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Abstract. Predicate abstraction has emerged to be a powerful tech-
nique for extracting finite-state models from infinite-state discrete pro-
grams. This paper presents algorithms and tools for reachability analy-
sis of hybrid systems by combining the notion of predicate abstraction
with recent techniques for approximating the set of reachable states of
linear systems using polyhedra. Given a hybrid system and a set of user-
defined boolean predicates, we consider the finite discrete quotient whose
states correspond to all possible truth assignments to the input predi-
cates. The tool performs an on-the-fly exploration of the abstract system.
We demonstrate the feasibility of the proposed technique by analyzing a
parametric timing-based mutual exclusion protocol and safety of a simple
controller for vehicle coordination.

1 Introduction

Inspired by the success of model checking in hardware verification and proto-
col analysis [8,17], there has been increasing research on developing techniques
for automated verification of hybrid (mixed discrete-continuous) models of em-
bedded controllers [1,3,15]. The state-of-the-art computational tools for model
checking of hybrid systems are of two kinds. Tools such as Kronos [11], Up-
PAAL [20], and HYTECH [16] limit the continuous dynamics to simple abstrac-
tions such as rectangular inclusions (e.g. ¢ € [1,2]), and compute the set of
reachable states exactly and effectively by symbolic manipulation of linear in-
equalities. On the other hand, emerging tools such as CHECKMATE [7], d/dt [5],
and level-sets method [14, 21], approximate the set of reachable states by poly-
hedra or ellipsoids [19] by optimization techniques. Even though these tools have
been applied to interesting real-world examples after appropriate abstractions,
scalability remains a challenge.

In the world of program analysis, predicate abstraction has emerged to be a
powerful and popular technique for extracting finite-state models from complex,
potentially infinite state, discrete systems [10, 13]. A verifier based on this scheme
requires three inputs, the (concrete) system to be analyzed, the property to be
verified, and a finite set of boolean predicates over system variables to be used
for abstraction. An abstract state is a valid combination of truth values to the
boolean predicates, and thus, corresponds to a set of concrete states. There



is an abstract transition from an abstract state A to an abstract state B, if
there is a concrete transition from some state corresponding to A to some state
corresponding to B. The job of the verifier is to compute the abstract transitions,
and to search in the abstract graph looking for a violation of the property. If
the abstract system satisfies the property, then so does the concrete system. If
a violation is found in the abstract system, then the resulting counter-example
can be analyzed to test if it is a viable execution of the concrete system. This
approach, of course, does not solve the verification problem by itself. The success
crucially depends on the ability to identify the “interesting” predicates, and on
the ability of the verifier to compute abstract transitions efficiently. Nevertheless,
it has led to opportunities to bridge the gap between code and models and to
combine automated search with user’s intuition about interesting predicates.
Tools such as Bandera [9], SLAM [6], and Feaver [18] have successfully applied
predicate abstraction for analysis of C or Java programs.

Inspired by these two trends, we develop algorithms for invariant verification
of hybrid systems using discrete approximations based on predicate abstrac-
tions. Consider a hybrid automaton with n continuous variables and a set L of
locations. Then the continuous state-space is L x IR™. For the sake of efficiency,
we restrict our attention where all invariants, switching guards, and discrete
updates of the hybrid automaton are specified by linear expressions, and the
continuous dynamics is linear, possibly with bounded input. For the purpose of
abstraction, the user supplies initial predicates p; ...py, where each predicate is
a polyhedral subset of IR™. In the abstract program, the n continuous variables
are replaced by k discrete boolean variables. A combination of values to these
k boolean variables represents an abstract state, and the abstract state space
is L x BF. Our verifier performs an on-the-fly search of the abstract system by
symbolic manipulation of polyhedra.

