
Modeling, Verification and Testing using Timed and Hybrid

Automata

Stavros Tripakis and Thao Dang

September 12, 2008

owner
Typewritten Text
To appear as a chapter in the book "Model-Based Design of Embedded Systems" to be published by CRC Press in 2009.

ii

Contents

1 Modeling, Verification and Testing using Timed and Hybrid Automata 1

1.1 Introduction . 1

1.2 Modeling with timed and hybrid automata 3

1.2.1 Timed automata . 4

1.2.2 Hybrid automata . 8

1.3 Exhaustive verification . 11

1.3.1 Model checking for timed automata 11

1.3.2 Verification of hybrid automata . 16

1.4 Partial verification . 26

1.4.1 Randomized exploration and resource-aware verification 28

1.4.2 RRTs for hybrid automata . 31

1.5 Testing . 34

1.6 Test generation for timed automata . 36

1.7 Test generation for hybrid automata . 47

i

ii CONTENTS

1.8 Conclusions . 53

Chapter 1

Modeling, Verification and Testing

using Timed and Hybrid Automata

1.1 Introduction

Models have been used for a long time to build complex systems, in virtually every en-

gineering field. This is because they provide invaluable help in making important design

decisions, before the system is implemented. Recently, the term model-based design has been

introduced to emphasize the use of models and place them in the center of the development

process, especially for software-intensive systems. Traditionally, the fact that software is

immaterial (contrary, say, to bridges or cars or hardware), has resulted in a software devel-

opment process that largely blurs the line between design and implementation: a model of

the software is the software itself, which is also the implementation! It is “cheap” to write

software and test it, or so people used to believe. It is now becoming more and more clear

that the costs for software development, testing and maintenance are non-negligible, in fact,

they often outweigh the costs of the rest of the system.

As a result of this and other factors, a more rigorous software development process based

on formal, high-level models, is becoming widespread, especially in the embedded software

1

2CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

domain. The term “embedded software” may generally include any type of software that runs

on an embedded system. Embedded systems are computer-controlled systems that strongly

interact with a physical environment, for example, x-by-wire systems for car control, cell

phones, multimedia devices, medical devices, defense and aerospace, public transportation,

energy and chemical plants, etc.

In all these systems, timing and other physical characteristics of the environment are

essential for system correctness as well as for performance. For instance, in an engine-

control system it is critical to ignite the engine at very precise moments in time (in the order

of 1 millisecond). Also, the control logic depends on a number of continuously evolving

variables that have to do with the combustion in the engine, exhaust, and so on. In order to

capture such timing and physical constraints, models of timed automata and hybrid automata

have been developed in the early ’90s [9, 5]. Since then, these models have been studied

extensively and today there are a number of sophisticated analysis and synthesis methods

and tools available for such models. We will discuss some of these methods in this chapter.

Models, in general, play different roles and are used for different tasks, at different phases

of the design process. For instance, sometimes a model captures a system that is already

built to some extent, while at other times a model serves as a specification that the final

system must conform to. In the rest of this chapter, we consider the following tasks in the

context of timed or hybrid automata models:

• Modeling: We discuss timed and hybrid automata in Section 1.2. Modeling is of course

a task by itself, and probably the most crucial one, since it is a creative and to a large

extent non-automatable task.

• Exhaustive verification: We use the term exhaustive verification to denote the task of

proving that a given model of a system satisfies a given property (also expressed in some

modeling language). This task is exhaustive in the sense that it is conclusive: either the

proof succeeds or a counter-example is found that demonstrates that the system fails

to satisfy the property. We focus on automatic (“push-button”) exhaustive verification,

also called model checking. We discuss exhaustive verification in Section 1.3.

• Partial verification: Fundamental issues such as undecidability (in the case of hybrid

1.2. MODELING WITH TIMED AND HYBRID AUTOMATA 3

automata) or state-explosion (in the case of both timed and hybrid automata) place

limits on exhaustive verification. In Section 1.4 we discuss an alternative, namely partial

verification, which aims to check a given model as much as possible, given time and

resource constraints. This is done using mainly simulation-based methods.

• Testing: It is important to test correctness of a system even after it is built. Testing

mainly serves this purpose. Since designing good and correct test cases is itself a time-

consuming and error-prone process, one of the main challenges in testing is automatic

test generation from a formal specification. We discuss testing in general in Section 1.5,

and test generation from timed and hybrid automata models in Sections 1.6 and 1.7,

respectively.

Obviously, the topics covered in this chapter are wide and deep, and we can only offer an

overview. We attempt an intuitive presentation and omit most of the technical details. Those

can be found in the referenced papers. We also restrict ourselves to the topics mentioned

above and omit many others. For example, we do not discuss discrete-time/state models,

theorem proving, controller synthesis, implementability and code generation, as well as other

interesting topics. Finally, excellent surveys exist for some of the topics covered in this

chapter (e.g., see Alur’s survey on timed automata [3] and an overview of hybrid systems

in the book [107]), thus we prefer to devote more of our discussion to topics that are more

recent and perhaps have been less widely exposed, such as testing and partial verification.

1.2 Modeling with timed and hybrid automata

Timed and hybrid automata models are extensions of finite automata with variables that

evolve continuously in time. Timed automata are a subclass (i.e., special case) of hybrid

automata. In timed automata all variables evolve with rate 1: that is, these variables measure

time itself. Hybrid automata are more general, with variables that can in principle obey any

type of continuous dynamics, usually expressed by some type of differential equations.

These models were introduced in order to meet the desire to blend the “discrete” world

4CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

of computers with the “continuous” physical world. Classical models from computer sci-

ence (e.g., finite-state automata) provide means for reasoning about discrete systems only.

Classical models from engineering (e.g., differential equations) provide means for reasoning

mostly about continuous systems. Timed and hybrid automata are attempts to bridge the

two worlds. Although timed automata are a special class of hybrid automata, their study

as a separate model is justified by the fact that many problems that are very difficult or

impossible to solve (i.e., undecidable) for hybrid automata, are easier or solvable for timed

automata.

1.2.1 Timed automata

Timed automata [9] extend finite automata by adding variables that are able to measure

real-time: these variables are called clocks. Standard finite-state automata are able to specify

that a certain set of events occurs in a specific order, however, they do not typically specify

how much time has elapsed between two successive events. Figure 1.1(a) shows an example

of a finite automaton that specifies the order between four events a, b, c, d: event a precedes

b, which precedes c, which precedes d. This automaton has five states numbered 0 to 4, and

four transitions labeled by the four events. State 0 is the initial state.

4

a b c d

a b c d

(a) A finite state automaton

x := 0 y := 0 y ≥ 2 x ≤ 5

(b) A timed automaton

0 1 2 3 4

0 1 2 3

Figure 1.1: A finite-state automaton and a timed automaton.

