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Motivation

• Controller synthesis for switched systems:

- Wide litterature on stability and stabilization
- Not so rich for other objectives

path planning, oscillation enforcement...

• Approach based on symbolic (discrete) abstractions:

- Use of well-known techniques for discrete-event systems
supervisory control, algorithmic game theory...

- Determination of symbolic abstractions
existence, computation...

- This talk: for a class of incrementally stable switched systems
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Outline of the Talk

1. Switched systems and incremental stability

2. Symbolic abstractions of switched systems:
• Approximate bisimulation
• Common Lyapunov function
• Multiple Lyapunov functions

3. Symbolic models for the boost DC-DC converter



Switched Systems

A switched system is a quadruple:

Σ = (Rn,P,P,F ),

where:

• Rn is the state space;

• P = {1, . . . ,m} is the finite set of modes;

• P ⊆ S(R+
0 ,P) is the set of switching signals;

S(R+
0 ,P): set of piecewise constant functions from R+

0 to P

• F = {f1, . . . , fm} is a collection of vector fields indexed by P.

For p ∈ P, Σp denotes the continuous subsystem associated to fp.



Trajectories of a Switched System

• A continuous, piecewise C1 function x : R+
0 → Rn is a

trajectory of Σ if there exists p ∈ P such that

ẋ(t) = fp(t)(x(t)) for almost all t ∈ R+
0 .

• x(t, x ,p) denotes the point reached at time t ∈ R+
0 from the

initial state x under the switching signal p.

• x(t, x , p) denotes the point reached at time t ∈ R+
0 from the

initial state x under the constant switching signal p(t) = p
i.e. trajectory of continuous subsystem Σp.



Stability of Switched Systems

• Switching between stable subsystems may create unstable
behaviors:

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

• Stability ensured via:
• Common Lyapunov function
• Multiple Lyapunov functions + dwell time



Incremental Stability

The subsystem Σp is incrementally globally asymptotically stable
(δ-GAS) if there exists a KL function βp such that for all t ∈ R+

0 ,
for all x , y ∈ Rn, the following condition is satisfied:

‖x(t, x , p)− x(t, y , p)‖ ≤ βp(‖x − y‖, t)

t

x(t, x , p)

x(t, y , p)



δ-GAS Lyapunov Functions

A smooth function Vp : Rn × Rn → R+
0 is a δ-GAS Lyapunov

function for subsystem Σp if there exist K∞ functions α, α and
κ ∈ R+ such that for all x , y ∈ Rn:

α(‖x − y‖) ≤ Vp(x , y) ≤ α(‖x − y‖)

and
∂Vp

∂x
(x , y)fp(x) +

∂Vp

∂y
(x , y)fp(y) ≤ −κVp(x , y)

Theorem (Angeli 2002)

Σp is δ-GAS if and only if it admits a δ-GAS Lyapunov function.



Incremental Stability for Switched Systems

The switched system Σ is incrementally globally uniformly
asymptotically stable (δ-GUAS) if there exists a KL function β
such that for all t ∈ R+

0 , for all x , y ∈ Rn, for all switching signals
p ∈ P, the following condition is satisfied:

‖x(t, x ,p)− x(t, y ,p)‖ ≤ β(‖x − y‖, t)

The convergence rate β is independent of the switching signal p.

Theorem
If there exists a common δ-GAS Lyapunov function for subsystems
Σ1, . . . ,Σm, then the switched system Σ is δ-GUAS.



Multiple δ-GAS Lyapunov Functions

Sτd
(R+

0 ,P) denotes the set of switching signals with dwell time τd .
The duration between two successive switching times is at least τd .

Theorem
Let Στd

= (Rn,P,P,F ) with P ⊆ Sτd
(R+

0 ,P). If for all p ∈ P,
there exists a δ-GAS Lyapunov function Vp for subsystem Στd ,p

and that in addition there exists µ ∈ R+ such that:

∀x , y ∈ Rn, ∀p, p′ ∈ P, Vp(x , y) ≤ µVp′(x , y).

If τd > log µ
κ , then Στd

is δ-GUAS.



Supplementary Assumption

• In the following, we assume that there exists a K∞ function γ
such that, for all p ∈ P

∀x , y , z ∈ Rn, |Vp(x , y)− Vp(x , z)| ≤ γ(‖y − z‖).