The core of the verifier is the computation of the transitions between ab-
stract states that capture both discrete and continuous dynamics of the original
system. Computing discrete successors is relatively straightforward, and involves
computing weakest preconditions, and checking non-emptiness of an intersection
of polyhedral sets. For computing continuous successors of an abstract state A,
we use a strategy inspired by the techniques used in CHECKMATE and d/dt.
The basic strategy computes the polyhedral slices of states reachable from A at
fixed times r,2r,3r, ... for a suitably chosen r, and then, takes the convex-hull
of all these polyhedra to over-approximate the set of all states reachable from
A. However, while tools such as CHECKMATE and d/dt are designed to compute
a “good” approximation of the continuous successors of A, we are interested in
testing if this set intersects with a new abstract state. Consequently, our imple-
mentation differs in many ways. For instance, it checks for nonempty intersection
with other abstract states of each of the polyhedral slices, and omits steps in-
volving approximations using orthogonal polyhedra and termination tests.

Postulating the verification problem for hybrid systems as a search problem
in the abstract system has many benefits compared to the traditional approach
of computing approximations of reachable sets of hybrid systems. First, the ex-



pensive operation of computing continuous successors is applied only to abstract
states, and not to intermediate polyhedra of unpredictable shapes and complex-
ities. Second, we can prematurely terminate the computation of continuous suc-
cessors whenever new abstract transitions are discovered. Finally, we can explore
with different search strategies aimed at making progress in the abstract graph.
For instance, our implementation always prefers computing discrete transitions
over continuous ones. Our early experiments indicate that improvements in time
and space requirements are significant compared to a tool such as d/dt.

We demonstrate the feasibility of our approach using two case studies. The
first one involves verification of a parametric version of Fischer’s protocol for
timing-based mutual exclusion. The correctness of the protocol depends on two
parameters ¢ and A. Traditional tools can analyze such problems very efficiently
for fixed values of these parameters. Recently, there have been some results for
parametric versions of the problem [4]. In our analysis, b = (§ > A) is used
as one of the initial predicates. The abstract search nicely reveals that the bad
states are reachable precisely from those initial states in which the predicate b
is false. The second example involves verification of a longitudinal controller for
the leader car of a platoon from the IVHS projects [12]. Our concrete model
consists of 4 continuous variables, linear dynamics with one bounded input, and
17 initial predicates. The verifier could establish absence of collisions without
using any significant computational resources.

2 Hybrid Automata

2.1 Syntax

We denote the set of all n-dimensional linear expressions [ : R” — IR with X,
and the set of all n-dimensional linear predicates = : R™ — B, where B := {0,1},
with £,,. A linear predicate is of the form 7(z) := > | a;&; + apy1 ~ 0, where
~e{>>}and Vi € {1,...,n+ 1} : a; € IR. Additionally, we denote the set of
finite conjunctions of n-dimensional linear predicates by C,.

Definition 1 (Hybrid Automata). A n-dimensional hybrid automaton is
a tuple H = (X, L, Xo,I, f,T) with the following components:

— X CIR" is a continuous state space.

— L is a finite set of locations. The state space of H is X = L x X. FEach
state thus has the form (I,z), where | € L is the discrete part of the state,
and x € X is the continuous part.

— Xo C X is the set of initial states.

—I:L — C, assigns to each location | € L a finite conjunction of linear
predicates I(l) defining the invariant conditions that constrain the value
of the continuous part of the state while the discrete part is l. The hybrid
automaton can only stay in location | as long as the continuous variable x
satisfies I(l), i.e. Vi € I(l) : i(z) = 1. We will write Z; for the invariant set
of location 1, that is the set of all points x satisfying all predicates in I(1).
In other words, T; := {x € X | Vi € I(I) : i(z) = 1}.



— f: L — (R® — R"™) assigns to each location | € V a continuous vector
field f(l) on x. While staying at location | the evolution of the continuous
variable is governed by the differential equation & = f(I)(z).

