Approximately Bisimilar Symbolic Models for Incrementally Stable Switched Systems

Antoine Girard¹ Giordano Pola² Paulo Tabuada²

Laboratoire Jean Kuntzmann, Université Joseph Fourier antoine.girard@imag.fr

Department of Electrical Engineering, University of California at Los Angeles {pola,tabuada}@ee.ucla.edu

Motivation

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

- Controller synthesis for switched systems:
 - Wide litterature on stability and stabilization
 - Not so rich for other objectives *path planning, oscillation enforcement...*

Motivation

- Controller synthesis for switched systems:
 - Wide litterature on stability and stabilization
 - Not so rich for other objectives *path planning, oscillation enforcement...*
- Approach based on symbolic (discrete) abstractions:
 - Use of well-known techniques for discrete-event systems *supervisory control, algorithmic game theory...*

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Determination of symbolic abstractions *existence, computation...*

Motivation

- Controller synthesis for switched systems:
 - Wide litterature on stability and stabilization
 - Not so rich for other objectives *path planning, oscillation enforcement...*
- Approach based on symbolic (discrete) abstractions:
 - Use of well-known techniques for discrete-event systems *supervisory control, algorithmic game theory...*
 - Determination of symbolic abstractions *existence, computation...*
 - This talk: for a class of incrementally stable switched systems

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline of the Talk

- 1. Switched systems and incremental stability
- 2. Symbolic abstractions of switched systems:
 - Approximate bisimulation
 - Common Lyapunov function
 - Multiple Lyapunov functions
- 3. Symbolic models for the boost DC-DC converter

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Switched Systems

A switched system is a quadruple:

$$\Sigma = (\mathbb{R}^n, P, \mathcal{P}, F),$$

where:

- \mathbb{R}^n is the state space;
- $P = \{1, \ldots, m\}$ is the finite set of modes;
- $\mathcal{P} \subseteq \mathcal{S}(\mathbb{R}_0^+, P)$ is the set of switching signals; $\mathcal{S}(\mathbb{R}_0^+, P)$: set of piecewise constant functions from \mathbb{R}_0^+ to P
- $F = \{f_1, \ldots, f_m\}$ is a collection of vector fields indexed by P.

For $p \in P$, Σ_p denotes the continuous subsystem associated to f_p .

Trajectories of a Switched System

• A continuous, piecewise C^1 function $\mathbf{x} : \mathbb{R}^+_0 \to \mathbb{R}^n$ is a trajectory of Σ if there exists $\mathbf{p} \in \mathcal{P}$ such that

 $\dot{\mathsf{x}}(t) = f_{\mathsf{p}(t)}(\mathsf{x}(t))$ for almost all $t \in \mathbb{R}^+_0$.

- x(t, x, p) denotes the point reached at time t ∈ ℝ₀⁺ from the initial state x under the switching signal p.
- x(t, x, p) denotes the point reached at time t ∈ ℝ₀⁺ from the initial state x under the constant switching signal p(t) = p i.e. trajectory of continuous subsystem Σ_p.

Stability of Switched Systems

• Switching between stable subsystems may create unstable behaviors:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Stability ensured via:
 - Common Lyapunov function
 - Multiple Lyapunov functions + dwell time

Incremental Stability

The subsystem Σ_p is incrementally globally asymptotically stable (δ -GAS) if there exists a \mathcal{KL} function β_p such that for all $t \in \mathbb{R}^+_0$, for all $x, y \in \mathbb{R}^n$, the following condition is satisfied:

$$\|\mathbf{x}(t,x,p) - \mathbf{x}(t,y,p)\| \leq \beta_p(\|x-y\|,t)$$

δ -GAS Lyapunov Functions

A smooth function $V_p : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_0^+$ is a δ -GAS Lyapunov function for subsystem Σ_p if there exist \mathcal{K}_{∞} functions $\underline{\alpha}$, $\overline{\alpha}$ and $\kappa \in \mathbb{R}^+$ such that for all $x, y \in \mathbb{R}^n$:

$$\underline{\alpha}(\|x-y\|) \leq V_p(x,y) \leq \overline{\alpha}(\|x-y\|)$$

and

$$\frac{\partial V_{p}}{\partial x}(x,y)f_{p}(x) + \frac{\partial V_{p}}{\partial y}(x,y)f_{p}(y) \leq -\kappa V_{p}(x,y)$$

Theorem (Angeli 2002)

 Σ_p is δ -GAS if and only if it admits a δ -GAS Lyapunov function.

