
Reachability analysis for polynomial dynamical

systems using the Bernstein expansion∗

Thao Dang and Romain Testylier †

Laboratory VERIMAG, CNRS, Grenoble, France

Thao.Dang@imag.fr;Romain.Testylier@imag.fr

Abstract

This paper is concerned with the reachability computation problem
for polynomial dynamical systems. Such computations constitute a cru-
cial component in algorithmic verification tools for hybrid systems and
embedded software with polynomial dynamics, which have found applica-
tions in many engineering domains. We describe two methods for over-
approximating reachable sets of such systems; these methods are based
a combination of the Bernstein expansion of polynomial functions and a
representation of reachable sets by template polyhedra. Using a prototype
implementation, the performance of the methods was demonstrated on a
number of examples of control systems and biological systems.

1 Introduction

Hybrid systems have become a common mathematical model for engineering
systems exhibiting both continuous and discrete dynamics. Recently they have
proved appropriate for modeling phenomena in molecular biology. In this work
we focus on safety verification of such systems, which can be roughly stated
as proving that a hybrid system never enters a dangerous (unsafe) state. A
major component of any verification algorithm for hybrid systems is an efficient
method to compute the reachable sets of their continuous dynamics described by
differential or difference equations. Numerous methods and tools for affine sys-
tems and other simpler systems have been developed1. Nevertheless, nonlinear
systems still remain a challenge.

In this work, we address the following reachability computation problem:
given a set of initial states in Rn, compute the reachable set of a discrete-time
dynamical system described by the following difference equation:

x[k + 1] = π(x[k]) (1)

∗Submitted: October 7, 2011;
†This work is supported by the ANR project VEDECY.
1The reader is referred to the recent proceedings of the conference Hybrid Systems: Com-

putation and Control HSCC.

1

2

where π : Rn → Rn is a multivariate polynomial. Such dynamical systems
could result from a numerical approximation of a continuous or hybrid system.
In addition, similar equations can arise in embedded control systems, such as
when a physical system is controlled by a computer program which is the imple-
mentation of some continuous (or possibly hybrid) controller using appropriate
discretization.

It is important to emphasize that the results presented in this paper can
also be extended to continuous-time dynamical systems described by differential
equations, since these equations can be approximated using an appropriate time
discretization scheme. We illustrate this with an example presented in Section 8.

Due to various non-determinism (such as, initial conditions that are not ex-
actly known, or some under-specified part of the dynamics, or uncertain influ-
ence of the environment), to prove that the system satisfies a property, one often
needs to consider a set of solutions instead of single solutions. Roughly speak-
ing, the goal of reachability analysis is to study sets of all possible trajectories.
Many existing reachability computation methods can be seen as an extension
of numerical integration. That is, one has to solve the above equation (1) with
sets, that is x[k] and x[k + 1] in the equation are subsets of Rn (while they are
points if we only need a single solution, as in numerical integration).

This problem was previously considered in the work [24], which was inspired
by modeling techniques from Computer Aided Geometric Design (CADG) and
tried to exploit special geometric properties of polynomials. The drawback of
the Bézier simplex based method proposed in this work is that it requires expen-
sive mesh computation, which restricts its application to systems of dimensions
not higher than 3, 4. In this paper, we pursue the direction which was initiated
in [24] and make use of a special class of polyhedra. These polyhedra can be
thought of as local meshes of fixed form. This enables a significant reduction
of complexity. The manipulation of such polyhedra is handled by optimiza-
tion techniques. In addition, by exploiting a technique from CADG, namely
the Bernstein expansion, we only need to solve linear programming (LP) prob-
lems instead of polynomial optimization problems. In this paper, we describe
our results achieved along this direction, in particular, a significant accuracy
improvement compared to [6], thanks to a more precise representation of the
Bernstein expansion over polyhedra.

The paper is organized as follows. In Section 2 we introduce basic defi-
nitions of reachable sets, template polyhedra and the Bernstein expansion of
polynomials. We then formally state our reachability problem and describe an
optimization-based solution. In order to transform the polynomial optimization
problem to a linear programming (LP) problem, two methods for computing
bound functions for polynomials over polyhedral sets are presented. Section 6
describes an algorithm summarizing the main steps of our reachability analy-
sis method. Some experimental results, in particular the analysis of a control
system and two biological systems, are reported in Section 8.

3

2 Preliminaries

Let R denote the set of reals. Throughout the paper, vectors are often written
using bold letters. Exceptionally, scalar elements of multi-indices, introduced
later, are written using bold letters. Given a vector x, xi denotes its ith com-
ponent. Capital letters, such as A, B, X, Y , denote matrices or sets. If A is a
matrix, Ai denotes the ith row of A.

We use B to denote the unit box anchored at the origin, that is B = [0, 1]n.
We use π to denote a vector of n functions such that for all i ∈ {1, . . . , n}, πi
is an n-variate polynomial of the form πi : Rn → R. In the remainder of the
paper, we sometimes refer to π simply as “a polynomial”.

To discuss the Bernstein expansion of polynomials, we use multi-indices of
the form i = (i1, i2, . . . , in) where each ij is a non-negative integer. Given two
multi-indices i and d, we write i ≤ d if for all j ∈ {1, . . . , n}, ij ≤ dj . Also, we

write i
d for (i1/d1, i2/d2, . . . , in/dn) and

(
i

d

)
for

(
i1
d1

)(
i2
d2

)
. . .

(
in
dn

)
.