— T : L — 26-XLX(Zn)" s o function capturing discrete transition jumps be-
tween two discrete locations. A transition (g,l',r) € T(l) consists of an initial
location 1, a destination location I', a set of guard constraints g and a reset
mapping r. From a state (I, z) where all predicates in g are satisfied the hy-
brid automaton can jump to location ' at which the continuous variable x is
reset to a new value v(x). We will write Gy for the guard set of a transition
(9,U',7) € T(l) which is the set of points satisfying all linear predicates of g,
that is, Gy = {x € X | Ve € g : e(z) = 1}.

We restrict our attention to hybrid automata with linear continuous dynamics,
that is, for every location ! € L, the vector field f(!) is linear, i.e. f(I)(z) = Az
where A; is an n x n matrix. As we shall see later in Section 4.2, our reachability
analysis can also be applied to hybrid systems having linear continuous dynamics
with uncertain, bounded input of the form: & = 4A;x + Bju.

2.2 Semantics

We will explain the semantics of a hybrid automaton by defining its underlying
transition system. Let &;(z,t) = ez denote the flow of the system & = A;x.

The underlying transition system of H is Ty = {X, —, Xo}. The state space
of the transition system is the state space of H, i.e. X = L x X. The transition
relation -C X x X between states of the transition system is defined as the
union of two relations —¢, =+pC X x X. The relation —¢ describes transitions
due to continuous flow, whereas —p describes the transitions due to discrete
jumps.

(l,z) =c (Ly) <& 3t € Rso : By(z,t) =y AVt €[0,t] : $i(z,t') € ;. (1)
(I,z) =p (I',y) =& 3(g,l',r) €eT1) : xz € Gy ANy =r(z). (2)

We introduce now some basic reachability notation. We define the set of
continuous successors of a set of states (I, P) where ! € L and P C X, denoted by
Postc(l, P) as: Postc(l, P) :={(l,y) € X | 3z € P (I,z) —»¢ (I,y)}. Similarly,
we define the set of discrete successors of (I, P), denoted by Postp(l, P), as:
Postp(l,P):={(l',y) € X | Iz € P (l,z) —»p (I',y)}.

2.3 Discrete Abstraction

Let us now define a discrete abstraction of the hybrid system H with respect to
a given k-dimensional vector of linear predicates II = (my,m2,...,7g). We can
partition the continuous state space X into at most 2¥ states, corresponding to
the 2* possible boolean evaluations of IT; hence, the infinite state space X of H
is reduced to |L|2* states in the abstract system. From now on, we will refer to
the hybrid system H as the concrete system and its state space X as the concrete
state space.



Definition 2 (Abstract state space). Given a n-dimensional hybrid system
H=(X,L,Xo, f,I,T) and a k-dimensional vector IT € (L,)* of n-dimensional
linear predicates we can define an abstract state as a tuple (I,b), where | €
L and b € B*. The abstract state space for a k-dimensional vector of linear
predicates hence is Q = L x B¥.

Definition 3 (Concretization function). We define a concretization func-
tion Cp7 : B — 2% for a vector of linear predicates IT = (1, ..., m) € (Ln)*
as follows: C(b) :={x € X | Vi € {1,...,k} : mi(z) = b;}. Denote a vector
b € B* us consistent with respect to a vector of linear predicates IT € (L,)k, if
Cr(b) # 0. We say that an abstract state (I,b) € Q is consistent with respect
to a vector of linear predicates II, if b is consistent with respect to II.

If all predicates in II are indeed linear predicates, it can be shown that Cr(b)
is a convex polyhedron for any b € IBY.

Definition 4 (Discrete Abstraction). Given a hybrid system H = (X, L, X,
1,1, T), we define its abstract system with respect to a vector of linear predicates

IT as the transition system Hp = (Q, 1—7>, Qo) where
— the abstract transition relation 1—7>§ @ X Q 1is defined as follows:
0.b) 2 (,b) 2 3z € Cu(b),y € Cu®') : (I,2) = (I',y);
— the set of initial states is Qo = {(I,b) € Q | Iz € C(b) : (I,z) € Xo}.

