)

The reduction operator II is defined by (I,p) — II(I,p) =4 (S, AU {7}, —,
Tap) for I = (SI,AI,—)I,Q,I) € I(p) and b= (SpaAp U {T}a_)panap) epP
where

. S={qe SpFi € Sr.qli€ SIJ”I}’

A=Ay,

Yq,q¢' € S,a € AU{r}. ¢ = ¢ iff 3i,i' € Sr. q|i i)p”I q'||i",°

.Vge S.qtriff g1, 7, and

.Vge S,ae A.qtaiff

(a) gtpaor
(b) 3¢ € Sp.q ", ¢ and ¢’ €S.q—¢'.

O W N

In conformance with Definition 3.1 we also write IL;(p) for II(Z, p) .

The only difference between II(I,p) and the projection of p||I onto p concerns
the undefinedness predicates: II(I, p) inherits all undefinedness predicates from
p, and new ones are introduced where transitions of p have been cut off by I.
The point of the reduction operator is that for correct interface specifications this
second kind of undefinedness disappears again in the full context II(I, p)||q . This
holds, because if an a-transition of p has been replaced by 1 a, this predicate
disappears in II(I,p)||q exactly if ¢, in its corresponding state, preempts the
execution of an a-transition. Thus, the presence of an 1 a in II(I, p)||q indicates a
fault in the interface specification, whenever p and g are totally defined processes.
Note that it is possible that II(I, p)||q is totally defined, although I is not correct
for p and ¢. This is the case if the incorrect parts of I need not be considered
for the reduction.

Example 3.4. Consider the process p presented on the left in Figure 4 having
the alphabet 4, = {tk1,tk2,rb2, sb2} and the (shaded) start state (pl1|b2),
and consider the interface specification I> defined in Example 2.15. In order to
determine Iy, (p) we first consider the projection of p||I> onto p (Figure 4, right).
Following Definition 3.3, II1, (p) can now be derived by inserting some additional
undefinednesses indicating a transition of p which is preempted by the interface.
The result of the computation, which we have obtained running the METAFrame
environment [SMC96], can be investigated using the Graph Inspector of our tool:
the field node syntaz in Figure 4 shows that the highlighted state (p12||b2) has
an rb2-undefinedess. A further investigation would reveal the tk1-undefinedness
of (p11]|b3) and the rb2-undefinedness of (p13||bl).

3.2. Theoretical View

In this section we establish that II is indeed a reduction operator. Therefore, the
following result is helpful which is established as a byproduct in the next sec-
tion. It is called representation independence and states that not the branching

6 This implies by the definitions of Spr and — 1 according to Definition 2.2 that gl|i is
reachable in p||T .

14 S. Graf, B. Steffen, and G. Liittgen

[#] Graph Ed
| Scale to

Graph Layout Opti s Help |-

(p11] b2}

[®] Graph Inspector B4
Humber of Hodes: 4
Type of Label: TSModelabel

Humber of Edges: 5
Type of Label: TSEdgeLabel

Currently selected
Node Hame: {ip12||b2)
Node Color: hlack
Mode Syntax: jhame ((p12|[b2)),undef b2} A

Dismiss

Fig. 4. Example reduction

structure of an interface specification is important but only its language. There-
fore, it allows us to assume w.l.o.g. deterministic interface specifications for a
proof in the remainder of this section, and it allows researchers to concentrate
on interface specifications as languages.

Theorem 3.5. (Representation Independence)
For all p € P and for all I,I' € Z(p) we have:

£(I) = £(I') implies T;(p) = Ty (p) .

The correctness property (cf. Definition 3.1(i)) can be established straightfor-
wardly.

Lemma 3.6. Vp € P,I € Z(p). II;(p) <p.

The remaining properties require two lemmata. The first lemma, which intu-
itively states that no “new” states and transitions are inserted, is a consequence
of Definition 3.3 (iii) and Definition 2.5 (3) and (5).

Lemma 3.7. Let p € P and I € Z(p) be arbitrary. Then we have:
Vo', p" € Sg; a0 € ApU{T}. P/ i)ﬁ(l,p) p'" implies p' —, p"" .

The second lemma guarantees that II does not cut off too many states or tran-
sitions. It requires a more involved argument.

Lemma 3.8. Let p,g € P, I € I(p,q), a € A, U {r,¢}, and p|lg —>;§”q

p'lld i>p||q ?"|l¢" . Then we have:
1. 31" € Sy. p"||I" is reachable in p||I.

2. p i>ﬁ(1’p) p'.

Compositional Minimisation of State Systems 15

Proof. Assume w.l.o.g. that I is a deterministic interface specification. We prove

Lemma 3.8 by induction on n where n is the length of the path pl|q — g p"lq" .