2.1 Reachable sets

We consider a discrete-time dynamical system:

x[k + 1] = π(x[k]) (2)

where the initial state x[0] is inside some set X0 ⊂ Rn, and X0 is called the
initial set.

Given a set X ⊂ Rn, the image of X by π, denoted by π(X), is defined as
follows:

π(X) = {(π1(x), . . . , πn(x)) | x ∈ X}.

The reachable set Xk of the system (2) at time step k ≥ 0 is defined by the
following recurrence

Xk+1 = π(Xk).

2.2 Template polyhedra

When starting from X0, a dynamical system such as (2) generates a set of
solutions. To charaterize this set of solutions we use special convex polyhedra
with fixed geometric form, called template polyhedra [22, 3]. In the following we
give a brief introduction to template polyhedra.

A convex polyhedron is a conjunction of a finite number of linear inequalities
described as Ax ≤ b, where A is a m × n matrix, b is a column vector of size
m. A bounded convex polyhedron can also represented as the convex hull of its
vertices. Template polyhedra are commonly used in static analysis of programs
for computing invariants. Ranges [5] and the octagon domains [16] are special
template polyhedra. General template polyhedra are used as an abstract domain
to represent sets of states in [22, 3]. A template is a set of linear functions over
x = (x1, . . . , xn). We denote a template by an m× n matrix H, such that each

4

row Hi corresponds to the linear function Hix. Given such a template H and
a real-valued vector c ∈ Rm, a template polyhedron is defined by considering
the conjunction of the linear inequalities of the form∧

i=1,...,m

Hix ≤ ci.

We denote this polyhedron by 〈H, c〉.
By varying the values of the elements of c, one can create a family of template

polyhedra corresponding to the template H. We call c a polyhedral coefficient
vector. Given c, c′ ∈ Rm, if ∀i ∈ {1, . . . ,m} : ci ≤ c′i, we write c � c′. Given
an m×n template H and two polyhedral coefficient vectors c, c′ ∈ Rm, if c � c′

then the inclusion relation 〈H, c〉 ⊆ 〈H, c′〉 holds, and we say that 〈H, c〉 is not
larger than 〈H, c′〉.

The advantage of template polyhedra over general convex polyhedra is that
the Boolean operations (union, intersection) and common geometric operations
can be performed more efficiently [22]. Indeed, manipulating general convex
polyhedra is expensive especially in high dimensions. This poses a major prob-
lem in continuous and hybrid systems verification approaches using polyhedral
representations.

3 Reachable set approximation using template
polyhedra

To compute the reachable set by a template polyhedron, at each time step,
we need to compute the image of a polyhedron P by the polynomial π. The
template matrix H, which is of size m×n, is assumed to be given; the polyhedral
coefficient vector c ∈ Rm is however unknown. The problem we now focus on
is thus to find c such that

π(P) ⊆ 〈H, c〉. (3)

For safety verification purposes, exact computation of reachable sets is often
not possible (due to undecidablity issues for example) and one thus needs to
resort to over-approximations, and when an over-approximation does not allow
proving a safety property, the approximation needs to be refined.

It is not hard to see that the following condition is sufficient for (3) to hold:

∀x ∈ P : Hπ(x) ≤ c.

Therefore, to determine c, one can formulate the following optimization
problems:

∀i ∈ {1, . . . ,m}, ci = max(Σnk=1H
i
kπk(x)) subj. to x ∈ P. (4)

where Hi is the ith row of the matrix H and Hi
k is its kth element. Note that

the above functions to optimize are polynomials. This problem is computation-
ally difficult, despite recent progress in the development of methods and tools

5

for polynomial programming (see for example [8] and references therein). An
alternative solution is to find their affine bound functions, in order to replace
the polynomial optimization problem by a linear programming one, which can
be solved more efficiently (in polynomial time) using well-developed techniques,
such as Simplex and interior point techniques [21]. Indeed, the Bernstein expan-
sion can be used to compute affine bound functions of polynomials, as shown in
the next section.

3.1 The Bernstein expansion

An n-variate polynomial π : Rn → Rn can be represented using the power base
as follows:

π(x) =
∑
i∈Id

aix
i

where ai is a vector in Rn; i and d are two multi-indices of size n such that
i ≤ d; Id is the set of all multi-indices i ≤ d, that is Id = {i | i ≤ d}. The
multi-index d is called the degree of π.

The polynomial π can also be represented using the Bernstein expansion.
In order to explain this, we first introduce Bernstein polynomials. For x =
(x1, . . . , xn) ∈ Rn, the ith Bernstein polynomial of degree d is defined as follows:

Bd,i(x) = βd1,i1(x1) . . . βdn,in(xn)

where for a real number y, βdj ,ij (y) =
(
dj

ij

)
yij (1− ydj−ij).

Then, for all x ∈ B = [0, 1]n, the polynomial π can be written using the
Bernstein expansion as follows:

π(x) =
∑
i∈Id

biBd,i(x)

where for each i ∈ Id the Bernstein coefficient bi is defined as:

bi =
∑
j≤i

(
i
j

)(
d
j

)aj. (5)

The following lemma states some important properties of the Bernstein co-
efficients.

Lemma 1 1. Convex-hull property:

Conv{(x, π(x)) : x ∈ B} ⊆ Conv{(i/d,bi) | i ∈ Id}.

The points bi are called the control points of π.

2. The above enclosure yields: ∀x ∈ B : π(x)) ∈ 2({bi | i ∈ Id}) where 2

denotes the bounding box of a point set.