To be able to distinguish transitions in the abstract state space due to a
discrete jump in the concrete state space from those transitions that are due to

. . . . o 1
continuous flows, we introduce the following two relations =+ p, ¢ C Q X @:

1,b) Bp (1,b) = (g, ;1) € T(),z € Cr(b) N G

(I,z) =p (I',r(z)) Ar(z) € C(b), (3)
(1,0) Bo (1,b') w0 3z € Ci(b),t € Ry : By(z,t) € Crr(b') A
vt' € [0,t] : &i(z,t') € ;. (4)

We can now define the successors of an abstract state (I, b) by discrete jumps
and by continuous flows, denoted respectively by Post(l,b) and PostZ(l,b),

as: PostZ(1,b) := {(I',¥") € Q | (I,b) LN (I',b")}, and PostZ(1,b) := {(I,b') €
Q| (1,b) B (1,6}

3 Reachability Analysis

For the reachability analysis, it could be assumed that all guards and invariants
of a hybrid automaton H are included in the vector of linear predicates IT which
will be used for our abstract state space reachability exploration. On the other
hand, one may reduce the state space of the abstract system by not including
all guards and invariants, but rather only include linear predicates that are
important for the verification of the given property.



3.1 Computing Discrete Successors of the Abstract System

Given an abstract state (I,b) € @ and a particular transition (g,l',r) € T'(l) we
want to compute all abstract states that are reachable. A transition (g,!',r) €
T(l) is enabled in an abstract state (I, b) with respect to IT, if Crz(b) N Gy # 0.

We define a tri-valued logic using the symbols T := {0,1, *}. 0 denotes that
a particular linear predicate is always false for a given abstract state, 1 that
it is always true, whereas * denotes the case that a linear predicate is true
for part of the abstract state, and false for the rest. We can define a function
t:BF x (£,)* x £, — T formally as:

1, if Cp(b) #0AVx € C(b) : e(x)
t(b,II,e) =< 0, if Cyp(b) #DAVz € Crr(b) : e(x)
* , otherwise.

?

1
0;

As will be described shortly, we can use this tri-valued logic to reduce the size
of the set of feasible abstract successor states. For later use, let us define the
number of positions in a k-dimensional vector ¢ € T* with element * as |[|¢||..
Given a particular transition (g,l',r) € T(l) and a given linear predicate
e : R" — B, we need to compute the boolean value of a linear predicate e after
the reset r, which is e(r(z)). It can be seen that eor : R™ — B is another linear
predicate. It should be noted that given e and r we can easily compute e o r.
If we generalize this for a vector of predicates IT = (7y,...,7x)% € (£,)* by
Hor:=(mor,...,mxor)T, the following lemma immediately follows.

Lemma 1. Given a k-dimensional vector b € B*, a vector of n-dimensional
linear predicates IT € (L£,)*, and a reset mapping r € (X,)", we have:

z € Cror(b) & r(z) € Cir(b).

We can now compute the possible successor states of an enabled transition
(g,V',7) € T(l) from a consistent abstract state (I,b) with respect to a vector of
linear predicates IT = (my,...,m) as (I',b’), where b’ € T™ and each component
b; is given by: b, = (b, II, m; or). If b, = 1, then we know that the corresponding
linear predicate 7; or is true for all points € C7(b). This means that all states
in Cyz(b) after the reset r will make m; true. Similarly, if b, = 0 we know that
the linear predicate will always be false. Otherwise, if b} = *, then there exist
concrete continuous states in Cpr(b) that after the reset r force m; to become
true, as well as other concrete continuous states that make 7; to become false.
Hence, the tri-valued vector b’ € T™ represents 21181 many possibilities, which
combined with location I’ make up at most 2/1®'lls many abstract states. We
define ¢: T% — 2B" as: c(t) := (b e B |Vie {1,...,k} :t; #£ % = t; = b;).