• Working on a compact subset C ⊆ Rn:

|Vp(x , y)− Vp(x , z)| ≤
(

max
p∈P,x ,y∈C

∥∥∥∥∂Vp

∂y
(x , y)

∥∥∥∥) ‖y − z‖.
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Transition Systems

A transition system is a sextuple:

T = (Q, L, - ,O,H, I ),

where:

• a set of states Q;

• a set of labels L;

• a transition relation - ⊆ Q × L× Q;

• an output set O;

• an output function H : Q → O;

• a set of initial states I ⊆ Q.

T is said to be metric if the output set O is equipped with a
metric d .
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Approximate Bisimulation

T1 = (Q1, L,
1
- ,O,H1, I1), T2 = (Q2, L,

2
- ,O,H2, I2) are

metric transition systems.

Let ε ∈ R+
0 be a given precision, a relation R ⊆ Q1 × Q2 is an

ε-approximate bisimulation relation between T1 and T2 if for all
(q1, q2) ∈ R:

• d(H1(q1),H2(q2)) ≤ ε;

• for all q1
l

1
- q′

1, there exists q2
l

2
- q′

2, such that (q′
1, q

′
2) ∈ R;

• for all q2
l

2
- q′

2, there exists q1
l

1
- q′

1, such that (q′
1, q

′
2) ∈ R.



Approximately Bisimilar Transition Systems

Transition systems T1 and T2 are said to be approximately
bisimilar with precision ε (denoted T1 ∼ε T2) if:

• for all q1 ∈ I1, there exists q2 ∈ I2, such that (q1, q2) ∈ R;

• for all q2 ∈ I2, there exists q1 ∈ I1, such that (q1, q2) ∈ R.



Switched Systems as Transition Systems

Consider a switched system Σ = (Rn,P,P,F ) with P = S(R+
0 ,P)

and a time sampling parameter τs ∈ R+.

Let Tτs (Σ) = (Q1, L1,
1
- ,O1,H1, I1) where:

• the set of states is Q1 = Rn;

• the set of labels is L1 = P;

• the transition relation is given by

q
l

1
- q′ iff x(τs , q, l) = q′;

• the output set is O1 = Rn;

• the output function H1 is the identity map over Rn;

• the set of initial states is I1 = Rn.



Construction of the Symbolic Model

• We start by approximating the set of states Q1 = Rn by:

[Rn]η =

{
q ∈ Rn

∣∣∣∣ qi = ki
2η√
n
, ki ∈ Z, i = 1, ..., n

}
,

where η ∈ R+ is a state space discretization parameter.

• Approximation of the transition relation:

x(τs , q, l)

q

q′



Construction of the Symbolic Model

Let Tτs ,η(Σ) = (Q2, L2,
2
- ,O2,H2, I2) where:

• the set of states is Q2 = [Rn]η;

• the set of labels remains the same L2 = L1 = P;

• the transition relation is given by

q
l

2
- q′ iff ‖x(τs , q, l)− q′‖ ≤ η;

• the output set remains the same O2 = O1 = Rn;

• the output function H2 is the natural inclusion map:
H2(q) = q ∈ Rn;

• the set of initial states is I2 = [Rn]η.



Approximation Theorem

Theorem
Consider time and state space sampling parameters τs , η ∈ R+ and
a desired precision ε ∈ R+. Let us assume that there exists
V : Rn × Rn → R+

0 which is a common δ-GAS Lyapunov function
for subsystems Σ1, . . . ,Σm. If

η ≤ min
{
γ−1

(
(1− e−κτs )α(ε)

)
, α−1 (α(ε))

}
(1)

then, Tτs (Σ) and Tτs ,η(Σ) are approximately bisimilar with
precision ε.

Any precision can be achieved!
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Sketch of the Proof

Idea: Show that R = {(q1, q2) ∈ Q1 × Q2|V (q1, q2) ≤ α(ε)} is an
ε-approximate bisimulation relation:

• For (q1, q2) ∈ R, ‖q1 − q2‖ ≤ α−1 (V (q1, q2)) ≤ ε.