6

3. Sharpness of some special coefficients:

∀i ∈ I0d : bi = π(i/d)

where I0d is the set of all the vertices of [0,d1]× [0,d2] . . . [0,dn].

With respect to our reachability problem that requires computing the image
of a set by a polynomial, the Bernstein expansion is of particular interest.

For example, using the second property, the coefficients of the Bernstein
expansion can be used to over-approximate the image of the unit box B by the
polynomial π. Furthermore, as we will show in Section 4, these coefficients can
be used to efficiently compute an affine approximation of the polynomial.

It is important to note that the above expansion is valid only if x is inside
the unit box. Even if our initial set X0 is inside the unit box B, after the first
step, the polyhedral approximation of the reachable set can be outside the unit
box. Therefore, we need to consider the problem of computing the image of a
general convex polyhedron P . To this end, we first consider the case where the
set P is the unit box and then show how the solution can be extended to general
convex polyhedra.

4 Computing bound functions over the unit box
domain

We first formally define bound functions.

Definition 1 (Upper and lower bound functions) Given f : Rn → R, the
function υ : Rn → R is called an upper bound function of f w.r.t. a set X ⊂ Rn
if ∀x ∈ X : f(x) ≤ υ(x). A lower bound function can be defined similarly.

The following property of upper and lower bound functions is easy to prove.

Lemma 2 Given two set X,Y ⊆ Rn such that Y ⊆ X, if υ is an upper (lower)
bound function of f w.r.t. X, then υ is also an upper (lower) bound function of
f w.r.t. Y .

To compute bound functions, we use the method based on the Bernstein
expansion, published in [12]. Computing convex lower bound functions for pol-
ynomials is a problem of great interest, especially in global optimization. The
reader is referred to [12, 13, 9] for more detailed descriptions of these methods.

It is important to note that the methods described in this section only work
for the case where the variable domain is the unit box B. The reason is that it
employs the expression of the control points of the Bernstein expansion in (5)
which is only valid for this unit box. Their extensions to arbitrary polyhedral
domains are discussed in the next section. Therefore, in what follows, we assume
that our initial polyhedron P is included in the unit box.

7

A simple affine lower bound function is a constant function, which can be
directly deduced from the second property of the Bernstein expansion:

xi ≤ min{bi | i ∈ Id} = bi0 = b0.

Better bound functions can be derived using the following two methods.

4.1 Using a convex hull lower facet

The first step of this method [13] involves computing the affine lower bound
function whose corresponding hyperplane passes through this control point b0.
Then, additionally, (n− 1) hyperplanes passing through n other control points
are determined. This allows constructing a sequence of n affine lower bound
functions l0, l1, . . . ln. The method ends up with ln, a function whose corre-
sponding hyperplane passes through a lower facet of the convex hull spanned by
these control points. A summary of the algorithm can be found in Appendix.
Note that we can easily compute an upper bound function of π by comput-
ing a lower bound functions for −π using this method and then multiply each
resulting function by −1.

4.2 Using linear least squares approximation

The essence of the second method [9] for computing bound functions is to find
a hyperplane that is close to all the control points, using linear least squares
approximation. This can lead to tighter bound functions since the general shape
of the function graph is better captured. More concretely, we denote by {ij | 1 ≤
j ≤ nb} be the set of all the multi-indices, nb is thus their number. The set of
all control points are denoted similarly. Let A be a matrix of size nb × (n+ 1)
(n is the number of state variables of the dynamical systems in question) such
that its elements are defined as follows. For all 1 ≤ j ≤ nb and 1 ≤ k ≤ n,

Ajk =
ijk
dk

and Ajn+1 = 1. Let ζ be the solution of the following linear least squares
approximation problem:

ATAζ = ATb.

Then, the affine function

l̃(x) =

n∑
k=1

ζkxk + ζn+1

corresponds to the ”median” axis of the convex hull of all the control points. It
thus suffices to shift it downward by the amount:

δ = max{l̃(ij

d
)− bj | 0 ≤ j ≤ nb}.

8

This results in a lower bound function

l(x) = l̃(x)− δ, for all x ∈ B.

4.3 Image computation

We now show how the above affine bound functions can be used to solve the
optimisation problems (4) in order to determine the coefficients of a template
polyhedron over-approximating the reachable set. The functions to optimize
in (4) can be seen as the compositions of polynomials πk. Since every coefficient
Hi
k is constant, each

si(x) = Σnk=1H
i
kπk(x)

is simply a polynomial and we can compute its bound functions. The tem-
plate polyhedral coefficients can hence be computed by solving the following
optimization problems:

∀i ∈ {1, . . . ,m}, ci = max(si(x)) subj. to x ∈ P ; (6)

However, such compositions often result in polynomials with more monomial
terms and thus more Bernstein coefficients to consider. In the following we
propose a way to bound each element of the sum separately, which costs less
computation time but induces greater overall error. For each k ∈ {1, . . . ,m},
let uk(x) and lk(x) respectively be an upper bound function and a lower bound
function of πk(x) w.r.t. the initial polyhedron P .

We consider the following optimization problem:

∀i ∈ {1, . . . ,m}, ci = Σnk=1H
i
kωk. (7)

where the term Hi
kωk is defined as follows:

• If the element Hi
k > 0, Hi

kωk = Hi
k maxuk(x) subj. to x ∈ P ;

• If the element Hi
k ≤ 0, Hi

kωk = Hi
k min lk(x) subj. to x ∈ P .

The following lemma is a direct result of (7).