An abstract state (I',e) € @ is a discrete successor of (I,b), if e € ¢(b’) and
Cror(€) intersects with Cpr(b) and the guard of the corresponding transition,
which is formulated in the following theorem.

Theorem 1. Given an abstract state (I,b) € Q with respect to a k-dimensional
vector of n-dimensional linear predicates I1, a transition (g,1',r) € T(l) and the



corresponding guard set Gy, we have Yv € B :

Crror(®) N Crr(®) N G # 0 & (1,b) Bp (I, v).

Proof: If Crror (v)NCrr(b)NGyr is not empty, we can pick a point £ € Crror(v)N
Cr(b)NGy. As ¢ € Gy, we found a discrete transition in the concrete state
space (I,z) —p (I',r(z)). We know that z € Cp(b). Additionally we know
that ¢ € Cpor(v) and by using Lemma 1 we have 7(z) € Cp(v). Hence, this

corresponds to a transition in the abstract state space (I, b) £, (', v).

If, on the other hand, we have (I,b) 5 (I',v) for a discrete transition
(g9,U',7) € T(l), we must have: 3z € Crr(b) : ¢ € Gy Ar(z) € Cr(v). Using
Lemma 1, this means that 3z € Cz(b) : z € Gy Az € Crror(v). Hence we found
that Crror(v) N Cr(b) NG # 0. [ ]

Note, that if we assume that all the linear predicates of the guard g € C,, are
part of the k-dimensional vector of linear predicates II, then we can skip the
additional check, whether Cror(v) N Crr(b) intersects with the guard set Gy.
In addition, we can restrict the search for non-empty intersections to v € ¢(b’)
instead of the full space B* due to the aforementioned observations.

3.2 Computing Continuous Successors of the Abstract System

Our procedure for computing continuous successors of the abstract system Ap
is based on the following observation. By definition, the abstract states (I, b') is
reachable from (I, b) if the following condition is satisfied

PostC(l, Cpz (b)) N Crz (b') # 0, (5)

where Post. is the successor operator of the concrete system H. Intuitively,
the above condition means that while staying at location ! the concrete system
admits at least one trajectory from a point z € Crr(b) to a point y € Crr(b').
Therefore, the set of continuous successors of an abstract state (I,b) can be
written as follows: PostZ(1,b) = {(I,b") | Post.(l,Crz(b)) N Crz(b') # 0}. The
test of the condition (5) requires the computation of continuous successors of
the concrete system, and for this purpose we will make use of a modified version
of the reachability algorithm implemented in the verification tool d/dt [5]. For
a clear understanding, let us first recap this algorithm.

The approach used by d/dt works directly on the continuous state space of
the hybrid system and uses orthogonal polyhedra to represent reachable sets,
which allows to perform all operations, such as boolean operations and equiva-
lence checking, required by the verification task. Basically, the computation of
reachable sets is done on a step-by-step basis, that is each iteration & computes
an over-approximation of the reachable set for the time interval [kr, (k + 1)r]
where r is the time step. Suppose P is the initial convex polyhedron. The set
P, of successors at time r of P is the convex hull of the successors at time r
of its vertices. To over-approximate the successors during the interval [0, 7], the
convex hull C' = conv(P U P,.) is computed and then enlarged by an appropriate



amount. Finally, the enlarged convex hull is over-approximated by an orthogo-
nal polyhedron. To deal with invariant conditions that constrain the continuous
evolution at each location, the algorithm intersects P, with the invariant set and
starts the next iteration from the resulting polyhedron.