Incremental Stability for Switched Systems

The switched system Σ is incrementally globally uniformly asymptotically stable (δ -GUAS) if there exists a \mathcal{KL} function β such that for all $t \in \mathbb{R}_0^+$, for all $x, y \in \mathbb{R}^n$, for all switching signals $\mathbf{p} \in \mathcal{P}$, the following condition is satisfied:

$$\|\mathbf{x}(t, x, \mathbf{p}) - \mathbf{x}(t, y, \mathbf{p})\| \le \beta(\|x - y\|, t)$$

The convergence rate β is independent of the switching signal **p**.

Theorem

If there exists a common δ -GAS Lyapunov function for subsystems $\Sigma_1, \ldots, \Sigma_m$, then the switched system Σ is δ -GUAS.

Multiple δ -GAS Lyapunov Functions

 $S_{\tau_d}(\mathbb{R}^+_0, P)$ denotes the set of switching signals with dwell time τ_d . The duration between two successive switching times is at least τ_d .

Theorem

Let $\Sigma_{\tau_d} = (\mathbb{R}^n, P, \mathcal{P}, F)$ with $\mathcal{P} \subseteq S_{\tau_d}(\mathbb{R}^+_0, P)$. If for all $p \in P$, there exists a δ -GAS Lyapunov function V_p for subsystem $\Sigma_{\tau_d, p}$ and that in addition there exists $\mu \in \mathbb{R}^+$ such that:

$$\forall x, y \in \mathbb{R}^n, \ \forall p, p' \in P, \ V_p(x, y) \le \mu V_{p'}(x, y).$$

(日) (同) (三) (三) (三) (○) (○)

If $\tau_d > \frac{\log \mu}{\kappa}$, then Σ_{τ_d} is δ -GUAS.

Supplementary Assumption

 In the following, we assume that there exists a K_∞ function γ such that, for all p ∈ P

$$\forall x, y, z \in \mathbb{R}^n, |V_p(x, y) - V_p(x, z)| \leq \gamma(||y - z||).$$

• Working on a compact subset $C \subseteq \mathbb{R}^n$:

$$|V_p(x,y) - V_p(x,z)| \le \left(\max_{p \in P, x, y \in C} \left\| \frac{\partial V_p}{\partial y}(x,y) \right\| \right) \|y - z\|$$

Outline of the Talk

- 1. Switched systems and incremental stability
- 2. Symbolic abstractions of switched systems:
 - Approximate bisimulation
 - Common Lyapunov function
 - Multiple Lyapunov functions
- 3. Symbolic models for the boost DC-DC converter

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Transition Systems

A transition system is a sextuple:

$$T = (Q, L, \longrightarrow, O, H, I),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where:

- a set of states Q;
- a set of labels L;
- a transition relation $\longrightarrow \subseteq Q \times L \times Q$;
- an output set O;
- an output function $H: Q \rightarrow O$;
- a set of initial states $I \subseteq Q$.

Transition Systems

A transition system is a sextuple:

$$T = (Q, L, \longrightarrow, O, H, I),$$

where:

- a set of states Q;
- a set of labels L;
- a transition relation $\longrightarrow \subseteq Q \times L \times Q$;
- an output set O;
- an output function $H: Q \rightarrow O$;
- a set of initial states $I \subseteq Q$.

T is said to be metric if the output set O is equipped with a metric d.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Approximate Bisimulation

 $T_1 = (Q_1, L, \xrightarrow{1}, O, H_1, I_1), T_2 = (Q_2, L, \xrightarrow{2}, O, H_2, I_2)$ are metric transition systems.

Let $\varepsilon \in \mathbb{R}_0^+$ be a given precision, a relation $R \subseteq Q_1 \times Q_2$ is an ε -approximate bisimulation relation between T_1 and T_2 if for all $(q_1, q_2) \in R$:

•
$$d(H_1(q_1), H_2(q_2)) \le \varepsilon;$$

• for all $q_1 \xrightarrow{l} q'_1$, there exists $q_2 \xrightarrow{l} q'_2$, such that $(q'_1, q'_2) \in R$;

• for all
$$q_2 \xrightarrow{l} q'_2$$
, there exists $q_1 \xrightarrow{l} q'_1$, such that $(q'_1, q'_2) \in R$.