Figure 1.1(b) shows an example of a timed automaton (TA). It is very similar to the

“untimed” version, but its transitions are annotated with additional information, referring

1.2. MODELING WITH TIMED AND HYBRID AUTOMATA 5

to clocks x and y. This TA specifies, in addition to the order a, b, c, d between events, two

timing constraints: (1) the time that may elapse between a and d is at most 5 time units;

(2) the time that may elapse between b and c is at least 2 time units. In other words, we

can view the semantics of this automaton as a set of all possible sequences of occurrences of

events in time (timed sequences) that satisfy timing constraints (1) and (2) in addition to

the correct order a, b, c, d. This is illustrated in Figure 1.2.

b

≥ 2

≤ 5a

b

d

c

time

timing constraints time1

a b d

61.5 3.5

c

two possible timed sequences

time1 4.5 5.5

a c d

2

Figure 1.2: Behaviors of timed automaton of Figure 1.1.

We can also look at semantics of this automaton in an operational way. This is illustrated

in Figure 1.3. The automaton starts at state 0 and spends a certain amount of time t0 there.

During this time the value of each clock of the automaton increases by the amount of time

that has elapsed, that is, t0 in this case. The automaton then “jumps” to state 1: event a

occurs in this jump, which is instantaneous. The automaton proceeds in the same pattern: it

spends some time t1 in state 1, then jumps to state 2, and so on. The automaton alternates

between these timed and discrete transitions. During a discrete transition, some clocks may

be reset to zero, denoted by x := 0, y := 0, etc. Discrete transitions may have guards, that

is, conditions such as y ≥ 2 or x ≤ 5, that must be satisfied in order for the transition to be

possible.

The operational view reveals that knowing what state the automaton occupies at a given

point in time (numbered 0, 1, 2, ..., in the above examples) is not enough to predict its

future behavior: one must also know the values of its clocks (e.g., in order to check whether

the guards are satisfied). This is why we must distinguish between the “discrete” state of

the automaton (also called sometimes control state or location) and its “full” state which

includes the clock values (sometimes called configuration and sometimes simply the state).

6CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

t0 + t1

0

1

2

3

4

state

time

b

c

d

a ≥ 2

≤ 5

t0
...

Figure 1.3: Operational semantics of timed automaton of Figure 1.1.

We will use state vs. configuration to distinguish the two.

Notice that the unit of time, although it is assumed to be the same for all the clocks, is

not explicit in a timed automaton model. This is often an advantage, especially when we are

only interested in the relative magnitude of timing constraints and not their absolute value.

In the Alur-Dill model of timed automata, time is dense: delays can be taken to be positive

real or rational numbers. This model is strictly more expressive than a discrete-time model,

where delays are integer multiples of some given quantum of time. For instance, the dense-

time model can express that two events a and b can occur arbitrarily close to each other, but

not at the same time, using a “strict” constraint of the form x > 0. Whether to opt for a

dense or discrete TA model depends on the application at hand. Considerations need to take

into account not only modeling requirements, but also complexity of the algorithmic analysis,

such as model checking. Dense-time model-checking is more expensive than discrete-time

model-checking in theory, and often1 in practice as well [24]. The discrete- vs. dense-time

debate is a non-trivial topic. In-depth studies can be found in [48, 19, 81].

The basic model of timed automata described above can be extended in various ways (one

is by adding more powerful continuous dynamics, which leads to hybrid automata described

in the next section). Discrete variables can be added to the model, with basic types such as

booleans or integers, but also more complex types such as records, queues, and so on. These

1But not always, as sometimes symbolic dense-time model-checking tools can represent timing constraints more effectively
than enumerative discrete-time methods. For instance, if a guard involves large constants such as x ≤ 106 then a brute-force
discrete-time enumeration method with time step 1 may need to represent 106 distinct states while a symbolic method can
represent an infinite set of states with the symbolic constraint x ≤ 106.

1.2. MODELING WITH TIMED AND HYBRID AUTOMATA 7

extensions are very handy when modeling other than very simple examples. As long as the

domain of such variables can be restricted to be finite, these extensions do not add to the

expressive power of the model, since they can be encoded in the state of the automaton. Note

that things become more complicated when attempting to relate such variables to clocks, for

instance, resetting a clock x to the value of a variable i, as in x := i, or comparing a clock

to a variable in a guard, as in x ≤ i. Some of these extensions can be handled, but others

may strictly increase the power of the model, leading even to undecidability! Again this is a

non-trivial topic, and the reader is referred to [3, 23].

Another interesting extension is modeling urgency. To motivate this concept, consider

the example shown in Figure 1.1(b). If the automaton stays in state 2 more than 5 time

units, then it can no longer reach state 4. We may want to disallow this behavior, thus,

model the assumption that state 4 will be reached. We can do this by adding acceptance

conditions to the automaton (e.g., making state 4 accepting and the others non-accepting).

But a more convenient way is to state this using clock constraints. For instance, we can

impose the constraint x ≤ 5 at states 1, 2, and 3, expressing the fact that the amount of

time spent in those states must be such that this constraint is not violated. This is one way

of modeling urgency, and these state-associated clock constraints are called invariants [49].

Another, more elaborate way is to use deadlines, associated with transitions [93, 18].

Even for relatively simple systems, modeling the entire system as a single automaton can

be very tedious. A solution is to build a model by composing other models. In the case of

timed automata, different variants of compositions have been proposed, where the compo-

nents can communicate through rendez-vous type of action synchronization, FIFO queues,

shared variables, etc. A common assumption in most of these composition frameworks is

that the clocks of all automata measure exactly the same time, in other words, that they

are perfectly synchronized. This is obviously unrealistic when these clocks model real clocks.

Unfortunately, modeling phenomena such as clock drift explicitly (e.g., by defining the rate

of a clock x to be 1 ± ε for a fixed ε > 0) yields an undecidable model, in general. As an

alternative, some researchers studied an asymptotic version of the problem where ε can be

arbitrarily small [88, 109]. This allows to regain decidability while providing a more “robust”

semantics. The issue of robustness is especially important when the timed automaton model

8CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

is to be implemented, for instance, as an embedded controller. However, the problem can

also be tackled with standard semantics, using appropriate modeling techniques [2].

Regarding applications, it is fair to say that timed automata have not found as widespread

usage as standard, “untimed” models. This is not surprising, given the fact that TA are

a more specialized model in the sense that often a discrete-time model is sufficient and

this can be captured in a more standard language (e.g., see [24]). Moreover, TA are more

expensive to analyze than “untimed” models. Still, timed automata are appealing because

of their “declarative” style of specifying timing constraints, that is suitable for capturing

high-level models and specifications.2 TA have been used to model small- to medium-size

systems, such as communication protocols, digital circuits, real-time scheduling systems,

robotic controllers, and so on. Up-to-date lists of case studies can be found at the web-

sites of timed-automata model-checking tools such as Kronos3 and Uppaal4 as well as in the

publications of the authors of these tools.

1.2.2 Hybrid automata

Hybrid automata [5] can be seen as an extension of timed automata with more general

dynamics. A clock c is a continuous variable with time derivative equal to 1, that is ċ(t) = 1.

In a hybrid automaton, the continuous variables x can evolve according to some more general

differential equations, for example ẋ = f(x). This allows hybrid automata to capture not

only the evolution of time but also the evolution of a wide range of physical entities. The

discrete dynamics of hybrid automata can also be more complex and described with more

general constraints.