It is worth emphasizing that the goal of the orthogonal approximation step in
the reachability algorithm of d/dt is to represent the reachable set after succes-
sive iterations as a unique orthogonal polyhedron, which facilitates termination
checking and the computation of discrete successors. However, in our predicate
abstraction approach, to compute continuous successors of the abstract system
we will exclude the orthogonal approximation step for the following reasons.
First, checking condition (5) does not require accumulating concrete continuous
successors. Moreover, although operations on orthogonal polyhedra can be done
in any dimension, they become expensive as the dimension grows. This simplifi-
cation allows us to reduce computation cost in the continuous phase and thus be
able to perform different search strategies so that the violation of the property
can be detected as fast as possible. In the sequel, for simplicity, we will use an
informal notation APostZ (I, P,[0,r]) to denote the above described computation
of an over-approximation of concrete continuous successors of (I, P) during the
time interval [0, r] and the outcome of APost is indeed the enlarged convex hull
mentioned earlier. The algorithm for over-approximating continuous successors
of the abstract system is given below. It terminates if the reachable set of the
current iteration is included in that of the precedent iteration. This termination
condition is easy to check but obviously not sufficient, and hence in some cases
the algorithm is not guaranteed to terminate. An illustration of Algorithm 1 is
shown in Figure 1.

Algorithm 1 Over-Approximating the Abstract Continuous-Successors of (I, b)
R.+0; P°«— Cn(b); k+0;

repeat
P apostZ (1, P*, [0, 7]);
for all (1,b') € Q\ R. do
P’ — Cn(bl),
if P**' NP’ £0 then
R, := R. U(,b);
k—k+1;
until P*+! C p*
return R, ;

In each iteration k, to avoid testing all unvisited abstract states (I, b"), we will
use a similar idea to the one described in the computation of discrete successors.
We can determine the tri-valued result of the intersection of the time slice P*
with the half-space corresponding to each predicate in I7, allowing us to eliminate
the abstract states which do not intersect with P*.



Fig. 1. Ilustration of the computation of continuous successors. After two iterations
new abstract state (I, b’) is reachable.

3.3 Search Strategy

The search in the abstract state space can be performed in a variety of ways.
Our goal is to make the discovery of counter-examples in the abstract state space
given a reachability property as fast as possible. In the case that the property is
true we need to search the entire reachable abstract sub-space.

We perform a DFS, which usually does not find a shortest counter-example
possible. On the other hand, it only stores the current trace of abstract states
from an initial abstract state on a stack. In case we find an abstract state that
violates the property, the stack contents represent the counter-example. This is
generally much more memory efficient than BFS.

We give a priority to computing discrete successors rather than continuous
successors. This decision is based on the fact that computing a discrete successor
is generally much faster than computing a continuous one.

During the computation of continuous successors we abort or interrupt the
computation when a new abstract state is found. Not running the fixpoint com-
putation of continuous successors to completion may result in a substantial
speed-up when discovering a counter-example, if one exists. A simplified sketch
of the algorithm is given as Algorithm 2.

Algorithm 2 Abstract State Space Reachability Analysis via DFS

stack <— new Stack () ;
push initial state onto stack ; {for simplicity assume, there is only one such state}
repeat
if stack.top().violatesProperty() then
return stack ;
if PostZ (stack.top()) # § then
push one state in Post ] (stack.top()) onto the stack ;
else if PostZ (stack.top()) # 0 then
push one state in Post (stack.top()) onto the stack ;
else
stack.pop() ;
until stack.isEmpty()
return ”Property is guaranteed!” ;




Using the aforementioned approach we can prove the following theorem which
states the soundness of Algorithm 2.

Theorem 2. If Algorithm 2 terminates and reports that the abstract system is
safe, then the corresponding concrete system is also safe.

We additionally include an optimization technique in the search strategy.
Consider a real counter-example in the concrete hybrid system. There exists an
equivalent counter-example that has the additional constraint that there are no
two consecutive transitions due to continuous flow in the equivalent counter-
example. This is due to the so-called semi-group property of hybrid systems,
namely: (I,z) =»¢ (L, ') A({,2") =¢c (I,2") = (I,z) —=¢ (I,z"). We are hence
searching only for counter-examples in the abstract system that do not have
two consecutive transitions due to continuous flow. By enforcing this additional
constraint we eliminate some fake counter-examples that could have been found
otherwise in the abstract transition system. The fake counter-examples that are

eliminated are due to the fact that (I,b) K8 (1,b") and (1,b") K8 (1,b") does
not imply that (I, b) 1—7>C (1,b"). Hence, we are in fact not computing the whole

relation 1—7>c as it was defined above, but only a part of it without compromising
the conservativeness of our approach. We illustrate this optimization technique
in Figure 2.