Base Case: (n =0)

Here we have a = € and p|lg = p'||¢' =p"||¢" ,i.e.p=p' =p" and ¢ =¢ =¢".
Choose I'"" =4 I and hence that p”||I" = p||I is reachable in p||I, such that (1.)
holds. Statement (2.) is trivial because p’ —€>ﬁ(I P

Induction step: (n — n+1)
Here, we have p||q —llg P'llg" 5,4 P"ll¢" - By induction hypothesis it exists
I' € S satisfying;:
(x) p'||I' is reachable in p||I.
The application of (A, N A,) yields:

(Plla)(Ap N AG) —20 @ lld) (A N Ag) —pg (0" 1la") Ay N Ag)

a ifaeA, Let B — b ifb#T

7 otherwise - - € otherwise
hypothesis, the premise £((pllg)(Ap N Ag)) € L(I) (cf. Definition 2.14), the de-
terministic interface specification I, and Definition 2.4 we conclude the existence

where b = . By the induction

of some I" € Sy satisfying I' L, I ie.
37:’,7:”.]’ L)I - L}[i’ L}[i —T)I - ;>I I".
Hence by Definition 2.5 Rule (3) (and (5) if b' = a):
pI“II —T>p||1 e ;>p||1 pl”il i)p”I p”“i" L)p”I e ;)pHI p"”]" .

This shows together with (%) that p”||I" is reachable in p||I, i.e. (1.) holds.
Statement (2.) is a consequence of Definition 3.3 (3), because of the existence of
i’ and i", the reachability of p”||i" in p||I, and p'||¢’ i),,”I ", O

Now, we are able to prove the key property for the completeness proof of the
RM-Method, which implies context preservation for correct interface specifica-
tions in the sense of Definition 3.1(ii), as we show even isomorphy, =, instead
of semantical equivalence.

Proposition 3.9. (Context Preservation)
Vp,q € P,I €1(p,q) pllg =1 (p)lg-

PTOOf. Let b= (SpaAp U {T}7_)p7Tp7p)7q = (Sq;Aq U {T}J—>Q7TQJQ) € 7)7
I € Z(p,q), and A =4 A; = A, N A, . For this proof we define the following
processes:

p”q = (SlaApUAqU{T};_>15Tlap“q)a
O;(p) = (sz , Ap U {r}, —pr Tos ,p), and
Mi(p)llg = (52,4 UAGU{T}, —2, 12, pllq) -

Then both S; and Sy are subsets of {(p'||¢")|p" € Sp,q' € Sg}. Thus, it remains
to show that S; = Sz, —»1 = —2, and 11 =13 holds. For this purpose we define
fori=1,2:

o S, the subset of states reachable in n steps from the initial state,

16 S. Graf, B. Steffen, and G. Liittgen

e —7, the set of transitions leaving the states of SP*, and
e 17, the undefinedness predicate of states of S}*.

Because of S = S9 = {p||q}, it is enough” to verify the following simultaneous
induction step for n > 1 under the induction hypothesis S{“l = SS*I , in order
to complete the proof: (1) —" '=—2"1 (2) SP = S, and (3) 17 '=171.

First, we verify Point (1) of the induction step according to the operational rules

(cf. Definition 2.5), i.e. we show the equivalence “p'||¢’ —=1 p"||¢" <= P ||’
p"|l¢"” . This requires the investigation of Rules 3, 4, and 5 of Definition 2.5. The
most complicated case is the following.

Rule 5: Here, we have a € A, p' —%, p"', and ¢' —, ¢"":
Plld =1 p"ll¢"
(Rule 5) < p SN 5, "
(Lemma 3.8, 3.7, resp.t) <= p' —=,, " Aq 5, ¢"

(Rule 5) = Pl 2p"¢"

Point (2) of the induction step is an immediate consequence of Point (1). Thus,
it remains to verify Point (3). The 7-undefinedness of a process is not affected by
the reduction operator (see Clause (4) of Definition 3.3), which leaves us with the
case of an a-undefinedness. In order to prove the equivalence “(p'||q') 1 a <
(P'|ld') t2 @” we must deal with the five applicable rules given in Definition 2.5.
Most interesting is Rule 12.

Rule 12: Here, we have p' 1 a and ¢’ 14 a, and therefore:

s
®'llg") t1a = pPhhand tya
(Definition 3.3 (5) (a)) = p' Tp,aAg Tqa
(Rule 12) = @) 12a
“ e
®'llg") 12 a = P paid Tga
(Definition 3.3 (5)) = (5a) p'TpaAq T,a= (Rule12) (p'|l¢') 11 a
or (5b) P —=, Aq' tya= (Rule11) (p'|l¢') 11 a
O

7 Remember that we are dealing with finite state systems.
8 More precisely: for “=” we apply Lemma 3.8 and for “<” Lemma 3.7.