Lemma 3 If a polyhedral coefficient vector c ∈ Rm satisfies (7). Then π(P) ⊆
〈H, c〉.

Proof. It is indeed not hard to see that the solution ci of the optimiza-
tion problems (7) is greater than or equal to the solution of (4). Hence, if c
satisfies (7), then

∀i ∈ {1, . . . ,m} ∀x ∈ P : Σnk=1H
i
kπk(x) ≤ ci.

This implies that ∀x ∈ P : Hπ(x) ≤ c, that is the image π(P) is included in
the template polyhedron 〈H, c〉.

We remark that if all the bound functions in (7) are affine and P is a convex
polyhedron, c can be computed by solving 2n linear programming problems.

9

5 Computing affine bound functions over poly-
hedral domains

As mentioned earlier, the methods to compute affine bound functions for pol-
ynomials in Section 4 can be applied only when the set P is inside the unit
box B anchored at the origin. To extend it to polyhedral domains, we trans-
form the polyhedra to the unit box by two methods: (1) via an (oriented) box
approximation, and (2) by rewriting the polynomials using a change of variables.

5.1 Using a box approximation

If we over-approximate P with a box B, it is then possible to derive a formula
expressing the Bernstein coefficients of π over B. However, this formula is
complex and its representation and evaluation can become expensive.

We alternatively consider the composition of the polynomial π with an affine
transformation τ that maps the unit box to B. The functions resulting from
this composition are still polynomials, for which we can compute their bound
functions over the unit box, using the formula (5) of the Bernstein expansion.
This is explained more formally in the following.

Let B be the bounding box of the polyhedron P , that is, the smallest box
that includes P . The affine function τ that maps the unit box B to B can be
easily defined as: τ(x) = diag(λ)x + g where g ∈ Rn such that gi = li, and
diag(λ) is a n×n diagonal matrix with the elements on the diagonal defined as
follows: for each i ∈ {1, . . . , n}, λi = hi − li.

The composition γ = (π o τ) is defined as γ(x) = π(τ(x)). The functions τ
and γ can be computed symbolically, which will be discussed later.

Lemma 4 Let γ = π o τ . Then, π(P) ⊆ γ(B).

Proof. By the definition of the composition γ, γ(B) = {π(τ(x)) | x ∈ B}.
Additionally, τ(B) = B. Therefore, γ(B) = π(B). Since the polyhedron P is
included in its bounding box B, we thus obtain π(P) ⊆ π(B) = γ(B).
We remark that the above proof is still valid for any affine function τ . This
means that instead of an axis-aligned bounding box, we can over-approximate
P more precisely with an oriented (i.e. non-axis-aligned) bounding box. The
directions of an oriented bounding box can be computed using Principal Com-
ponent Analysis (PCA) [14]. A detailed description of the method can be found
in [6].

5.2 Using a change of variables

The polyhedron P can also be map to the unit box B by a change of variables as
follows. We assume that the polyhedron P is bounded and let V = {v1, . . . ,vl}
be the set of its vertices. We first express the coordinates of a point x inside

10

the polyhedron P as a linear combination of the vertices of P , that is

x =

l∑
j=1

αjvj = ν(α1, . . . , αl)

such that

∀j ∈ {1, . . . , l} αj ≥ 0 (8)

l∑
j=1

αj = 1. (9)

We then substitute x in π with ν(α1, . . . , αl) to yield a new polynomial in
α1, . . . , αl.

We denote µ = π o ν, that is π(x) = µ(α1, . . . , αl). Furthermore, in order
to retain the relation between αj expressed in the constraint (9) we can use

αl = 1−
l−1∑
j=1

αj

to substitute αl in µ by the above sum, in order to obtain a polynomial with
(l − 1) variables, denoted by ξ(β) where α̃ = (α1, . . . , αl−1).

Note that the constraints (8-9) indicate that γ is inside the unit box Bα̃ in
Rl−1. This implies that a bound function computed for the polynomial ξ(α̃)
on this unit box is also a bound function for the original polynomial π on the
polyhedron P without additional error, unlike in the above-described case of
box approximations. It then suffices to compute the bound functions for π over
the polyhedron P using the Bernstein expansion of ξ over the Bα̃.

6 Reachable set computation algorithm

Algorithm 1 summarizes the main steps of our approach for over-approximating
the reachable set of the system (2) where the initial set X0 is a bounded poly-
hedron in Rn. The template is an input of the algorithm. In the current
implementation of the algorithm, either templates fixed a-priori by the user or
templates forming regular sets are used.

To unify two methods of mapping a polyhedron to the unit box in the same
abstract algorithm, we use β to denote both of the transformations using either
a box approximation or a change of variables.

The procedure UnitBoxMap is used to determine the function β. This
function is then composed with the polynomial π, the result of which is the
polynomial γ. The affine lower and upper bound functions l and u of γ are
then computed, using the Bernstein expansion of γ over the corresponding unit
box. The function PolyApp determines the polyhedral coefficient vector c by
solving the linear programs where the optimization domain is the unit box.

11

Algorithm 1 Reachable set computation

/* Inputs: convex polyhedron X0, polynomial π, templates H */

k = 0
repeat
β = UnitBoxMap(Xk) /* Compute the function mapping the unit box B
to the polyhedron Xk */
γ = π o β
(u, l) = BoundFunctions(γ) /* Compute the affine bound functions */
c̄ = PolyApp(u, l,H) /* Compute the polyhedral coefficient vector */
Xk+1 = 〈H, c̄〉 /* Construct the template polyhedron and return it */
k + +

until k = kmax

The polyhedral coefficient vector c̄ is then used to define a template polyhedron
Xk+1.