Fig. 2. An optimization technique in the search strategy: If the abstract state ¢ can
only be reached by continuous transitions, we will not explore its continuous successors
by the same continuous dynamics. Hence, in the above example the abstract state u
will not be regarded as reachable. On the other hand, v will be reached by continuous
flow from s.

Also, in order to force termination of the continuous search routine, we can
limit the number of iterations & to some value Kmax. This way we can bound
the computation of PostZ (I, b) for an abstract state (,b).

4 Implementation and Experimentation

4.1 Mutual Exclusion with Time-Based Synchronization

We will first look at an example of mutual exclusion which uses time-based syn-
chronization in a multi-process system. The state machines for the two processes



are shown in Figure 3. We will use this example for two reasons. The first reason
is that it is small enough to be used effectively for an illustration of our ap-
proach. A second reason is that it is similar to examples that have been used as
case-studies in other verification tools as well. Tools like KRONOS [11] and Up-
PAAL[20] for example have solved this example for specific values for the positive
parameters § and A. We want to solve the parametric version of the problem,
that is using parameters without specifying values for § and A, which has not
been done previously.

Fig. 3. The two processes for the mutual exclusion example

The possible execution traces depend on the two positive parameters A and 4.
If the parameters are such that A > § is true, we can find a counter-example that
proves the two processes may access the shared resource at the same time. The
trace of abstract states that represents a valid counter-example in the original
system is given in Figure 4.

‘IDLE,IDLE,:urn:O,m<6,y<5}—>‘REQUEST,IDLE,turn=0,2<5,y<5‘

‘CHECK , REQUEST , turn =1, 2 < 6,y < JF—FEQUEST , REQUEST , turn = 0 , @ < 6,y < 5‘

|

[CHECK , REQUEST , turn = 1,5 <2< 4,6 <y < 4——hCCESS , REQUEST ,turn = 1,2 <45, <y < 4

J

lscoEss , CHECK , turn =2, 2 <5, <y < Ak {ACCESS , CHECK , turn = 2 , = < 6,y < §|

|

JACCESS , ACCESS , turn =2 , 2 < &,y < 5‘

Fig. 4. A counter-example trace for the mutual exclusion problem for the parameter
setting A > J§. The predicates that were used to find this counter-example are the
predicates given by the guards and invariants of the composed hybrid system. These
are: ¢ > 4,y > 6,z < A and y < A. The states do not show the constantly true linear
predicates over the parameters A > 4§, A >0 and § > 0.



On the other hand, if § > A, then the system preserves mutual exclusive use
of the shared resource. In order to prove this using our predicate abstraction
algorithm, we needed to include the intuitive predicates x > y and y > z in
addition to the predicates already mentioned in the caption of Figure 4. The
reachability analysis finds 54 reachable abstract states, which all maintain the
mutual exclusion property. The computation of this result takes a few seconds,
and the memory requirements are negligible.