Compositional Minimisation of State Systems 17

Together with Lemma 3.6 and the obvious fact that II is reducing, this proposi-
tion yields the desired result.

Theorem 3.10. The partial mapping IT : Z x P — P is a reduction operator.

3.3. Algorithmic View

In this section we present an algorithmic characterisation of II on the basis of a
data flow analysis algorithm. As an important byproduct we obtain the proof of
Theorem 3.5.

In order to prepare an algorithmic characterisation of the reduction operator
TI;(p) we define two sets of actions.

Definition 3.11. Let p = (Sp, Ap U {7}, —p,Tpsp) € P, I = (S1, A1, —1,
0,I) e I(p), and ¢q € S, . We define the following sets of actions:

® IAIJ,I(Q) =df {a € Ay U {e}|Tq|li € SPHI'i i)I} .
o TA2 () =ar TAp,1(g) U (Ap \ Ar) U {7} .

The intuition for this definition is that the sets TA2}(¢) contain exactly those
actions which ¢ can perform within the global context described by I. In partic-
ular, as every state can engage in €, this implies that a state q is reachable in the
process IIz(p) if and only if € € TA%';(q) . The following proposition makes this
observation more precise. It shows how to compute II;(p) by eliminating states
and transitions of p and adding undefinednesses to states of p by means of the
sets TA2!(q) .

Proposition 3.12. (Construction of II;(p)) _

Let p = (Sp, Ap U{7},—p,Tp,p) € P, I € I(p), and g € S, . Then II;(p) =
(S, AU{r},—,1,p) is determined by the sets IA3";(¢) and a finite sequence of
reduction steps for all g € Sp:

1. If e ¢ TA%(q) , then eliminate ¢ and all transitions ending or starting at g.

2. If ¢ =, but a ¢ TA2!}(q) , then eliminate all a-transitions starting at ¢ and
add ¢ 1, a to the undefinedness predicate.

Proof. Tt suffices to show that
1. Vg€ Sp. g€ S <= e e TA¥(¢) and

2. Vg€ S,a€ AU{T}. ¢ < ¢, Na e IA2Y(q).

The proof of (1.) is straightforward by using the definition of IAZ{‘I(q) and Defini-
tion 3.3 (1). A case distinction is needed for (2.): for the case a € (A\ A7) U {7}
Definitions 3.3 (3), 2.5 (3), and the definition of TA%'}(¢) must be considered.
The case a € Ar U {€} requires to look at Definitions 3.3 (3), 2.5 (5), 2.14, and
the definition of A% (¢). [

The key to a complete algorithm for II;(p) is the following easy to prove char-
acterisation for the sets IA, 1(g) , which is the basis for the algorithm developed
in the next section.

18 S. Graf, B. Steffen, and G. Liittgen

Lemma 3.13. (Characterisation of IA, ;(q))
Let g € S, and Lp,1(q) =g U{L@Iglli € Sppr}- Then TA,1(q) = {a € Ar U
{e}|Fv € A}.av € L, 1(¢q)} holds.

This characterisation considering the sets £, r(¢) leads to an efficient (data flow
analysis) algorithm for computing the sets IA, r(¢) and, therefore, to an efficient

implementation of the reduction operator II.

3.4. Determining £, 1(-)

The development of the data flow analysis algorithm presented in Procedure 3.20
requires a brief review of the relevant data flow analysis scenario.

Given a complete partial order (C;C), whose elements are intended to ex-
press the relevant data flow information, the local abstract semantics of a process
(Sp, Ap U {1}, —p,Tp,p) is defined by the semantic functional [-] : (—,) —
(C — C) which maps each transition ¢ €—, to a transformation on C. The
functional [-] extends to paths pth = (t1,...,t5), ¢ > 0, in p in the usual way:
[pth] =af [tg] o ---o [t:] -

Let us fix an arbitrary process p = (Sp, A, U {7}, —p,1Tp,p) € P and an
interface specification I = (Sr, Ar,—1,0,I) € Z. For technical reasons we
assume w.l.o.g. that p does not possess any transitions to its start state.

For our application we need the following local abstract semantics over the
complete partial order (25(1); C).

Definition 3.14. (Local Abstract Semantics)
For a € A consider the functions £ : 25 — 2£(1) with

I _ L, ifae Af
€a(L) =4 { L otherwise

Then the local abstract semantic functions for (¢, a,q') € —p, with respect to I
are defined by [(g,a,q")] =4 EL.

The following property of these local abstract semantic functions is important.

Lemma 3.15. (Additivity)
The functions £! are additive, i.e. for all {£;|k > 0} C 2°(D) we have

Ea((UJ{Lelk = 03) = (L& (Lr) |k = 0}

As a consequence, the local abstract semantic functions [t] are additive for all
tE—rp.