Based on the analysis so far, we can state the correctness of Algorithm 1.

Theorem 1 Let 〈H, c̄〉 be the template polyhedron returned by Algorithm 1.
Then π(P) ⊆ 〈H, c̄〉.

We remark that, when using a box approximation, u and l are upper and
lower bound functions of γ with respect to the unit box B. It is not hard to
see that τ−1(Xk) ⊆ B where τ−1 is the inverse of τ . Using the property of
bound functions, u and l are also bound functions of γ with respect to τ−1(Xk).
Hence, if we solve the optimization problems over the domain τ−1(Xk) (which
is often smaller than B), using Lemma 3, the resulting polyhedron is still an
over-approximation of π(Xk). This remark can be used to obtain more accurate
results.

7 Approximation error and computation cost

In this section we briefly discuss precision and complexity of the proposed meth-
ods. The approximation errors are caused by the bound functions and the use
of template polyhedra. When a box approximation is used, this causes an addi-
tional error. The following lemma states an important property of the Bernstein
expansion.

Lemma 5 Let Cπ,B be the piecewise linear function defined by the Bernstein
control points of π with respect to the box B. Then, for all x ∈ B,

|π(x)− Cπ,B(x)| ≤ Kρ2(B)

where | · | is the infinity norm on Rn, ρ(B) is the box size (i.e. its largest side
length), Kk = maxx∈B;i,j∈{1,...,n}|∂i∂jπk(x)|, K = maxk∈{1,...,n}Kk.

12

From this result it can be proven that in one dimensional case, the error be-
tween the bound functions computed using the Bernstein expansion and the
original polynomial is quadratic in the length of box domains. This quadratic
convergence seems to hold for higher dimensional cases in practice, as shown
in [12]. We conjecture that there exists a subdivision of the box B which allows
a quadratic convergence of the error. This subdivision method is similar to the
one used for finding roots of a polynomial with quadratic convergence [17].

Hence, when more accurate reachable set approximations are required, we
can divide the unit box into non-overlapping sub-boxes. Then, for each sub-box,
we compute a bounding function, with which we then compute a coefficient for
each template. Finally, for each template, we take the largest coefficient to
define the template polyhedron. Since the sub-boxes are smaller, the bound
functions are more precise, we can thus improve the coefficients as much as
desired. This division idea can also be used similarly to reduce the error caused
by oriented box approximation. The error inherent to the approximation by
template polyhedra can be controlled by fine-tuning the number of template
constraints.

Concerning complexity, when a box approximation is used, the computa-
tion of bound functions and PCA only require manipulating matrices and linear
equations. Linear programming can be solved in polynomial time. When iter-
ating these methods to compute the reachable set of a polynomial dynamical
system, if the number of template constraints is constant, the complexity de-
pends linearly on the number of iterations.

Regarding accuracy, the method using a change of variables is performant,
since the polyhedral constraints are exactly captured. This is also confirmed
by experimental results. However, the LP problems to solve are in higher di-
mension, which is (l− 1) where l is the number of vertices of the polyhedra. In
addition, this method requires computing the vertices of template polyhedra,
which is expensive and our experimentation shows that this costs a large part
of computation time. This can be improved by considering the coefficients of
template polyhedra as parameters, and since the template is fixed, we can de-
duce a symbolic expression of the vertices of the parametric polyhedra, which
can be used to derive the (parametric) change of variable to map the polyhedra
to the unit box. This direction is indeed part of our current work.

8 Experimental results

We have implemented our methods in a prototype tool. The implementaion
uses the library lpsolve2 for linear programming. The tool can be combined
with a reachability analysis algorithms to verify hybrid systems with polynomial
continuous dynamics. In the following, we demonstrate the methods with three
examples: a control system (modeled as a hybrid system) and a biological system
(modeled as a continuous system). The time efficiency of the tool was also
evaluated by considering a number of randomly generated polynomials.

2http://lpsolve.sourceforge.net/

13

8.1 A control system

The first example we present is the Duffing oscillator taken from [15, 8]. This is
a nonlinear oscillator of second order, the continuous-time dynamics is described
by

ÿ(t) + 2ζẏ(t) + y(t) + y(t)3 = u(t)

where y ∈ R is the state variable and u ∈ R is the control input. The damping
coefficient ζ = 0.3. In [8], using a forward difference approximation with a sam-
pling period h = 0.05 time units, this system is approximated by the following
discrete-time model:

x1[k + 1] = x1[k] + hx2[k]

x2[k + 1] = −hx1[k] + (1− 2ζh)x2[k] + hu[k]− hx31[k]

In [8], an optimal predictive control law u(k) was computed by solving a para-
metric polynomial optimization problem.

We model this control law by the following switching law with 3 modes:

u[k] = 0.5 ∗ k if 0 ≤ k ≤ 10

u[k] = 5− 0.5 ∗ (k − 10)/3 if 10 < k ≤ 40

u[k] = 0 if k > 40

The controlled system is thus modeled as a hybrid automaton [1] with 3 discrete
states. The initial set is a rectangle such that 2.49 ≤ x1 ≤ 2.51 and 1.49 ≤ x2 ≤
1.51.