In the following, we present a commonly used version of hybrid automata. Different forms

of constraints result in different variants of this model. A hybrid automaton A consists of

a finite set Q of discrete states and a set of n continuous variables evolving in a continuous

state space X ⊆ Rn. In each discrete state q ∈ Q, the evolution of the continuous variables

2It is perhaps for this reason that some of the concepts in the timed automata model have found their
way into the MARTE (Modeling and Analysis of Real-time and Embedded Systems) profile for UML2. See
http://www.omg.org/technology/documents/profile catalog.htm.

3See http://www-verimag.imag.fr/TEMPORISE/kronos and http://www-verimag.imag.fr/ tripakis/openkronos.html.
4See http://www.uppaal.com.

1.2. MODELING WITH TIMED AND HYBRID AUTOMATA 9

are governed by a differential equation: ẋ(t) = fq(x(t), u(t)) where u(·) ∈ Uq is an admissible

input function of the form u : R+ → Uq ⊂ Rm. This input can be used to model some

external disturbance or under-specified control. A thermostat is a typical system that can

be described by a hybrid automaton. The room temperature x evolves according to ẋ(t) =

−x(t)+u(t)+v(t) when the thermostat is on, and according to ẋ(t) = −x(t)+v(t) when the

thermostat is off. The input v is a disturbance input modelling the influence of the outside

temperature and u is a control input modelling the heating power.

The invariant of a discrete state q is defined as a subset Iq of X . The system can stay

at q if x ∈ Iq. The conditions for switching between discrete states are specified by a set

of guards such that for each discrete transition e = (q, q′), the guard set Ge ⊆ Iq. Each

transition e = (q, q′) is additionally associated with a reset map Re : Ge → 2Iq′ that defines

how the continuous variables x may change when A switches from q to q′. For example,

a non-deterministic linear reset map can be defined as follows: for each x ∈ Ge the new

continuous state x′ = Rx + ε where R is a n× n matrix and ε ∈ P ⊆ X . The set P models

the uncertainty of this reset map.

The functions fq are often assumed to be Lipschitz continuous and the admissible input

functions u(·) piecewise continuous. This ensures the existence and uniqueness of solutions of

the differential equations of each discrete state. However, because of complicated interactions

between the continuous and discrete dynamics, further conditions are needed to guarantee

the existence of a global solution of a hybrid automaton [74].

A state (q, x) of A can change in two ways as follows: (1) by a continuous evolution, the

continuous state x evolves according to the dynamics fq while the discrete state q remains

constant; (2) by a discrete evolution, x satisfies the guard of an outgoing transition, the

system changes discrete state by taking this transition and possibly changing the values of

x according to the associated reset map.

Figure 1.4 sketches a hybrid automaton with two discrete states q1 and q2 and the con-

tinuous state space X is a 2-dimensional bounding rectangle. The invariant I1 of q1 is the

upper part of the rectangle limited by the bold line, and the invariant I2 of q2 is the rectangle

limited by the dashed line. The figure also shows a trajectory starting from a hybrid state

10CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

x ∈ I1

ẋ = f1(x, u) ẋ = f2(x, u)

x ∈ I2

x ∈ G12 | x := R12(x)

x ∈ G21 | x := R21(x)

x2

x3

x1

I1
x4

x5

I2

Figure 1.4: A hybrid automaton and its trajectories.

(q, x1), which first follows the dynamics f1 under some input u(·). Under different inputs,

the system generates different trajectories5 (such as, the dotted curves in the figure). The

infiniteness of the input space results in an infinite number of trajectories starting from the

same state, which forms a dense set, often called a reach tube [66].

When this trajectory reaches the guard set G12 (which is the band between the bold and

the dotted line), the transition from q1 to q2 is enabled. At this point, the invariant condition

of q1 is still satisfied and the system can either switch to q2 or continue with the dynamics

of q1. The former is the case of this example. The system “decides” to switch to q2 when

it reaches point x2. The reset R12 is the identity function and thus the trajectory starts

following the dynamics f2 from the same point x2. When the trajectory reaches a point

x3 in the guard G21 (which is the dashed boundary of I2), it switches back to q1 and the

application of the reset R21 to x3 results in a new state x4, from which the system evolves

again under the dynamics f1.

As illustrated with this example, it is important to note that this model allows to cap-

ture non-determinism in both continuous and discrete dynamics. This non-determinism is

useful for describing disturbances from the environment as well as for taking into account

imprecision in modeling and implementation.

5We use the term “trajectory” instead of “execution” to give a geometric intuition.

1.3. EXHAUSTIVE VERIFICATION 11

1.3 Exhaustive verification

We use the term exhaustive verification to signify an automated proof that a certain model

satisfies a certain property. This problem is also called model checking. Since what we want

is a proof, if we succeed in obtaining it, we can be certain that the model indeed satisfies the

property. We contrast this to partial verification methods that are discussed in the following

section.

In this section, we review exhaustive verification for timed and hybrid automata. The

problem is decidable (but expensive!) for timed automata and undecidable for hybrid au-

tomata in general. In what follows we survey basic methods to tackle the problem for the

two models.

1.3.1 Model checking for timed automata

The model checking problem for timed automata can be stated as: given a timed automaton

(or a set of communicating timed automata) A, and given a property P , check whether A

satisfies P . We will briefly review in this section methods to answer this question for different

types of properties P . This is an extensively studied topic for which tutorials and surveys

are already available (for instance, see [3]). For this reason, we will only sketch the basic

ideas and refer to the literature for an in-depth study.

The simplest type of property P is reachability: we want to know whether a given state

(or configuration) s of the automaton is reachable, that is, whether there exists an execution

starting at some initial state (or set of possible initial states) and reaching s. Consider again

the TA shown in Figure 1.1(b). Is state 4 reachable? It is, and Figure 1.3 presents an

example execution that reaches state 4. Suppose, however, that we replaced the condition

y ≥ 2 in this automaton by y > 5. In that case, state 4 would become unreachable as can

be verified by the reader.

Reachability is not only the simplest, but also the most useful type of property. Safety

properties (those that state that the system has no “bad” behaviors, informally speaking)

12CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

can be reduced to reachability with the help of a monitor. A monitor for a given property

is a “passive” component that observes the behavior of the system and checks whether the

property is satisfied. If the property is violated then the monitor enters a designated “bad”

state. Checking whether the system satisfies the property can then be reduced to checking

whether the “bad” state of the monitor is reachable in the composition of the system and

the monitor.

“bad”

z := 0
0 1 2

a b

any else

z ≤ 10

3
z > 10

Figure 1.5: A timed-automaton monitor for checking a bounded-response property.

An example illustrating monitors is shown in Figure 1.5. The figure shows a monitor

for the property “a is always followed by b within at most 10 time units”. Notice that the

monitor tries to capture the violation of the property, that is, its negation. In particular, the

monitor synchronizes with the system on common labels. The label “any” in the self-loop

transition at state 0 of the monitor is a short-hand for “any label of the system”: notice that

this includes the label a, that is, the monitor is non-deterministic. This is essential, because

the monitor should check that the property holds on any execution and every occurrence of

a. After picking an a at random, the monitor keeps track of the time using its (local) clock

z. If b is observed no later than 10 time units after a, the monitor moves to the “pass” state

2. Otherwise, the monitor can move to the “bad” state 3: if the monitor is able to reach

this state, then the property is violated. The “else” label stands in this case for “any label

except b”.