The local abstract semantics can be globalised according to two strategies: the
“operational” join over all paths (JOP) strategy, which directly reflects the in-
tuition behind the analysis problem, and the “denotational” minimal fixed point
(MFP) strategy, which is algorithmic (cf. [Kil73, KU77]).? In the following P[q, ¢']
denotes the set of all finite paths from ¢ to ¢’ and ¢q the initial information valid
at the start state of p.

9 Originally, a dual setup was proposed, considering meet over all paths and mazimal fized
point strategies.

Compositional Minimisation of State Systems 19

Definition 3.16. (JOP-Solution)
Vq € Sp,co € C. JOPeo(q) =g LI{[pth](co)|pth € Plp,q]} -

For our application we have the following characterisation of the JOP-Solution.

Proposition 3.17. (Characterisation of the JOP-Solution)
Vq € Sp. JOP£(1y(q) = Lp,1(q) -

Proof. For ’*O” one easily establishes
Vql|i € Spy13pth € Plp, q). L(i) € [pth] (£(T))

by induction on the length of a path from p||I to g||¢, and for “C” it is sufficient
to prove for all paths pth € Plp,q] that w € [pth](L(I)) implies Jql||i € Sp;-w €
L(%) by induction on the length of pth. [

The MFP-solution iteratively approximates the smallest solution of a set of si-
multaneous equations that express consistency between data flow informations
with respect to the start information ¢ that is valid in the start state p.

Definition 3.18. (MFP-Solution)
The least solution /., of the equation system consisting of the equation

0 ={ 3 itg=p
1a) ULHI & 1@ 0,0) €) othervise

for each g € S, includes the MFP-Solution with respect to the initial information
co€eC.

Vg € Sp,co € C. MFP.,(q) =45 lco(q) -

As in our application, this often leads to an algorithmic description. The well-
known coincidence theorem of Kam and Ullman [KU77] bridges the gap between
the JOP-Solution and the MFP-Solution.

Theorem 3.19. (Coincidence Theorem)
If all local abstract semantic functions [¢t] for ¢ € —, are additive, then the
MFP-Solution is correct and complete with respect to the JOP-Solution, i.e.

Yq € Sp,Co eC. JOPCO(Q) = MFPCO(q)'

Thus according to Lemma 3.15, we can compute the desired JOP-solution (cf.
Proposition 3.17) by iteratively approximating the smallest solution of the equa-
tion system defined in Definition 3.18 in the following fashion:

Procedure 3.20. (Language Labelling)

Given p € P and I € Z(p), the iterative Language Labelling Procedure works by
successively enlarging approximative labellings according to the following two
steps:

1. It initially labels p with £(I) and all the other states with the empty language.

2. If a state ¢ of p is currently labelled by £ and ¢' is one of its a-successors,
then £X(L) is joined to the current language labelling of ¢’ until a fixed point
is reached.

In terms of DFA, the Language Labelling Procedure computes the minimal fixed
point solution with respect to the start information £(I).

20 S. Graf, B. Steffen, and G. Liittgen

The Language Labelling Procedure 3.20 has been implemented by means of a
workset algorithm, as part of the METAFrame environment [SMC96). Its time and
space complexity can be estimated by the product of the number of transitions
of p and the number of states of I.

As the algorithm does not exploit the structure of the representation of in-
terface specifications; this proves Theorem 3.5.

4. Minimisation Method

In this section we develop the RM-Method, which compositionally minimises
finite state distributed systems, on top of a reduction operator IT. This method is
correct in that it always produces processes that are smaller in the specification-
implementation preorder (cf. Theorem 4.1), guaranteeing that even faulty inter-
face specifications never allow us to establish wrong properties. Moreover, it is
complete, in that it only produces semantically equivalent processes as long as
the interface specifications are correct (cf. Theorem 4.2), guaranteeing that the
reduction is consistent with the semantical equivalence in this case. The RM-
Method is illustrated by means of an example, where the apparent complexity
is exponential in the number of components, whereas the algorithmic and the
reduced complexity are linear.

The RM-Method deals with processes of the form P = (p1]|. .. ||pn){L) . This
form, called standard concurrent form in CCS, is of particular interest, as it is
responsible for the state explosion problem and, therefore, characterises the pro-
cesses that are critical during analysis and verification. Our method expects the
finite state system P to be annotated with interface specifications that describe
the interface between the right hand process and the left hand process of the
parallel operator they are attached to: (p1||lnp2llr, - --||1,_.Pn){L) . It proceeds
by successively constructing transition systems P; as follows:

@1l pallre - Nl 1a—pn)(L)
——

P
where P; is defined by:
o Py =df M(H11 (M(p1<A11 Uy L))))7
o Pi =gy MU, (M((Pi—1[[pi)(Ar; UL)))) for 2 < i <n—1, and
® Pn =4f M((Pn-1llpn)(L))-

In order to avoid unnecessarily large intermediate transition systems during the
construction of the minimal transition system, it is important to minimise all
the intermediate constructions as it is done above.