Approximately Bisimilar Transition Systems

Transition systems T_1 and T_2 are said to be approximately bisimilar with precision ε (denoted $T_1 \sim_{\varepsilon} T_2$) if:

- for all $q_1 \in I_1$, there exists $q_2 \in I_2$, such that $(q_1, q_2) \in R$;
- for all $q_2 \in I_2$, there exists $q_1 \in I_1$, such that $(q_1, q_2) \in R$.

Switched Systems as Transition Systems

Consider a switched system $\Sigma = (\mathbb{R}^n, P, \mathcal{P}, F)$ with $\mathcal{P} = \mathcal{S}(\mathbb{R}^+_0, P)$ and a time sampling parameter $\tau_s \in \mathbb{R}^+$.

Let
$$T_{\tau_s}(\Sigma) = (Q_1, L_1, \xrightarrow{1}, O_1, H_1, I_1)$$
 where:

- the set of states is $Q_1 = \mathbb{R}^n$;
- the set of labels is $L_1 = P$;
- the transition relation is given by

$$q \xrightarrow{l} q'$$
 iff $\mathbf{x}(\tau_s, q, l) = q';$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- the output set is $O_1 = \mathbb{R}^n$;
- the output function H_1 is the identity map over \mathbb{R}^n ;
- the set of initial states is $I_1 = \mathbb{R}^n$.

Construction of the Symbolic Model

• We start by approximating the set of states $Q_1 = \mathbb{R}^n$ by:

$$[\mathbb{R}^n]_{\eta} = \left\{ q \in \mathbb{R}^n \mid q_i = k_i \frac{2\eta}{\sqrt{n}}, \ k_i \in \mathbb{Z}, \ i = 1, ..., n \right\},\$$

where $\eta \in \mathbb{R}^+$ is a state space discretization parameter.

• Approximation of the transition relation:

Construction of the Symbolic Model

Let
$$T_{\tau_s,\eta}(\Sigma) = (Q_2, L_2, \xrightarrow{2}, O_2, H_2, I_2)$$
 where:

- the set of states is $Q_2 = [\mathbb{R}^n]_\eta$;
- the set of labels remains the same $L_2 = L_1 = P$;
- the transition relation is given by

$$q \xrightarrow{l} q'$$
 iff $\|\mathbf{x}(\tau_s, q, l) - q'\| \leq \eta;$

- the output set remains the same $O_2 = O_1 = \mathbb{R}^n$;
- the output function H₂ is the natural inclusion map: H₂(q) = q ∈ ℝⁿ;
- the set of initial states is $I_2 = [\mathbb{R}^n]_{\eta}$.

Approximation Theorem

Theorem

Consider time and state space sampling parameters $\tau_s, \eta \in \mathbb{R}^+$ and a desired precision $\varepsilon \in \mathbb{R}^+$. Let us assume that there exists $V : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+_0$ which is a common δ -GAS Lyapunov function for subsystems $\Sigma_1, \ldots, \Sigma_m$. If

$$\eta \leq \min\left\{\gamma^{-1}\left((1 - e^{-\kappa\tau_s})\underline{\alpha}(\varepsilon)\right), \overline{\alpha}^{-1}\left(\underline{\alpha}(\varepsilon)\right)\right\}$$
(1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

then, $T_{\tau_s}(\Sigma)$ and $T_{\tau_s,\eta}(\Sigma)$ are approximately bisimilar with precision ε .

Approximation Theorem

Theorem

Consider time and state space sampling parameters $\tau_s, \eta \in \mathbb{R}^+$ and a desired precision $\varepsilon \in \mathbb{R}^+$. Let us assume that there exists $V : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+_0$ which is a common δ -GAS Lyapunov function for subsystems $\Sigma_1, \ldots, \Sigma_m$. If

$$\eta \leq \min\left\{\gamma^{-1}\left((1 - e^{-\kappa\tau_s})\underline{\alpha}(\varepsilon)\right), \overline{\alpha}^{-1}\left(\underline{\alpha}(\varepsilon)\right)\right\}$$
(1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

then, $T_{\tau_s}(\Sigma)$ and $T_{\tau_s,\eta}(\Sigma)$ are approximately bisimilar with precision ε .

Any precision can be achieved!