The results obtained using the two methods are shown in Figure 1 which
are coherent with the phase portrait in [8]. We can see that the method using a
change of variables achieved better precision since the reachable set it computed
is include in the set computed by the other method. However, the method using
a change of variables is less time-efficient. For 70 steps, the computation time
of the method using a box approximation is 1.25s while that of the method
using a change of variables is 1.18s. We also used this example to compare the
two methods of computing bound functions and observed that they produced
equally accurate results, as shown in Figure ??.

8.2 A biological system

The second example is the well-known Michaelis-Menten enzyme kinetics, taken
from [7]. The kinetic reaction of this signal transduction pathway is represented
in Figure 2, where E is the concentration of an enzyme that combines with a
substrate S to form an enzyme substrate complex ES. In the next step, the
complex can be dissociated into E and S or it can further proceed to form
a product P . This pathway kinetics can be described by the following ODEs

14

Figure 1: The Duffing oscillator: the reachable set computed using a change of
variable is more accurate than the one computed using a box approximation.

15

Figure 2: Michaelis-Menten enzyme kinetics

where x1, x2, x3 and x4 are the concentrations of S, E, ES and P :

ẋ1 = −θ1x1x2 + θ2x3

ẋ2 = −θ1x1x2 + (θ2 + θ3)x3

ẋ3 = θ1x1x2 + (θ2 + θ3)x3

ẋ4 = θ3x3

Using a second order Runge Kutta discretization with time step 0.3, we obtain
the following 4-variate polynomial system:

π1(x) = x1 − 0.053838x1x2 + 0.001458x21x2 + 0.001458x1x
2
2 +

−3.9366e− 05.x21x
2
2 + 0.005775x3 − 0.002025x1x3 − 0.000162x2x3 +

5.9049e− 05x1x2x3 − 6.075e− 06x23

π2(x) = x2 − 0.051975x1x2 + 0.001458x21x2 + 0.001458x1x
2
2

−3.9366e− 05x21x
2
2 + 0.0721875x3 − 0.002025x1x3 − 0.000162x2x3 +

5.9049e− 05x1x2x3 − 6.075e− 06x23

π3(x) = 0.051975x1x2 − 0.001458.x12x2 − 0.001458x1x
2
2 +

3.9366e− 05x12x22 + 0.927812x3 + 0.002025x1x3 + 0.000162x2x3

−5.9049e− 05x1x2x3 + 6.075e− 06x23

π4(x) = 0.001863x1x2 + 0.0664125x3 + x4.

Again for this example, the method using a change of variable produced more
precise results but took more time. The computation time of this method for
20 steps is 153.5s while the method using a box approximation took only 11.7s.
The reason for this discrepancy is that the polynomials have many monomial
terms, which causes a large number of Bernstein coefficients to consider.

The reachable set computed by the method using a change of variables, for
all the initial states inside a ball centered at (12, 12, 0, 0) with radius 10−4, is
shown in Figure 4. In order to compare with the result in [7], the figures depict
the temporal evolution of each variable for few first steps. The horizontal axis
is time. In the vertical axis, the minimal and maximal values of the variables
are shown. This result is coherent with the simulation result in [7].

8.3 FitzHugh-Nagumo neuron model

The FitzHugh-Nagumo neuron model describing the electrical activity of a neu-
ron [20] can be expressed by a polynomial dynamical system:

ẋ = x− x3 − y + 7/8 (10)

ẏ = 0.08(x+ 0.7− 0.8y) (11)

16

Figure 3: Michaelis-Menten enzyme kinetics. The evolution of the reachable set
after 7 steps (projected on the first two variables), computed by the method
using a change of variables.

17

Figure 4: Michaelis-Menten enzyme kinetics. The evolution of the reachable
set after 7 steps (projected on the last two variables), computed by the method
using a change of variables.

18

We now study an Euler time discretization scheme of the above differential
equation with the time step 0.2. The initial set is an octagon included in the
bounding box [0.9, 1.1]× [2.4, 2.6]. Figure 5 shows two reachable sets computed
using the same template. The one computed by the method using a change
of variables is much more precise, which allowed observing a limit cycle. The
computation time of the method using a box approximation after 500 steps is
5.79s and that of the method using a change of variables is 12.73s

Figure 5: FitzHugh-Nagumo neuron model. The evolution of the reachable
set computed using the two methods: using a box approximation and using a
change of variables.

Note that the use of template polyhedra provide only overapproximation
of the exact reachable set. To avoid some wrapping effect, we can change the
number of template direction. the Figure 6 shows two analysis using box approx-
imation and template with 8 and 20 directions. We observe a considerable gain
of precision with the 20 directions template, the time computation is linearly
increased (15.43s).

8.4 Randomly generated systems

In order to evaluate the performance of our methods, we tested them on a
number of randomly generated polynomials in various dimensions and maximal
degrees (the maximal degree is the largest degree for all variables). For a fixed
dimension and degree, we generated different examples to estimate an average
computation time. In the current implementation, polynomial composition is

19

Figure 6: FitzHugh-Nagumo neuron model. The evolution of the reachable set
computed using a box approximation and template with 8 and 20 directions

dim degree nb template time (s) time (s)
monomials size method BA method CV

2 2 4 4 0.02 0.02
3 2 6 6 0.02 0.02
4 2 8 8 0.06 0.09
5 2 10 10 0.35 0.71
6 2 12 12 4.34 5.64
7 2 14 14 63.25 72.61

Figure 7: Computation time for randomly generated polynomial systems in
various dimensions and degrees

20

done symbolically, and we do not yet exploit the possibility of sparsity of pol-
ynomials (in terms of the number of monomials). The computation times in
seconds for the method using a box approximation (abbreviated to BA) and the
method using a change of variables (abbreviated to CV) are shown in the table
in Figure 7.