Note that our method covers the naive method (only using M) and methods
which only consider the correspondence of the parallel and the window operator
(see Proposition 2.7). The new additional power of the RM-Method is due to
the reduction operator IT which minimises all intermediate transition systems P;
according to global constraints specified in terms of the interface specifications
I (for1<i<n-1).

Compositional Minimisation of State Systems 21

In the remainder of this section let P and P; be as defined above and Q; =g
(pig1]l ---pn) for 1 < i < n.19 Then we obtain the following correctness result,
which is independent of the correctness of the interface specifications.

Theorem 4.1. (Correctness of the RAM-Method)
V1 <i<n. (Pif|Qi)(L) <P.

Using Definition 3.1(i) and Propositions 2.6, 2.7, 2.11, and 2.12, the proof can
be done straightforwardly by induction on i, where the cases 2 < i <n —1 and
i = n need to be distinguished (according to the definition of P;) during the
induction step.

For : = n Theorem 4.1 states that P, <P . This is already enough to guaran-
tee the correctness of the method, i.e. that a proof of property for P, , which is
consistent with the kernel of <, is valid for P. Thus, wrong interface specifica-
tions never lead to wrong results. They may only prevent a successful verification
of a valid statement. In order to guarantee the success of the method, the cor-
rectness of the interface specifications is sufficient.

Theorem 4.2. (Completeness of the RM-Method)
VI<i<n (% <il; €Z(pil... Ip;, Q;)) implies (Pl Qi)(L) ~P.

Proof. The proof, which is done by induction on ¢ again, requires special atten-
tion: an instance of the induction hypothesis is necessary to establish an auxiliary
statement concerning the correctness of the given interface specifications in the
special proof context (see statement (x) below).

For ¢ =1 we have:

(P11Q1)(L)
(def. P1) = (M, (M(p1(Ar, UL))))IQ1)L)
(def. M , Prop. 2.12) ~d (T (M(p1 (A, U L)))IQ1)(L)
(Prop. 3.2, 2.12) ~d (T, (p1(Ar U L))[Q1)(L)

(Def. 3.1(ii), Prop. 2.17, 2.12) ~% (p1(Ar, U L)]|Q1)(L)
(Theorem 2.7) = (;ml@Q1){L)

(def. P) = P

The induction step, i — 1 — i, needs the following auxiliary statement:

(x) L€ Z(pill-..lIpi, Qi) implies I; € Z(M((Pi-1llps)(Ar U L)), Qi)

The statement follows by Definition 2.14 considering

10 Q,, denotes the empty process consisting of a single state, an empty alphabet, and no
transition.

22 S. Graf, B. Steffen, and G. Liittgen

L(I3)
(Def. 2.14) 2 L(((pall---1lp)lQ:)(AL))
(def. Q;, Prop. 2.6, 2.12, La. 2.13(2.)) = L((p1]l---|lp=){AL))
(ind. hyp. for L = Ay, , La. 2.13(2.)) = L((Pi_1]|Qi—1){A1))
(def. Qii, Prop. 2.6,2.12, La. 2.13(2.)) = L(((Pi—1|lp:)|Qi){Ar,)
(Prop. 2.7, La. 2.13(2.)) = L(Pi-1llp:){Ar; U L)]IQi)(Ar,))
(def. M, Prop. 2.12, La. 2.13(2.)) = L(M(Ps=1llps)(Ar;, UL)|Q:){AL))

Now, the case 2 < i < n — 1 proceeds as follows:

(PillQ:){L)
(def. P;) = (M7, (M(Pi-1llpi){Ar, U L))IQ:i){L)
(def. M, Prop. 2.12) ~d (T (M(Pi-1llpi)(Ar; UL))Qs)(L)

((x), Def. 3.1(ii), Prop. 2.12) =~ (M((Pi—1|lp:){Ar; U L))||Q:){L)

(def. M, Prop. 2.12) ~d (Pictllpa){Ar UL)Q:)(L)

(Prop. 2.7) = (Pimallp)l|Qi)(L)

(Prop. 2.6, 2.12, def. Q;—1) &% (Pi—1]|Qi—1){L)

(ind. hyp.) ~d P
This completes the proof, as the case ¢ = n is an easy variant of the previous
case where (x) is not needed. [J

In practice, P is usually totally defined. Then by applying Theorem 4.1 it is
easy to see that the proof of P, ~4P reduces to the verification of the total
definedness of P, .

Corollary 4.3. (Total Definedness)
Whenever P is totally defined, we have: P,, x4 P iff P,, is totally defined.