How to check reachability for timed automata? In the case of a discrete-time seman-

tics, the problem can be reduced to a problem of checking reachability for a discrete state-

transition system: configurations can be seen as vectors of non-negative integers, where the

first element of the vector corresponds to the state and the rest to the values of the clocks.6

6We can always normalize the constants appearing in the timing constraints of the automaton so that the time quantum is

1.3. EXHAUSTIVE VERIFICATION 13

Moreover, the system can be abstracted into a finite-state system by ceasing to increment

clocks whose value exceeds a certain constant cmax: this is the greatest constant with which a

clock is compared in the automaton. For instance, in the example of Figure 1.1(b), cmax = 5.

When a clock’s value exceeds cmax we only need to “remember” this fact, and not the precise

value of the clock, since this does not influence the satisfaction of a timing constraint. With

this observation, one is left with the task of verifying exhaustively a finite-state system. A

vast number of methods exist for fulfilling this task.

The above reduction does not generally apply to timed automata with dense-time seman-

tics. Since the model is inherently infinite-state, the decidability of the reachability problem

is far from obvious. The difficulty has been overcome by Alur and Dill using an elegant tech-

nique: the region graph abstraction [9]. The idea is to partition the infinite space of clock

values (and consequently, the infinite space of configurations) into a finite set of regions so

that two configurations that belong to the same region are equivalent in terms of their pos-

sible future behaviors. The set of regions is carefully constructed so that clock vectors are in

the same region iff they satisfy the same constraints and will continue to do so despite time

elapsing or some of the clocks being reset.

1 ≤ x ≤ 2 ∧ 0 ≤ y ≤ 1

1 ≤ y − x ≤ 2

1

2

1

y

x
0 2

x
0 21

2

1

y

Figure 1.6: A partition of the space of two clocks x and y into 78 regions (left); two zones
(right).

Regions are illustrated in Figure 1.6. The figure shows the partitioning into regions of the

space of two clocks. Roughly speaking, every (x, y) point where x and y assume integer values

1. Then clocks assume integer values.

14CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

not greater than 2 is a region: e.g., the point (x = 1, y = 1) is a region and so is (x = 1, y = 0).

Also, open straight line segments such as x = 0∧0 < y < 1 or 1 < x < 2∧x = y are regions.

Open triangles such as 1 < x < 2 ∧ 0 < y < 1 ∧ x < y are also regions. Finally, unbounded

sets such as 1 < y − x < 2 ∧ x > 2 are also regions. For an exact definition of regions, the

reader is referred to [3]. To keep the number of regions bounded, the same idea as the one

described above in the case of discrete-time is used, namely, abstracting the values of clocks

that exceed some maximal constant cmax. In Figure 1.6, cmax is taken to be 2.

Using the concept of regions, a (dense) timed automaton can again be seen as a finite-state

automaton: its states are pairs of discrete (control) states and regions. However, although

the region graph is an invaluable tool for proving decidability, it is not very useful in practice.

The reason is that the partition into regions is too fine-grained, resulting in a huge number

of regions (exponential in the worst case in both the number of the clocks and the size of the

constants used in the timing constraints). Keeping in mind that the size of the discrete state

space (excluding the clocks) is often already very large, timed automata suffer from what can

be called a “double” state explosion problem. Much of the research in the timed-automata

community has attempted to overcome this problem by finding more efficient verification

methods. Some of these attempts are described below. It is fair to say that no “silver

bullet” has been found to the problem, and TA model checking is still more expensive in

practice than “untimed” model checking (which is consistent with the worst-case theoretical

complexity of the problem). This is still an active area of research.

One of the ideas was to find partitions that are coarser than the region graph. This led

to the ideas of time-abstract quotient [4, 110, 106] and zone graph [16, 35, 105, 33, 70, 22].

The time-abstract quotient of a TA can be seen as a coarse region graph, which still has

the same properties. It is obtained by “splitting” sets of configurations depending on their

successors, using a classic partition-refinement method [82]. In practice, the refined sets are

much coarser than regions (i.e., they are unions of many regions) although in the worst case

they can be as fine as individual regions. The zone graph is based on representing sets of

configurations as convex polyhedra called zones. A zone can be seen as a conjunction of

simple linear constraints on clocks, for instance, 1 ≤ x ≤ 2 ∧ 0 ≤ y ≤ 1. Examples of

zones over two clocks x and y are shown in Figure 1.6 (zones are depicted in thick lines).

1.3. EXHAUSTIVE VERIFICATION 15

The zone graph is built by computing all successor zones of a given initial zone in a forward

manner. Zones may “overlap”, so in theory the zone graph can be exponentially larger than

the region graph! In practice, however, this does not happen. In fact the zone graph is

considerably smaller, and remains to this day the most efficient method of model-checking

timed automata.

Both the time-abstract quotient and the zone-graph methods raise a number of interesting

problems that have to do with the symbolic representation of sets of configurations. Dill [35]

proposed an efficient method to represent zones as matrices of size n × n, where n is the

number of clocks. These are called difference bound matrices or DBMs. DBMs are used

in implementations of the time-abstract quotient as well as the zone graph methods. For

the former, care must be taken to ensure that partition refinement yields only convex sets

of configurations, that is, zones, so that DBMs can be used [106]. In the case of the zone

graph, care must be taken to ensure that the graph remains finite, and a set of abstractions

have been developed for this purpose [105, 34, 22].

Reachability covers many of the properties that one usually wishes to check on a model,

but not all. In particular, liveness properties (those that state, informally speaking, that

the system indeed exhibits “good” behaviors) cannot be reduced to reachability. One way

to model such properties is by means of timed Büchi automata (TBA). TBA are the timed

version of Büchi automata: the latter define sets of infinite behaviors (rather than sets of

finite behaviors, defined by standard finite automata). TBA often arise when composing a

(network of) plain TA with a monitor of a liveness property: the monitor is often modeled as

an “untimed” Büchi automaton, however, the composition of the TA model and the monitor

yields an automaton which is both timed and Büchi. Let us provide an example.

A typical example of a liveness property is the unbounded response property “a is always

followed by b”. Notice that this is the “unbounded” version of the property modeled by the

monitor of Figure 1.5. It is “unbounded” in the sense that it does not specify how much later

b must occur after a. It only requires that b occurs some time after a has occurred. In order

to check this property, we will again build a monitor that attempts to capture the violation

of the property. This monitor is the (untimed) Büchi automaton shown in Figure 1.7. The

16CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

monitor non-deterministically chooses to monitor an event a, moving from state 0 to state

1. If a b never occurs, the monitor has an infinite execution where it remains at accepting

state 1: this is an accepting execution, meaning the property is violated. If b is received,

on the other hand, the monitor moves to state 2, which is non-accepting. If no execution is

accepting, the property is satisfied.

any

0 1 2

any

a b

else

Figure 1.7: A Büchi-automaton monitor for checking an unbounded-response property.

TBA emptiness can be checked in theory on the region graph, interpreted as a finite

(untimed) Büchi automaton. In practice, the time-abstract quotient graph or the zone graph

can be used instead. The former can be easily shown to preserve liveness properties [106].

The fact that the zone graph can be used to check TBA emptiness is non-trivial and has

been completely proven only recently [101].