4.2 Vehicle Coordination

We have also successfully applied our predicate abstraction technique to verify
a longitudinal controller for the leader car of a platoon moving in an Intelligent
Vehicle Highway System (IVHS). Let us first briefly describe this system. Details
on the design process can be found in [12]. In the leader mode all the vehicles
inside a platoon follow the leader. We consider a platoon ¢ and its preceding
platoon (i —1). Let v; and a; denote respectively the velocity and acceleration of
platoon 4, and d; is its distance to platoon (¢ — 1). The most important task of a
controller for the leader car of each platoon 4 is to maintain the distance d; equal
to a safety distance D; = Aga; + Ayv; + A, (in the nominal operation A, = 0,
Ay = 1sec, and A, = 10m). Other tasks the controller should perform are to
track an optimal velocity and trajectories for certain maneuvers. The dynamics
of the system are as follows: d; = v;—1 — v, V-1 = aj_1, ¥; = a;, and a; = u,
where u is the control. Without going into details, the controller for the leader
car of platoon i proposed in [12] consists of 4 control laws u which are used in
different regions of the state space. These regions are defined based on the values
of the relative velocity v§ = 100(v;—1 — v;)/v; and the error between the actual
and the safe inter-platoon distances e; = d; — D;. When the system changes from
one region to another, the control law should change accordingly. The property
we want to verify is that a collision between platoons never happens, that is,
d; > 0. Here, we focus only on two regions which are critical from a safety point
of view: “track optimal velocity” (vf < 0 and e; > 0) and “track velocity of
previous car” (v{ < 0 and e; < 0). The respective control laws u; and uy are as
follows:

Uy = —d; — 3v;—1 + (—3 - )\v)vi + —3a;, (6)
uy = 0.125d; + 0.75v;_1 + (—0.75 + —0.125)\U)v,- — 1.5a;. (7)

Note that these regions correspond to situations where the platoon in front moves
slower and, moreover, the second region is particularly safety critical because the
inter-platoon distance is smaller than desired.

We model this system by a hybrid automaton with 4 continuous variables (d;,
Vi—1, V;, a;) and two locations corresponding to the two regions. The continuous
dynamics of each location is linear as specified above, with u specified by (6) and
(7). To prove that the controller of the leader car of platoon ¢ can guarantee that
no collision happens regardless of the behavior of platoon (i —1), a;—; is treated
as uncertain input with values in the interval [@min, Gmaz] Where amin and amqq



are the maximal deceleration and acceleration. The invariants of the locations
are defined by the constraints on e; and v and the bounds on the velocity and
acceleration. The guards of the transitions between locations are the boundary of
the invariants, i.e. e; = 0 (for computational reasons the guards are “thickened”,
more precisely, the transitions are enabled when e; is in some small interval
[—¢,€]). The bad set is specified as d; < 0. To construct the discrete abstract
system, in addition to the predicates of the invariants and guards we use two
predicates d; < 0 and d; > 2 which allow to separate safe and unsafe states,
and the total number of initial predicates are 17. For the initial set specified as
5<d; <1000 A 5 <wj—1 <15 A 18 < w; < 30, the tool found 16 reachable
abstract states and reported that the system is safe. The computation took 4
minutes on a Pentium 2. For a single continuous mode this property has been
proven in [22] using optimal control techniques.

5 Conclusions

We have presented foundations and an initial prototype implementation for au-
tomated verification of safety properties of hybrid systems by combining ideas
from predicate abstraction and polyhedral approximation of reachable sets of lin-
ear continuous systems. We are excited about the promise of this approach, but
additional research and experiments are needed to fully understand the scope
of the method. Two research directions are of immediate importance. First, the
number of abstract states grows exponentially with the number of boolean pred-
icates used for abstraction. We have presented a couple of heuristics that avoid
examination of all abstract states while computing the successors of a given ab-
stract state. However, more sophisticated methods that exploit the structure of
abstract states are needed. Also, heuristics for guiding the search can be useful
to avoid the expensive computation of successors. Second, we have solely relied
on the intuition of the designer to obtain the initial set of predicates. If the pred-
icate abstraction verification algorithm returns a counter-example, we cannot be
sure that the found counter-example corresponds to a real counter-example in
the concrete system. It may be a fake counter-example instead, due to missing
predicates important for the verification of the property at hand. We are work-
ing on a second module that will check the validity of a counter-example, and
analyze it to introduce additional predicates, if needed. We are also incorporat-
ing the verifier with the tool CHARON, a modeling and analysis environment for
hierarchical hybrid systems [2].
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