Up to now, we have considered the reduction operator as a parameter. The
following applications use the reduction operator II.

4.1. An Application of the RM-Method

The application of our method to the system of Example 2.8 and the interface
specifications defined in Example 2.15 leads to the successive computation of the
following three processes:

P = M0, (M(P{{tkl,tk2,Tb1, sb1})))),
Py M1, (M((Py||B){{tk1, tk2, rb2,sb2})))), and
Ps M((P2|| P2){{tk1, tk2})).

As suggested in Example 2.15, Iy, has no effect on P; due to the TA%! | (-)-
sets (cf. Figure 5, top left corner):

Compositional Minimisation of State Systems 23

[®] Graph [8] Graph B9 El
Graph Layout Options | ey Help Graph Layout gptinnsl Scale to Help
N [|

53]
|

[¢] Graph

EZ

Graph Layout gplionsl w

Iz
o
=

[®] Graph Inspector
HMumber of Nodes: 3
Type of Label: TaModelabel

o
£
Ed

[[<

Number of Edges: 4
Type of Label: TEEdgelabel

Currently selected
Node Name: {(p12||b2)
Node Color: hlack
Node Syntax: jname ((p12]|b2)),undef {rbZ}

= Dismiss
Fig. 5. Application of the method to our example
i IA?alll,zl (p11) = {tk1, €},
o IAY | (pr12) = {rbl, tk2,¢},
° A73111 1, (p13) = {sbi,e}, and
o IAY | (pra) = {rbl, tk2,e} .

Let us compute P2 stepwise. Computing M((P1]|B){{tk1,tk2, rb2, sb2})) leads
to the process presented at the right top of Figure 5. The application of the
algorithm of Section 3.3 provides the following IA?};‘.l” B),1, (*)-sets:

o 1A%)1, (P1L[|D2) = {tk1,rb2 e},

o 1A%)1, (P12(|D2) = {tk2, e} = IA%S | 5 1 (P14]|D2),
o IAY o (pL1[b3) = {sb2, ¢}, and

o IARS 1,1, (P12(103) = 0 = TARR,) 7, (P14]1B3) .

P2 is presented at the bottom left corner of Figure 5 with a rb2-undefinedness
at the state (p12||b2) and a tki-undefinedness at the state (p11]|b3).

The result of the reduction algorithm is Ps (cf. Figure 5, bottom right corner),
and as Pj is totally defined, Corollary 4.3 yields that Ps; ~4 System holds. This
reflects our intuition that an observer may only see the cyclical passing of the
token on the channels tk1 and tk2.

24 S. Graf, B. Steffen, and G. Liittgen
4.2. The Power of the RM-Method

Let us consider a system guaranteeing the mutually exclusive access of n pro-
cesses P; to a common resource R as illustrated in Figure 6 for n = 4.!! The
idea behind the system is to pass a “token” via the communication channels
tk; , and to allow access to R only for the process that currently possesses the
token. This process sends a request via ps; to the resource R, which responds by
transmitting the requested object. The corresponding transmission line is mod-
elled by a buffer B;. This choice is motivated by thinking of large objects whose
transmission cannot be modelled by an atomic “handshake” communication.

In order to prove that the access of the resource is modelled as intended,
we can hide everything except for the actions corresponding to the transmission
of the token, and prove that the resulting process is equivalent to the process
Spec(n) that just repeatedly executes the sequence tky, ... ,tk, . Therefore, it is
enough to show that

System(n) =4 (R||P1||Bil - .. || Pul|Bn){{ths,. .. ,ths}) = Spec(n) .

Tt is easy to see that the apparent complexity of System(n) is exponential in n,
whereas its reduced complexity is linear. In fact, it is also possible to obtain an
algorithmic complexity that is linear in n. This can be achieved by processing
the system according to the structure indicated below, where the I; denote the
exact interface specifications presented in Figure 7:

—— —N —N—
(RIPBi|ln PalB2lrs - - lI7—y PallBa)({ths, .. tkn}) -

Table 1 summarises a quantitative evaluation of the effect of our method by
means of the Aldebaran Verification Tool [Fer88]. It displays the size of the global
state graph (its apparent complexity), the size of the maximal transition system
constructed during stepwise minimisation when exploiting exact interface speci-
fications (its algorithmic complexity), and the size of the minimised global state
graph (its reduced complexity). It is worth mentioning that the method, which
works just by stepwise composition and minimisation of components, encounters
transition systems that are even larger than the global state graph (cf. Table 2).
This stresses the importance of interface specifications for automatic proof tech-
niques. Software designers should always provide these specifications as part of
the implementation. We believe that besides enabling automatic verification, this
requirement also leads to a transparent and well-structured programming. Note
the similarity to the situation for while-programs, where automatic verification
depends on loop invariants that also need to be provided by the programmer.