1.3.2 Verification of hybrid automata

Timed automata are a very special class of hybrid automata. The decidability results for

timed automata were generalized to some slightly more complex classes such as multirate

automata [6, 80] and initialized rectangular automata [89]. In multirate automata, the

derivatives of the continuous variables can take constant values other than 1. In rect-

angular automata, the derivatives are not constant and allowed to take any value inside

some interval. Decidability was also proved for some particular planar systems including 2-

dimensional Piecewise Constant Derivatives PCD [76], planar multipolynomial systems [26]

and non-deterministic planar polygonal systems [14]. Despite these extensions, however, the

reachability problem for general hybrid automata is undecidable. In fact, this holds even for

classes of systems with constant derivatives, such as linear hybrid automata with 3 or more

continuous variables [47].

1.3. EXHAUSTIVE VERIFICATION 17

Let us illustrate some of the issues that arise in hybrid automata reachability. We will

focus only on the problem of computing the reachable sets of hybrid automata where con-

tinuous dynamics are defined by non-trivial differential equations. A major difficulty comes

with the two-phase evolution of these systems, which requires the ability to compute the

successors (or predecessors) of sets of states not only by discrete transitions but also by

continuous dynamics. In the continuous phase, this relates to the special problem of charac-

terizing trajectories of continuous systems. For simplicity, we consider a hybrid automaton

with only one discrete state and the initial set Init. The initial set can be characterized by

a formula φInit(x) whose truth value is 1 iff x ∈ Init. Suppose further that the differential

equation ẋ = f(x) of the continuous dynamics admits a closed-form solution ξx(t) for every

initial condition x; hence the reachable set from Init is exactly the set of x for which the

formula r(x) ≡ ∃x′ : φInit(x
′) ∧ ∃t ≥ 0 : x = ξx′(t) is true. Similarly, proving that the

system does not reach a bad state in the set B, represented by a formula φB(x), amounts to

proving that the formula

∀x′ : φInit(x
′) ⇒ ∀t ≥ 0 : ¬φB(ξx′(t)) (1.1)

is true, which can be done by eliminating the quantifiers.

When the derivative f is constant, for example f(x) = c, we have ξx(t) = x + ct. For

systems with constant derivatives and where invariants and guards are specified by linear

inequalities (such as timed automata and linear hybrid automata) the reachable sets can

be expressed by linear formulas. Therefore the quantifiers in (1.1) can be eliminated using

linear algebra. A number of tools for systems with piecewise constant derivatives have been

developed, such as Kronos [33], Uppaal [70], HyTech [50] and PhaVer [39]. However, the

problem becomes more difficult for systems with non-trivial continuous dynamics. On one

hand, in many cases we do not know explicit solutions of the differential equations. Even

if we know such solutions, such as for a linear system ẋ = Ax with a closed-form solution

ξx(t) = eAtx, a proof of (1.1) is possible only for a very restricted class of matrices A with

special eigenstructure [83, 10].

In addition, successive computations of the states reachable by the continuous dynamics

18CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

and discrete transitions may not terminate, by alternating indefinitely between two or more

discrete states and each time adding more and more successors. Indeed, the reachability

problem is undecidable for general hybrid systems, except for the classes with the above

mentioned special linear continuous dynamics and memoryless switching dynamics [83, 10].

Since, in general, there exists no exact reachable set computation method, approximate

methods have been developed. In order to be able to compute the reachable sets of a

hybrid automaton, we need a finite syntactic representation of these sets. The continuous

state space of hybrid automata is in Rn and hence can only be represented symbolically,

such as by formulas of some logic. Examples of classes of subsets of Rn which admit a

symbolic representation are the polyhedral sets (represented by Boolean combinations of

linear inequalities) and the semi-algebraic sets (represented by combinations of polynomial

inequalities). Another requirement in choosing a set representation is that it can be efficiently

manipulated not only for the computation of continuous successors, but also for the treatment

of discrete transitions, such as set intersection for computing the states satisfying the guard

conditions and the images by the resets. Polyhedra, ellipsoids and level sets are the most

commonly used representations in hybrid systems reachability algorithms [45, 30, 27, 67,

20, 11, 98, 77, 40, 59, 29]. These representations have been used in a variety of tools such as

Coho[45], CheckMate [27], d/dt [13], VeriShift [20], HYSDEL [99], MPT [69], HJB toolbox [77],

Ellipsoidal Toolbox ET [68]. In the following, we review some techniques for reachability

computation of continuous systems and their extensions to hybrid systems. The field is vast,

so we can only provide a brief review and refer the reader to the current literature for a more

extensive view.

In order to control the approximation error, as in numerical simulation, most reachability

algorithms use a time discretization and operate on a step-by-step basis, for example Rk+1 =

δ(Rk, f, tk, tk+1) where δ denotes a function that returns an approximation of all the states

reachable from Rk by the dynamics ẋ = f(x) during the time interval [tk, tk+1]. The quantity

hk = tk+1 − tk is called the time step. We use δt to denote the set of all states reachable at

a discrete time point t and δ[t,t′] the set of all states reachable in dense time, that is for all

time points τ ∈ [t, t′].

1.3. EXHAUSTIVE VERIFICATION 19

Autonomous linear systems. For a system f(x) = Ax, if Xk is a bounded convex

polyhedron represented by the convex hull of its vertices Xk = chull{v1, . . . , vm}, then

the set of all states reachable from Xk at exactly time tk+1 can be written as Xk+1 =

δtk+1
= chull{eAhkv1, . . . , e

Ahkvm} where eAt denotes the matrix exponentiation (which is

a linear operator). Then, the set δ[tk,tk+1] of all states reachable from Xk during the time

interval [tk, tk+1] can be approximated by “interpolating” the sets Xk and Xk+1, for example

δ[tk,tk+1](X
k) = Ck+1 = chull(Xk ∩Xk+1). In order to achieve a conservative approximation,

Ck+1 is then “bloated” by some amount ε that bounds its distance to the exact reachable

set. The computation in the next step (k + 1) can start from Xk+1 to compute Xk+2, and

then from Xk+1 and Xk+2 to obtain the bloated convex hull Ck+2
o (see Figure 1.8).

This method is indeed the basis of the reachability computation technique for linear sys-

tems implemented in the tools CheckMate [27] and d/dt [13]. The tool d/dt additionally

over-approximates the convex polyhedra Xk by an orthogonal polyhedron Gk, in order to

accumulate all the reachable states in a single orthogonal polyhedron. Orthogonal poly-

hedra [21] (which can be defined as unions of closed full-dimensional hyper-rectangles) are,

unlike convex polyhedra, closed under the union operation. In addition, they admit a canoni-

cal representation allowing to perform Boolean operations (in particular the union operation)

more efficiently than operations on convex polyhedra. Figure 1.8 illustrates the first two it-

erations of this method where the initial set X0 is a 2-dimensional segment and the first

time step is r.

Linear systems with uncertain input. For a system ẋ(t) = Ax(t) + u(t) where u(·) is

a piecewise continuous function such that ||u(·)|| ≤ µ, and || · || is some norm on Rm. The

above described method for autonomous systems can be extended to these systems, using

the Maximum principle from optimal control [58]. Indeed, given a state x∗ on the boundary

of the initial set X0, one can determine an input function u∗(·) such that the trajectory from

x∗ under this input lies on the boundary of the reachable set.