As expected, the computation time grows linearly w.r.t. the number of steps.
This can be explained by the use of template polyhedra where the number of
constraints can be chosen according to required precisions and thus the complex-
ity of the polyhedral operations can be better controlled, compared to general
convex polyhedra. Indeed, when using general polyhedra, the operations, such
as the convex hull, may increase their geometric complexity (roughly described
by the number of vertices and constraints).

On the other hand, we also compared the two methods for computing bound
functions: using a lower convex hull facet (abbreviated to CHF) and using the
least squares approximation (abbreviated to LSA). The average computation
time for one step of reachability computation is shown in Table 8. In this
experiment we used box templates and we generate random quadratic polyno-
mial systems with 5 terms. Moreover, the computation time for polynomial
composition is not included, since the computation of bound functions is not a
dominant part of the total computation time. We were not able to test sys-
tems of dimensions higher than 9 because polynomial composition becomes
prohibitively costly. This issue can be handled by computing the Bernstein
coefficients without explicit polynomial composition, which is indeed a topic of
our current research. We have observed that the method using the least squares
approximation would be more performant than the one using a lower convex
hull facet for systems of dimension beyond 9. The latter requires solving n
systems of linear equations in dimensions increasing from 1 to n. The former
requires solving only one linear system in dimension (n + 1). Using Gaussian
elimination to solve a system of n equations for n unknowns has complexity of
O(n3). Thus, the complexity of the method using a lower convex hull facet is
roughly O((n− 1)2n2/4) while the complexity of the other is O((n+ 1)2).

9 Related work

Our reachability analysis approach is similar to a number of existing ones for
continuous and hybrid systems in the use of linear approximation. Its novelty
resides in the efficient way of computing linear approximations. Indeed, a com-
mon method to approximate a non-linear function by a piecewise linear one,
as in the hybridization approach [2] for hybrid systems, requires non-linear op-
timization. Our approach exploits the Bernstein expansion of polynomials to
replace expensive polynomial programming by linear programming. A similar
idea, which involves using the coefficients of the Bézier simplex representation,
was used in [24] to compute the image of a convex polyhedron. If using the
methods proposed in this paper with a sufficient number of templates to assure
the same precision as the convex hull in our previous Bézier method [24], then

21

dim time (s) time (s)
method LSA method CHF

1 0.003 0.002
2 0.005 0.005
3 0.012 0.008
4 0.036 0.039
5 0.138 0.139
6 0.725 0.692
7 3.176 2.621
8 17.461 10.868
9 116.383 43.664

Figure 8: Comparing efficiency of the two methods for computing bound func-
tions on randomly generated polynomial systems

the convergence of both methods are quadratic. However the Bézier method
requires expensive triangulation operations, and geometric complexity of result-
ing sets may grow step after step. Combining template polyhedra and bound
functions allows a good accuracy-cost compromise.

Besides constrained global optimization, other important applications of the
Bernstein expansion include various control problems [11] (in particular, robust
control). The approximation of the range of a multivariate polynomial over a
box and a polyhedron is also used in program analysis and optimization (for
example [10, 4]). In the hybrid systems verification, polynomial optimization is
used to compute barrier certificates [19]. Algebraic properties of polynomials
are used to compute polynomial invariants [25] and to study the computability
of image computation in [18].

10 Conclusion

The reachability computation methods we proposed in this paper combine the
ideas from optimization and the Bernstein expansion. These results can be
readily applicable to hybrid systems with polynomial continuous dynamics.

The performance of the methods was demonstrated using a number of ran-
domly generated examples. These encouraging results also show an important
advantage of the methods: thanks to the use of template polyhedra, the com-
plexity and precision of the method are more controllable than those using
polyhedra as symbolic set representations.

There are a number interesting directions to explore. Indeed, different tools
from geometric modeling could be exploited to improve the efficiency of the
method. For example, polynomial composition can be done for sparse polyno-
mials more efficiently using the blossoming technique [23]. In addition to more
experimentation on other hybrid systems case studies, we intend to explore a
new application domain, which is verification of embedded control software. In

22

fact, multivariate polynomials arise in many situations when analyzing programs
that are automatically generated from practical embedded controllers.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.

[2] E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis
of nonlinear systems. Acta Informatica., 43(7):451–476, 2007.

[3] Liqian Chen, Antoine Miné, Ji Wang, and Patrick Cousot. Interval polyhe-
dra: An abstract domain to infer interval linear relationships. In SAS, vol-
ume 5673 of Lecture Notes in Computer Science, pages 309–325. Springer,
2009.

[4] F. Clauss and I.Yu. Chupaeva. Application of symbolic approach to the
bernstein expansion for program analysis and optimization. Program. Com-
put. Softw., 30(3):164–172, 2004.

[5] P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In Proceedings of the Second International Symposium on Pro-
gramming, Dunod, Paris, pages 106–130, 1976.

[6] Thao Dang and David Salinas. Image computation for polynomial dynam-
ical systems using the Bernstein expansion. In Ahmed Bouajjani and Oded
Maler, editors, Computer Aided Verification, CAV 2009, volume 5643 of
Lecture Notes in Computer Science, pages 219–232. Springer, 2009.

[7] F. He, L. F. Yeung, and M. Brown. Discrete-time model representation for
biochemical pathway systems. IAENG International Journal of Computer
Science, 34(1), 2007.