5. Conclusions

We have presented a method, called RM-Method, for the compositional min-
imisation of finite state distributed systems which is intended to avoid the state
explosion problem. This method can be used to support the verification of any
property that is consistent with ~9. However, the RM-Method is not tailored

11 In contrast to all the other P;, which are displayed correctly, P, is assumed to be initially
in the bottom right state.

Compositional Minimisation of State Systems 25
L
tkl , tk,
| b,
P Bl \
-’ i £ |
‘ bp, | B |sb ‘ ps
4 4 2
P4 ****** 4 -t R peeee T P,
,,,,,,,, Pu | PR,
T T T BZ T
’-. o, | !
B, §p53
\“\ bp3§ i /S
' ~ P) P
tk, - 3 . t@
where
R=
ps| s B = R= bp
s \ Ps S /—
4
N e e s e
3 s bp m
Sl)3 Ps, i+1

Fig. 6. Round-robin access

Table 1. Transition system sizes when using the RM-Method

n apparent complexity

algorithmic complexity

reduced complexity

states trans.
4 144 368
5 361 1101
6 865 3073
7 2017 8177

states trans.
20 29
24 35
28 41
32 47

states trans.
4 4

5 5
6 6
7 7

26 S. Graf, B. Steffen, and G. Liittgen

sby \A tkl

i+2

Fig. 7. Exact interface specifications

Table 2. Transition system sizes when using the naive method
n states trans.

4 96 243
5 324 927
6 972 3024
7 2916 9801

to this particular semantic equivalence. Other equivalences can be dealt with by
adapting the preorder definition and the minimisation function accordingly. The
RM-Method is implemented as part of the METAFrame environment [SMC96]
and the Aldebaran verification tool [Fer88] for the reduction operator II and the
semantical equivalence a9

The effect of our method, which is intended to get the algorithmic complexity
as close as possible to the reduced complexity, depends on interface specifications,
which we assume to be given by the program designer. However, the correctness
of the RM-Method does not depend on the correctness of these interface spec-
ifications. Wrong interface specifications never lead to wrong results. They may
only prevent a successful verification of a valid property. This is very important,
because it allows the designer to simply “guess” interface specifications, while
maintaining the reliability of a successful verification.

Indeed, a way to obtain interface specifications is by using the property to
be verified as interface specification. This is what Clarke et al. [CLM89] had in
mind. However, their approach only exploits the alphabet of the property under
consideration. A refined treatment of property constraints using our notion of
interface specification is under investigation.

Acknowledgements

We would like to thank Rance Cleaveland and Ernst-Riidiger Olderog for helpful
discussions and Dirk Koschiitzki for his support in implementing our method
within the METAFrame environment. Moreover, we are grateful to the anonymous
referees for their valuable comments and suggestions.

Compositional Minimisation of State Systems 27

References

[BCG86]

[BFHY0]
[Bry86]

[cCTT]

[CES83]

[CGL92]
[CLM89]

[CPS93)

[CR94]

[CS90a]

[CS90D)

[DGG93)]

[Fer88]

[FSS83]

[GLY3]

[GST.95]

[GW91]

[Hoa85]

[Jos87]

[Kil73]
[KM89]

[Krus9]

[KUT77]

M.C. Browne, E.M. Clarke, and O. Grumberg. Reasoning about networks with
many identical finite state processes. ACM Symposium on Principle of Distributed
Computing, 1986.

A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. Minimal model generation. In
Workshop on Automatic Verification ’90, volume 531 of LNCS, 1990.

R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computation, 35(8), 1986.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction and approximation of fixpoints. In
Symp. Principles of Programming Languages 77, 1977.

E.M. Clarke, E.A. Emerson, and E. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specification: A practical approach. In
Symp. Principles of Programming Languages ’83, 1983.

E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In Symp.
Principles of Programming Languages 92, 1992.

E. Clarke, D. Long, and K. McMillan. Compositional model checking. Proc. IEEE
Symp. Logic in Computer Science, pages 353-362, 1989.

R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A
semantics-based tool for the verification of finite-state systems. ACM Transactions
on Programming Languages and Systems, 15(1):36—-72, January 1993.

R. Cleaveland and J. Riely. Testing-based abstractions for value passing systems.
In Proceedings of CONCUR’94, Stockholm (Sweden), volume 836 of LNCS, 1994.
R. Cleaveland and B. Steffen. A preorder for partial process specifications. In
Proceedings of CONCUR’90, Amsterdam (Netherlands), volume 458 of LNCS,
1990.

R. Cleaveland and B. Steffen. When is “partial” adequate? A logic-based proof
technique using partial specifications. Proc. IEEE Symp. Logic in Computer Sci-
ence, 1990.