To exploit this fact, one can represent the reachable set by its support function. The

support function of a compact and convex set X ⊂ Rn is ρX : Rn → R such that for a vector

l ∈ Rn, ρ(l) = maxx∈X〈l, x〉 (where 〈·〉 denotes the inner product). Figure 1.9 illustrates this

20CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

Figure 1.8: Illustration of the reachability technique for linear systems using convex polyhe-
dra.

x∗i (t)

li(t)
X0

li

xi

Hi(t)
Hi

Figure 1.9: Illustration of support functions.

1.3. EXHAUSTIVE VERIFICATION 21

definition. Therefore, if X is a convex polyhedron, it can be represented as the intersection

of its halfspaces X = ∩m
i=1Hi where Hi = {x ∈ Rn : 〈li, x〉 ≤ ρX(li) = 〈li, x∗〉}; li is indeed

the normal vector of the hyperplane of Hi. The point x∗ lies on this hyperplane and is called

the support vector of X in the direction li. Then, using the Maximum principle, we can

find for each hyperplane Hi an input function under which the evolutions of li(t) and x∗(t)

define a new hyperplane Hi(t) = {x ∈ Rn : 〈li, x〉 ≤ ρX(li(t)) = 〈li(t), x∗(t)〉} . Then, from

all such hyperplanes Hi(t) (i = 1, . . . ,m) we define a polyhedron that over-approximates the

reachable set at time t.

This is also the basic principle employed by the reachability technique using ellipsoidal

approximations [67, 20, 68]. An ellipsoid X can be described as X = {x ∈ Rn : xT Q−1x ≤ 1}
where Q is positive definite; its support function is ρX(l) =

√
lT Ql and its support vector

in the direction l is Ql√
lT Ql

. Then, for a given point on the boundary of the ellipsoid, one

can use the Maximum principle to track the time evolution of the corresponding support

vector l and that of the matrix Q, in order to yield an over-approximation Eo and an under-

approximation Ei of the reachable set (see Figure 1.10). This method and its extension to

hybrid systems were implemented in the Ellipsoidal Toolbox ET [68].

Another way to handle the input uncertainty is to bound its effects in each time step

by enlarging the reachable set of the corresponding autonomous system as follows: Xk+1 =

eAhkXk ⊕ B(η) where ⊕ denotes the Minkowski sum, and B(η) the ball centered at the

origin with the radius η =
ehk ||A|| − 1

||A||
µ (µ is a bound of ||u||). This expansion is similar to

the bloating operation used in the method for autonomous systems to cover all the states

reachable in dense time.

If the sets Xk are polyhedra, one can use the infinity norm and B(η) is thus a box. The

computation of the Minkowski sum may generate new sets with high geometric complexity

(expressed in terms of the number of vertices and facets). Recently, [40] proposed to use

zonotopes, instead of convex polyhedra, as a new set representation. A zonotope X can be

described as X = {
m∑

i=1

αigi | ∀i ∈ {1, . . . ,m} : αi ∈ [−1, 1]}, and the vectors gi are called

generators (see Figure 1.11). An interesting property of zonotopes is that the Minkowski

sum of two zonotopes can be obtained by taking the union of their generators. Figure 1.12

22CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

Figure 1.10: Reachability computation using ellipsoids [68].

Figure 1.11: A zonotope.

illustrate one iteration of the reachability computation using zonotopes. The first zonotope

(which is indeed a parallelepiped) is the initial set X0, the second one is X1 = eAh0X0, that

is the result of applying the linear transformation eAh0 to X0. The Minkowski sum X1 ⊕B

where B is the box representing the effects of uncertainty is the last zonotope shown in the

figure. One can see that the number of generators of the resulting zonotope grows iteration

after iteration, but we can over-approximate it by a zonotope with a smaller number of

generators [42]. The main inconvenience of this representation is that Boolean operations

over zonotopes are not easy to compute. A method for computing the intersection of a

zonotope and a hyperplane was proposed in [41]. Alternatively, oriented boxes can provide

a good compromise between the approximation error and computational expenses [94].

Non-linear systems. While many properties of linear systems can be exploited to de-

velop relatively efficient reachability techniques, the situation is more difficult for non-linear

systems. One approach to solving this problem is to use optimization to describe the ‘ex-

tremal behaviors’. In [30], in each time step, the boundary of an orthogonal polyhedron is

lifted outwards by some amount that guarantees to cover all the reachable states during that

1.3. EXHAUSTIVE VERIFICATION 23

Figure 1.12: Reachability computation using zonotopes.

step, as shown in Figure 1.13. For example, a face e is lifted outwards by the amount fmh

if fm > 0 where fm is the maximum of the projection of the derivative on the normal of e

within some neighborhood of e, and h is the time step. The reachability technique in [27]

first computes the convex hull C of the successors at time t from the vertices of the initial

polyhedron X0 (see Figure 1.13), as in the above described method for linear systems. How-

ever, unlike for linear systems, this convex hull C clearly does not include all the reachable

states at t (as illustrated by the dashed trajectory in the figure). Nevertheless, the directions

of its faces can be used to form a ‘tight’7 polyhedral over-approximation X1 by estimating

the distance to the exact set in the directions of the faces. A similar idea has recently been

used in [91] where the reachable sets are approximated by template polyhedra (with fixed

constraint matrices) using a Taylor expansion of the trajectories.

Another approach is based on a formulation of the evolution of the reachable set, rep-

resented by its level set, according a Hamilton-Jacobi partial differential equation (see for

example [98]). This technique was implemented in the HJB toolbox [77].

Polynomial systems have recently received a special interest, partly because of their appli-

cations in the modeling and analysis of biological systems. A method using Bézier techniques

for these systems was proposed in [29]. It exploits the fact that by choosing an appropriate

basis change, one can exploit the coeficients of the representation of a polymial in order to

compute the image of a set by the polynomial.

7if the optimization problem can be exactly solved.

24CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

fmh

e X0

C

X1

Figure 1.13: Illustration of reachability computations for non-linear systems using optimiza-
tion on orthogonal polyhedra (left) and convex polyhedra (right).

Most of the above described methods are equipped with an error control mechanism,

that is, they can produce an approximation as accurate as desired. Nevertheless, it is not

always necessary to obtain a very accurate approximation of the reachable set (which is

computationally expensive) but only sufficiently accurate to prove the property of interest.

Barrier certificates [86] and polynomial invariants [97] can be seen as such approximations.

A barrier certificate can be intuitively seen as a proof of the existence of an ‘impermeable’

frontier between the reachable set and the bad set. The method in [86] searches for such a

frontier in the form of a polynomial, and the ‘impermeability’ can be expressed using the

derivatives along the frontier. This results in an optimization problem that can be solved

using the sum of squares optimization tool SOSTOOLS [87].