[8] I.A. Fotiou, P. Rostalski, P.A. Parrilo, and M. Morari. Parametric optimiza-
tion and optimal control using algebraic geometriy methods. International
Journal of Control, 79(11):1340–1358, 2006.

[9] J. Garloff and A.P. Smith. Rigorous affine lower bound functions for multi-
variate polynomials and their use in global optimisation. In Proceedings of
the 1st International Conference on Applied Operational Research, Tadbir
Institute for Operational Research, Systems Design and Financial Services,
volume 1 of Lecture Notes in Management Science, pages 199–211, 2008.

[10] I. Tchoupaeva. A symbolic approach to bernstein expansion for program
analysis and optimization. In 13th International Conference on Compiler
Construction, CC 2004, pages 120–133. Springer, 2004.

23

[11] J. Garloff. Application of Bernstein Expansion to the Solution of Control
Problems. In J. Vehi and M. A. Sainz, editor, Workshop on Applications
of Interval Analysis to Systems and Control, pages 421–430, 2004.

[12] J. Garloff and A.P. Smith. An improved method for the computation
of affine lower bound functions for polynomials. In C. A. Floudas and
P. M. Pardalos, editor, Frontiers in Global Optimization, Series Noncon-
vex Optimization and Its Applications, pages 135–144. Kluwer Academic
Publ.,Boston, Dordrecht, New York, London, 2004.

[13] J. Garloff and A.P. Smith. A comparison of methods for the computation
of affine lower bound functions for polynomials. In C. Jermann, A. Neu-
maier, and D. Sam, editors, Global Optimization and Constraint Satisfac-
tion, LNCS, pages 71–85. Springer, 2005.

[14] I. T. Jolliffe. Principal Component Analysis. Springer, 2002.

[15] D.W. Jordan and P. Smith. Nonlinear Ordinary Differential Equations.
Oxford Applied Mathematics and Computer Science. Oxford University
Press, 1987.

[16] A. Miné. A new numerical abstract domain based on difference-bound
matrices. In PADO II, LNCS 2053, pages 155–172. Springer, 2001.

[17] AB. Mourrain and J. P. Pavone. Subdivision methods for solving polyno-
mial equations. Technical report, INRIA, August 2005. Technical report,
Research report, 5658.

[18] André Platzer and Edmund M. Clarke. Computing differential invariants of
hybrid systems as fixedpoints. Formal Methods in System Design, 35(1):98–
120, 2009.

[19] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems
using barrier certificates. In Rajeev Alur and George J. Pappas, editors,
Hybrid Systems: Computation and Control, volume 2993 of Lecture Notes
in Computer Science, pages 477–492. Springer, 2004.

[20] R. FitzHugh. Impulses and physiological states in theoretical models of
nerve membrane. Biophysical J., 1:445–466, 1961.

[21] S. Boyd and S. Vandenberghe. Convex optimization. Cambridge Uni. Press,
2004.

[22] S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear
systems using mathematical programming. In Verification, Model-Checking
and Abstract-Interpretation (VMCAI 2005), LNCS 3385. Springer, 2005.

[23] H.-P. Seidel. Polar forms and triangular B-spline surfaces. In Blossoming:
The New Polar-Form Approach to Spline Curves and Surfaces, SIGGRAPH
’91 Course Notes 26, Lecture Notes in Computer Science, pages 8.1–8.52.
ACM SIGGRAPH, 1991.

24

[24] Thao Dang. Approximate Reachability Computation for Polynomial Sys-
tems. In João P. Hespanha and Ashish Tiwari, editor, Hybrid Systems:
Computation and Control HSCC, volume 3927 of Lecture Notes in Com-
puter Science, pages 138–152. Springer, 2006.

[25] Ashish Tiwari and Gaurav Khanna. Nonlinear systems: Approximating
reach sets. In Hybrid Systems: Computation and Control, volume 2993 of
Lecture Notes in Computer Science, pages 600–614. Springer, 2004.

A Computing affine bound functions using the
Bernstein expansion

We describe the algorithm for computing these functions published in [12]. Let
us consider a polynomial πk(x), which is the kth component of π(x) and for
simplicity we denote it simply by p(x). The Bernstein coefficient of p is denoted
by the scalars bi. We shall compute an affine lower bound function denoted by
l(x).

• Iteration 1.

– Define the direction u1 = (1, 0, . . . , 0).

– Compute the slopes from each bi to b0 in the direction u1:

∀i ∈ Id : i[1] 6= i0[1], g1i =
bi − b0

i[1]/d[1]− i0[1]/d[1]

– Let i1 be the multi-index with the smallest absolute value of g1i .
Define the lower bound function:

l1(x) = b0 + g1i1u
1(x− i0/d).

• Iteration j = 2, . . . , n.

– Compute the direction ūj = (β1, . . . , βj−1, 0, . . . , 0) such that ūj i
k−i0
d =

0 for all k = 1, . . . , j − 1. This requires solving a system of j − 1
linear equations with j − 1 unknown variables. Then normalize
uj = ūj/||ūj ||.

– Compute the slopes from each bi to b0 in the direction uj :

∀i ∈ Id :
i[1]− i0[1]

d
uj 6= 0, gji =

bi − lj−1(i/d)

(i/d− i0/d)uj

– Let ij be the multiindex with the smallest absolute value of gji . Define
the lower bound function:

lj(x) = lj−1(x) + gjiju
j(x− i0/d).