Sketch of the Proof

Idea: Show that $R = \{(q_1, q_2) \in Q_1 \times Q_2 | V(q_1, q_2) \le \underline{\alpha}(\varepsilon)\}$ is an ε -approximate bisimulation relation:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sketch of the Proof

Idea: Show that $R = \{(q_1, q_2) \in Q_1 \times Q_2 | V(q_1, q_2) \le \underline{\alpha}(\varepsilon)\}$ is an ε -approximate bisimulation relation:

• For $(q_1,q_2) \in R$, $\|q_1-q_2\| \leq \underline{\alpha}^{-1} \left(V(q_1,q_2)\right) \leq \varepsilon$.

Sketch of the Proof

Idea: Show that $R = \{(q_1, q_2) \in Q_1 \times Q_2 | V(q_1, q_2) \le \underline{\alpha}(\varepsilon)\}$ is an ε -approximate bisimulation relation:

• For $(q_1, q_2) \in R$, $||q_1 - q_2|| \le \underline{\alpha}^{-1} (V(q_1, q_2)) \le \varepsilon$. • Let $q_1 \xrightarrow{l} q'_1$, then $q'_1 = \mathbf{x}(\tau_s, q_1, l)$, let $q_2 \xrightarrow{l} q'_2$ then $||\mathbf{x}(\tau_s, q_2, l) - q'_2|| \le \eta$ and

$$egin{aligned} V(q_1',q_2') &\leq V(q_1',\mathbf{x}(au_s,q_2,l))+\gamma(\eta) \ &\leq V(\mathbf{x}(au_s,q_1,l),\mathbf{x}(au_s,q_2,l))+\gamma(\eta) \ &\leq e^{-\kappa au_s}V(q_1,q_2)+\gamma(\eta) \ &\leq e^{-\kappa au_s}\underline{lpha}(arepsilon)+\gamma(\eta)\leq \underline{lpha}(arepsilon) \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Let $q_1 \in I_1 = \mathbb{R}^n$, there exists $q_2 \in I_2 = [\mathbb{R}^n]_\eta$ such that $\|q_1 - q_2\| \le \eta$. Then,

$$V(q_1,q_2) \leq \overline{lpha}(\|q_1-q_2\|) \leq \overline{lpha}(\eta) \leq \underline{lpha}(arepsilon).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Let $q_1 \in I_1 = \mathbb{R}^n$, there exists $q_2 \in I_2 = [\mathbb{R}^n]_\eta$ such that $\|q_1 - q_2\| \le \eta$. Then,

$$V(q_1,q_2) \leq \overline{lpha}(\|q_1-q_2\|) \leq \overline{lpha}(\eta) \leq \underline{lpha}(arepsilon).$$

• Let
$$q_2 \in I_2 = [\mathbb{R}^n]_\eta$$
, then $q_1 = q_2$ is in $I_1 = \mathbb{R}^n$ and

$$V(q_1,q_2) \leq \overline{\alpha}(\|q_1-q_2\|) \leq 0 \leq \underline{\alpha}(\varepsilon).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Let $q_1 \in I_1 = \mathbb{R}^n$, there exists $q_2 \in I_2 = [\mathbb{R}^n]_\eta$ such that $\|q_1 - q_2\| \leq \eta$. Then,

$$V(q_1,q_2) \leq \overline{lpha}(\|q_1-q_2\|) \leq \overline{lpha}(\eta) \leq \underline{lpha}(arepsilon).$$

• Let
$$q_2 \in I_2 = [\mathbb{R}^n]_\eta$$
, then $q_1 = q_2$ is in $I_1 = \mathbb{R}^n$ and
 $V(q_1, q_2) \leq \overline{\alpha}(\|q_1 - q_2\|) \leq 0 \leq \underline{\alpha}(\varepsilon).$

 $T_{\tau_s}(\Sigma)$ and $T_{\tau_s,\eta}(\Sigma)$ are approximately bisimilar with precision ε .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Case of Multiple Lyapunov Functions

Approximation result holds if we impose a dwell time τ_d :

Theorem

Consider time and state space sampling parameters $\tau_s, \eta \in \mathbb{R}^+$, a desired precision $\varepsilon \in \mathbb{R}^+$ and a dwell time $\tau_d \in \mathbb{R}^+$. Let us assume that for all $p \in P$, there exists a δ -GAS Lyapunov function V_p for subsystem $\Sigma_{\tau_d,p}$. If $\tau_d > \frac{\log \mu}{\kappa}$ and

$$\eta \leq \min\left\{\gamma^{-1}\left(\frac{\frac{1}{\mu} - e^{-\kappa\tau_d}}{1 - e^{-\kappa\tau_d}}(1 - e^{-\kappa\tau_s})\underline{\alpha}(\varepsilon)\right), \overline{\alpha}^{-1}\left(\underline{\alpha}(\varepsilon)\right)\right\}$$

(日) (同) (三) (三) (三) (○) (○)

then, $T_{\tau_s}(\Sigma_{\tau_d})$ and $T_{\tau_s,\eta}(\Sigma_{\tau_d})$ are approximately bisimilar with precision ε .