Abstraction. The main idea of this approach is to start with a rough (conservative and

often discrete) approximation of a hybrid system and then iteratively refine it. This refine-

ment is often local in the sense that it uses the previous analysis results to determine where

the approximation error is too large to prove the property (see for example [96, 8, 28]). A

popular abstraction approach is predicate abstraction where a conservative abstraction can

be constructed by mapping the infinite set of states of the hybrid system to a finite set

of abstract states using a set of predicates. The property is then verified in the abstract

system. If it holds in the abstract system, it also holds in the concrete hybrid system. Oth-

1.3. EXHAUSTIVE VERIFICATION 25

erwise, a counter-example can be generated. If the abstract counter-example corresponds to

a concrete trajectory, then the hybrid system does not satisfy the property; otherwise, the

abstract counter-example is spurious because the abstraction is too conservative, and the

abstraction can then be refined to achieve a better precision.

In the following, we illustrate this approach by explaining the method using polynomials

proposed in [96]. The continuous state space Rn is partitioned using the signs of a set

of polynomials. As an example, an abstract state s defined by g1(x) < 0 ∧ g2(x) > 0

corresponds to a (possibly infinite) set c(s) of concrete states. Then, the abstract transition

over-approximates the concrete one such that there is a transition from s to s′ if there exists

a trajectory from a concrete state in c(s) to another concrete state in c(s′). More precisely, in

this method, first the set of polynomials is saturated by adding all the high-order derivatives

of the initial polynomials. Then, by looking at the sign of the polynomials, it is possible to

decide whether a trajectory can go from one abstract state to another. For example, if there

are only two polynomials g1 and g2 such that g2 = ġ1. Suppose that the abstract state s

satisfies g1 = 0 and g2 > 0, then the new sign of g1 is positive and from s we add a transition

to s′ satisfying gi > 0. The abstraction can be refined by adding more polynomials.

Another abstraction method in [8] uses linear predicates to partition the continuous state

space, and thus each abstract c(s) is a convex polyhedron. The abstract transition from s

to s′ is determined by computing the reachable set from c(s) and check whether it reaches

c(s′). This is less expensive than the reachability computation on the hybrid system which

requires handling accumulated reachable sets with geometric complexity that grows after

successive continuous and discrete evolutions.

Box decompositions are also commonly used to define abstract systems, such as in [90, 59].

The abstract system can then be built by exploiting the properties of the system’s vector

fields over such decompositions. The method proposed in [59] makes use of the following

special property of multi-affine systems:8 the value of a multi-affine function f(x) with x

inside some box can be expressed as a linear combination of the values of f at the vertices

of the box. Using this, one can determine whether the derivative vector on the boundary

8Multi-affine systems are a particular class of polynomial systems such that if all the variables xi are constant, the derivatives
are linear in xj with j not equal to i.

26CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

of a box points outwards or inwards, in order to over-approximate the reachability between

adjacent boxes.

While discrete abstractions allow benefiting from the well-developed verification algo-

rithms for discrete systems, they might be too coarse to preserve interesting properties.

Timed abstractions can be built by adding bounds on the time for the system to reach from

one abstract state to another. A generalization of this idea is called hybridization [12] involv-

ing approximating a complex system with a simpler system, for which more efficient analysis

tools are available. To this end, using a partition of the state space, one can approximate

locally the system’s dynamics in each region by a simpler dynamics. Globally, the dynamics

changes when moving from one region to another, and the resulting approximate system be-

haves like a hybrid system and this approximation process is therefore called hybridization.

Then, the resulting system is used to yield approximate analysis results for the original sys-

tem. The usefulness of this approach (in terms of accuracy and computational tractability)

depends on the choice of the approximate system. For example, the hybridization methods

using piecewise affine approximate systems, proposed in [12], allows approximating a non-

linear system with a good convergence rate and, additionally, preserving the attractors of

the original system. In addition, the resulting approximate systems can be handled by the

existing tools for piecewise affine systems (presented earlier in this section).

1.4 Partial verification

Exhaustive verification is desirable since, if it succeeds, it guarantees that a model satisfies

a property. But exhaustive verification has its limitations as we have seen: state-explosion

or even undecidability. In fact, state-explosion is a phenomenon that is also prevalent in

the exhaustive verification of much simpler, finite-state models. This phenomenon has so far

hindered a wider adoption of exhaustive verification in industrial applications, because the

size of the problems tackled there is far too big to treat exhaustively. Instead, practitioners

use simulation as their main verification tool.9 Even though simulation cannot prove that a

9The term “verification” usually denotes simulation-based verification in industrial jargon, whereas “formal verification” is
used to denote exhaustive verification.

1.4. PARTIAL VERIFICATION 27

property is satisfied, it can certainly reveal cases where it is not satisfied, that is, potential

bugs of the real system, its model, or its specification.

An advantage of simulation is that it has some time-scalability properties: running 200

simulations is better (i.e., likely to discover more bugs) than running 100 simulations, and

running longer simulations is also better. Moreover, if 100 simulations can be run in one day,

say, then in two days we can most likely run 200 simulations. In contrast, most exhaustive

verification tools suffer from a “hitting the wall” type of problem. Once they exhaust the

main memory of the computer that they run on, they start using disk space, which involves

a lot of swapping on the OS side. Disk swapping virtually takes all processing time, leading

verification to a halt. This means that the number of new states that are explored per unit

of time radically decreases to practically zero, as illustrated in Figure 1.14. Usually this wall

is hit after relatively little time, in the order of minutes.10 Then, running the tool for many

hours will not improve the number of states that are explored compared to running it for

ten minutes. This is not time-scalable.

states

time

number of

explored

main memory full,
disk-swapping starts

Figure 1.14: Hitting the exhaustive verification wall.

10For example, using a model-checker that can explore 105 new states per second, on a model that requires 1000 bytes to
represent each state, consumes memory at a rate of approximately 100 MB/sec. This means that a main memory of size 8
GB can be filled in about 2 minutes. Exploration rates in the order of 105 states per second are not unusual for an advanced
model-checker such as Spin [52].

28CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

Time-scalability is obviously critical in an industrial setting, where predictability in terms

of allocation of resources vs. expected benefits is highly desirable. Although simulation is

more time-scalable, it is still not fully predictable. Running 200 instead of 100 simulations

obviously does not guarantee that twice as many bugs will be found. It does not guarantee

either that twice as many states will be explored. These are some of the reasons that

prompted more systematic methodologies for simulation-based verification (e.g., see [108]

for the case of the hardware industry and [44] for work done in a software context). In the

hardware case, these methodologies include specialized languages for writing testbenches (i.e.,

simulation environments that allow to specify input-generation policies as well as property

monitors), for example, see [111, 53].

In this context, the principle of randomization is often used as a good aid to uncover

corner cases and eventually bugs (e.g., see [75, 64, 92, 78]). We discuss some applications

of the randomized state-space exploration principle to embedded system models in the rest

of this section. We also introduce the concept of resource-aware verification, which goes

beyond randomization, and includes all verification methods that are explicitly aware of their

memory and time resources. Finally, we examine a particular randomized search algorithm,

RRT, and its application to hybrid automata.

1.4.1 Randomized exploration and resource-aware verification

A simple technique to randomly explore a state space is random walk: pick randomly an

initial state s0, then pick randomly one of the successors of s0, say s1, then pick randomly

one of the successors of s1, and so on. This is obviously a very inexpensive algorithm in

terms of space, since it needs only to store a single state at a given time, plus perhaps its

set of successor states.11

Basic random walk is limited, especially when bugs lie very “deep” in the state space,

that is, the paths to reach an error state are very long. Then, unless the number of such

paths is very large, the probability to follow a path that leads to an erroneous state is

11If there is a number of successors() function available, then we don’t even need to keep the set of successor states. We can
just compute the number of successors, say n, then randomly choose an integer i in the interval [1..n], and then replace the
current state with its i-th successor.