• Let q1
l

1
- q′1, then q′1 = x(τs , q1, l), let q2

l

2
- q′2 then

‖x(τs , q2, l)− q′2‖ ≤ η and

V (q′1, q
′
2) ≤ V (q′1, x(τs , q2, l)) + γ(η)

≤ V (x(τs , q1, l), x(τs , q2, l)) + γ(η)

≤ e−κτs V (q1, q2) + γ(η)

≤ e−κτs α(ε) + γ(η) ≤ α(ε)
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Sketch of the Proof (II)

• Let q1 ∈ I1 = Rn, there exists q2 ∈ I2 = [Rn]η such that
‖q1 − q2‖ ≤ η. Then,

V (q1, q2) ≤ α(‖q1 − q2‖) ≤ α(η) ≤ α(ε).

• Let q2 ∈ I2 = [Rn]η, then q1 = q2 is in I1 = Rn and

V (q1, q2) ≤ α(‖q1 − q2‖) ≤ 0 ≤ α(ε).

Tτs (Σ) and Tτs ,η(Σ) are approximately bisimilar with precision ε.
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Case of Multiple Lyapunov Functions

Approximation result holds if we impose a dwell time τd :

Theorem
Consider time and state space sampling parameters τs , η ∈ R+, a
desired precision ε ∈ R+ and a dwell time τd ∈ R+. Let us assume
that for all p ∈ P, there exists a δ-GAS Lyapunov function Vp for

subsystem Στd ,p. If τd > log µ
κ and

η ≤ min

{
γ−1

(
1
µ − e−κτd

1− e−κτd
(1− e−κτs )α(ε)

)
, α−1 (α(ε))

}

then, Tτs (Στd
) and Tτs ,η(Στd

) are approximately bisimilar with
precision ε.

Bound on the dwell time is the same that in the δ-GAS theorem!



Case of Multiple Lyapunov Functions

Approximation result holds if we impose a dwell time τd :

Theorem
Consider time and state space sampling parameters τs , η ∈ R+, a
desired precision ε ∈ R+ and a dwell time τd ∈ R+. Let us assume
that for all p ∈ P, there exists a δ-GAS Lyapunov function Vp for

subsystem Στd ,p. If τd > log µ
κ and

η ≤ min

{
γ−1

(
1
µ − e−κτd

1− e−κτd
(1− e−κτs )α(ε)

)
, α−1 (α(ε))

}

then, Tτs (Στd
) and Tτs ,η(Στd

) are approximately bisimilar with
precision ε.

Bound on the dwell time is the same that in the δ-GAS theorem!



Outline of the Talk

1. Switched systems and incremental stability

2. Symbolic abstractions of switched systems:
• Approximate bisimulation
• Common Lyapunov function
• Multiple Lyapunov functions

3. Symbolic models for the boost DC-DC converter



DC-DC Converter

• Power converter with switching control:

il

s1

vs

rl
xl

s2

xc

rc

vc

r0 v0

• State variable x(t) = [il(t), vc(t)]
T .

• Control objective: regulate the output voltage
Formulated as an invariance property.



DC-DC Converter

Dynamics of the system:

ẋ(t) = Apx(t) + b, p = 1, 2 .

where

A1 =

[
− rl

xl
0

0 − 1
xc

1
r0+rc

]
, A2 =

[
− 1

xl
(rl+

r0rc
r0+rc

) − 1
xl

(
r0

r0+rc
)

1
xc

r0
r0+rc

− 1
xc

1
r0+rc

]
, b =

[ vs
xl
0

]
.

Existence of a common δ-GAS Lyapunov function of the form

V (x , y) =
√

(x − y)TM(x − y).



Symbolic Model of the DC-DC Converter

First (useless) abstraction: τs = 0.5, η = 1
40
√

2
, ε = 2.6.



Control of the Symbolic Model

Supervisor for the symbolic model and the invariance property.



Control of the Symbolic Model (II)

Abstraction: τs = 0.5, η = 1
4000

√
2
, ε = 0.026 (642001 states!).
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Control of the DC-DC Converter

Corresponding trajectory of the switched system:
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Conclusions

• Contributions:

- Extension of GAS results for switched systems to δ-GAS.
- Symbolic abstractions for a class of switched systems:

1. Abstraction is effectively computable
2. Precision of the abstraction can be chosen a priori

- Application to the boost DC-DC converter

• Future work:

- Multiscale symbolic models
- On the fly computation of symbolic models (i.e. during control

synthesis)

• References: A. Girard, G. Pola and P. Tabuada, Approximately

bisimilar symbolic models for incrementally stable switched systems,

to appear in HSCC’08.