Case of Multiple Lyapunov Functions

Approximation result holds if we impose a dwell time τ_d :

Theorem

Consider time and state space sampling parameters $\tau_s, \eta \in \mathbb{R}^+$, a desired precision $\varepsilon \in \mathbb{R}^+$ and a dwell time $\tau_d \in \mathbb{R}^+$. Let us assume that for all $p \in P$, there exists a δ -GAS Lyapunov function V_p for subsystem $\Sigma_{\tau_d,p}$. If $\tau_d > \frac{\log \mu}{\kappa}$ and

$$\eta \leq \min\left\{\gamma^{-1}\left(\frac{\frac{1}{\mu} - e^{-\kappa\tau_d}}{1 - e^{-\kappa\tau_d}}(1 - e^{-\kappa\tau_s})\underline{\alpha}(\varepsilon)\right), \overline{\alpha}^{-1}\left(\underline{\alpha}(\varepsilon)\right)\right\}$$

then, $T_{\tau_s}(\Sigma_{\tau_d})$ and $T_{\tau_s,\eta}(\Sigma_{\tau_d})$ are approximately bisimilar with precision ε .

Bound on the dwell time is the same that in the δ -GAS theorem!

Outline of the Talk

- 1. Switched systems and incremental stability
- 2. Symbolic abstractions of switched systems:
 - Approximate bisimulation
 - Common Lyapunov function
 - Multiple Lyapunov functions
- 3. Symbolic models for the boost DC-DC converter

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

DC-DC Converter

Power converter with switching control:

- State variable $x(t) = [i_l(t), v_c(t)]^T$.
- Control objective: regulate the output voltage *Formulated as an invariance property.*

DC-DC Converter

Dynamics of the system:

$$\dot{x}(t) = A_p x(t) + b, \quad p = 1, 2.$$

where

$$A_{1} = \begin{bmatrix} -\frac{r_{I}}{x_{I}} & 0\\ 0 & -\frac{1}{x_{c}}\frac{1}{r_{0}+r_{c}} \end{bmatrix}, \ A_{2} = \begin{bmatrix} -\frac{1}{x_{I}}(r_{I}+\frac{r_{0}r_{c}}{r_{0}+r_{c}}) & -\frac{1}{x_{I}}(\frac{r_{0}}{r_{0}+r_{c}})\\ \frac{1}{x_{c}}\frac{r_{0}}{r_{0}+r_{c}} & -\frac{1}{x_{c}}\frac{1}{r_{0}+r_{c}} \end{bmatrix}, \ b = \begin{bmatrix} \frac{v_{s}}{x_{I}}\\ 0 \end{bmatrix}.$$

Existence of a common $\delta\text{-}\mathsf{GAS}$ Lyapunov function of the form

$$V(x,y) = \sqrt{(x-y)^T M(x-y)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Symbolic Model of the DC-DC Converter

First (useless) abstraction: $\tau_s = 0.5$, $\eta = \frac{1}{40\sqrt{2}}$, $\varepsilon = 2.6$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Control of the Symbolic Model

Supervisor for the symbolic model and the invariance property.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Control of the Symbolic Model (II)

Abstraction: $\tau_s = 0.5$, $\eta = \frac{1}{4000\sqrt{2}}$, $\varepsilon = 0.026$ (642001 states!).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Control of the DC-DC Converter

Corresponding trajectory of the switched system:

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Conclusions

- Contributions:
 - Extension of GAS results for switched systems to $\delta\text{-GAS}.$
 - Symbolic abstractions for a class of switched systems:
 - 1. Abstraction is effectively computable
 - 2. Precision of the abstraction can be chosen a priori
 - Application to the boost DC-DC converter
- Future work:
 - Multiscale symbolic models
 - On the fly computation of symbolic models (i.e. during control synthesis)
- References: A. Girard, G. Pola and P. Tabuada, *Approximately bisimilar symbolic models for incrementally stable switched systems*, to appear in HSCC'08.