D. Dams, O. Grumberg, and R. Gerth. Generation of reduced models for checking
fragments of CTL. In Proceedings of the International Conference on Computer-
Aided Verification (CAV’93), volume 697 of LNCS, pages 479-490, 1993.

J.-C. Fernandez. Aldébaran: Un Systéme de Vérification par Réduction de Pro-
cessus Communicants. PhD thesis, Université de Grenoble, 1988.

J.-C. Fernandez, J.-Ph. Schwartz, and J. Sifakis. An example of specification and
verification in Cesar ‘the analysis of concurrent systems’. Volume 207 of LNCS,
1983.

S. Graf and C. Loiseaux. Program verification using compositional abstraction.
In Proceedings FASE/TAPSOFT’93, 1993.

S. Graf, B. Steffen, and G. Liittgen. Compositional minimization of finite state
systems using interface specifications. Technical Report MIP-9505, Universitat
Passau, Passau, Germany, January 1995.

P. Godefroid and P. Wolper. Using partial orders for the efficient verification
of deadlock freedom and safety properties. In Proceedings of the International
Workshop on Computer-Aided Verification (CAV’91), volume 575 of LNCS, pages
332-342, 1991.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,
1985.

B. Josko. MCTL - an extension of CTL for modular verification of concurrent
systems. In Workshop on Temporal Logic in Specification, volume 398 of LNCS,
1987.

G. A. Kildall. A unified approach to global program optimization. In Symp.
Principles of Programming Languages ’73, pages 194 — 206, 1973.

R.P. Kurshan and K. McMillan. A structural induction theorem for processes. In
ACM Symposium on Principles of Distributed Computing, 1989.

H. Krumm. Projections of the reachability graph and environment models, two
approaches to facilitate the functional analysis of systems of cooperating finite
state machines. In Workshop on Automatic Verification of Finite State Systems,
Grenoble (France), volume 407 of LNCS, 1989.

J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7:309-317, 1977.

28

[LGSt95]

[LSW94]
[LT88]
[L.X90]
[Mil80]

[Mil89]
[Pel93]

[Pnu90]

[SG89]

[SG90]

[SMC96]
[Ste94]

[Vaa90]

[Val93]

[Wals§]
[Win90]

[WL89]

S. Graf, B. Steffen, and G. Liittgen

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property pre-
serving abstractions for the verification of concurrent systems. Formal Methods
in System Design, Vol 6, Iss 1, 1995.

K. G. Larsen, B. Steffen, and C. Weise. A constraint oriented proof methodology
based on modal transition systems. In BRICS Notes 94-6, December 1994.

K. G. Larsen and B. Thomsen. Compositional proofs by partial specification of
processes. Proc. IEEE Symp. Logic in Computer Science, 1988.

K.G. Larsen and L. Xinxin. Compositionality through an operational semantics
of contexts. In ICALP’90, volume 443 of LNCS, 1990.

R. Milner. A calculus for communicating systems. Volume 92 of LNCS, 1980.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

D. Peled. All from one, one for all: on model checking using representatives.
In Proceedings of the International Conference on Computer Aided Verification
(CAV’98), volume 697 of LNCS, 1993.

A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In Logics and Models for Concurrent Systems, volume 13 of NATO ASI
Series F. Springer Verlag, 1990.

7. Stadler and O. Grumberg. Network grammars, communication behaviours and
automatic verification. In Workshop on Automatic Verification Methods for Finite
State Systems, Grenoble (France), volume 407 of LNCS, 1989.

G. Shurek and O. Grumberg. The modular framework of computer-aided verifi-
cation. In Workshop on Automatic Verification ’90, volume 531 of LNCS, pages
214-223, 1990.

B. Steffen, T. Margaria, and A. Claflen. Heterogeneous analysis and verification
for distributed systems. Software—Concepts and Tools, 17:13—25, 1996.

B. Steffen. Finite model checking and beyond. In BRICS Notes 94-6, December
1994.

F.W. Vaandrager. Some observations on redundancy in a context. In J.C.M.
Baeten, editor, Applications of Process Algebra, volume 17 of Cambridge Tracts
in Theoretical Computer Science, pages 237-260. Cambridge University Press,
1990.

A. Valmari. On-the-fly verification with stubborn sets. In Proceedings of the
International Conference on Computer Aided Verification (CAV’93), volume 697
of LNCS, pages 397-408, 1993.

D.J. Walker. Bisimulation and divergence in CCS. Proc. IEEE Symp. Logic in
Computer Science, 1988.

G. Winskel. Compositional checking of validity on finite state processes. In Work-
shop on Theories of Communication, CONCUR, volume 458 of LNCS, 1990.

P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with
network invariants. In Workshop on Automatic Verification Methods for Finite
State Systems, Grenoble (France), volume 407 of LNCS, 1989.