1.4. PARTIAL VERIFICATION 29

very small. To alleviate this problem different variants of “pure” random walk have been

proposed. One such variant is the deep random search (DRS) algorithm proposed in [46]

and applied in the context of timed automata. DRS stores during the random walk a subset

of the nodes it visits, called a fringe, and then randomly backtracks to a node in the fringe

when a deadlock (a node with no successors) is reached. DRS can be applied to any model

for which forward reachability is available. In the case of timed automata, the “nodes” that

DRS visits correspond to symbolic states consisting of discrete state vectors plus symbolic

representations of sets of clock values, using data structures such as DBMs, as explained

above.

As described above, DRS maintains a fringe, which is a set of states. For “deep” random

walks, this fringe can grow quite large, which means even DRS can suffer from state explosion

and disk-swapping problems, like exhaustive verification methods. In order to alleviate these

problems, an idea is to embed the “hard” memory constraints directly into the algorithm

itself. This led to the concept of resource-aware, and in particular memory-aware, state-

space exploration [104]. Memory-aware algorithms are meant to deal with the disk-swapping

problem in a rather radical way: by simply using no disk memory, only main memory.

Memory-aware algorithms are by definition memory-bounded: they use no more than a

specified amount of memory. Note, however, that not all memory-bounded algorithms are

memory-aware. An example is random-walk: it is memory-bounded, since it stores a single

state in memory at any given time. But it is not memory-aware, since its behavior does

not generally depend on the amount of memory available. Thus, even though main memory

could hold more than just one states, the random walk method does not make use of the

extra space available.

Many existing verification techniques are memory-aware, including deterministic methods

such as bit-state hashing [51], as well as randomized ones such as depth-first traversal with

replacement [54]. See [104] for a detailed discussion. The idea of memory-aware verification

is also exploited in [1], where a class of randomized exploration algorithms are introduced

that use a parameter N representing the number of states that the algorithm is allowed to

maintain at any given time during its execution. Given a model, N can be computed as

30CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

follows. If R is the total size of (available) RAM memory (say in bytes) and storing a state

of this model costs K bytes, then N = R
K

.

Having N as an upper bound, many different randomized exploration algorithms can be

tried out, depending on how two main policies are defined: how, given the current state of

the algorithm, to pick which node to explore next (the select function), and how, given a

selected node, to pick a successor of this node and update the state (the update function).

Notice that updating the state does not necessarily mean just adding the state to the current

set of visited states. Indeed, if the current set of states already holds N states, then in order

to add a new state, at least one of the current states needs to be removed. There are

obviously many different policies for choosing the select and update functions, and notice

that randomization can be used in both functions.

It would be nice to be able to compare randomized algorithms such as the ones described

above, so as to pick the “best” one for a given application. What criteria and methods

can be used for carrying out such a comparison? In terms of criteria, they can be roughly

classified in two classes: performance criteria and coverage criteria. The former represent the

algorithm’s performance (both in terms of memory and time) while the latter the algorithm’s

ability to “cover” the state space. We briefly discuss some criteria of this kind below.

One criterion which is perhaps a hybrid of performance and coverage is the mean cover

time, or average time that it takes for the algorithm to visit all, or a given percentage, of

the reachable states. Clearly, the smaller the mean cover time that an algorithm has (for a

given percentage), the better it performs. This also means that given more time, the same

algorithm is likely to cover more nodes than another algorithm with larger mean cover time.

Conversely, one may also be interested in the mean number of covered states in a given, fixed,

amount of time.

A set of criteria can be defined based on reachability probabilities of states. The reacha-

bility probability of a given state s can be defined as the probability that a given run of the

algorithm (and its associated parameters) visits state s. Then, we could define as comparison

criterion, the minimum reachability probability over all reachable states.

1.4. PARTIAL VERIFICATION 31

Note that the above criteria depend not only on the algorithm, but also on the structure

of the state space to be explored. This state space is essentially a directed graph. Charac-

teristics of the graph such as its diameter, the degree of its nodes, whether it is a tree, a

DAG (directed acyclic graph), or a graph with cycles, and so on, will generally influence the

behavior of an algorithm greatly. Because of this dependence, obtaining analytical formulas

for the above criteria is a very difficult tasks. Even for simple graphs such as regular trees, it

can be non-trivial [1]. On the other hand, experimental results can often be obtained much

more easily, e.g., see [84, 1]. This is an exciting field of research and we expect it to become

more popular in the near future, because of its high relevance in industrial practice.

1.4.2 RRTs for hybrid automata

Finding a trajectory of a hybrid automaton violating a safety property can be seen as a path

planning problem in robotics, where the goal is to find feasible trajectories in some environ-

ment that take a robot from an initial point to a goal point [72]. In the following, we describe

a partial verification algorithm based on RRT (Rapidly-exploring Random Trees) [71], a

probabilistic path and motion planning technique with a good space-covering property. The

RRT algorithm has been used to solve a variety of reachability-related problems such as

hybrid systems planning, control, and verification (see for example [37, 17, 57, 25, 85] and

references therein). This approach indeed can be thought of as a simulation-based verifica-

tion approach. Along this line, one can mention the work on systematic simulation [56] and

its extension with sensitivity analysis [36]. For some classes of stable systems, it is possible

to use a finite number of simulations and a bisimulation metric to prove a safety property of

a hybrid system [43].

The first part of the section will be devoted to the basic RRT algorithm. In the second

part we extend the RRT algorithm to treat hybrid systems. By “the basic RRT algorithm”,

we mean the algorithm for a continuous system and without problem-specific optimization.

For a thorough description of RRTs and their applications in various domains, the reader is

referred to a survey [71] and numerous articles in the RRT literature.

32CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

Procedure RRT Tree Generation(xinit, kmax)
T .init(xinit); k = 1
Repeat

xgoal = Random State(X);
xnear = Neighbor(T , xgoal);
(u, xnew) = New State(xnear, xgoal, h);
T .Add Vertex(xnew);
T .Add Edge(xnear, xnew, u);

Until(k ≥ kmax ∨ B ∩ V ertices(T k) 6= ∅)

Figure 1.15: The basic RRT algorithm.

Essentially, the RRT algorithm constructs a tree T , the root of the which corresponds to

the initial state xinit. Each directed edge of the tree T is labeled with an input selected from

a set of admissible input functions. Hence, an edge labeled with u that connects the vertex

x to the vertex x′ means that the state x′ is reached from x by applying the input u over a

duration of h time, called a time step. When a variable time step is used, each edge is also

labeled with the corresponding value of h.

In each iteration the function Random State samples a goal state xgoal from the state

space X . We call it a goal state because it indicates the direction towards which the tree is

expected to evolve. Then, a neighbor state xnear is determined as a state in the tree closest

to xgoal, according to some pre-defined metric. This neighbor state is used as the starting

state for the next expansion of the tree. The function New State creates a trajectory from

xnear towards xgoal by applying an admissible input function u for some time h. Finally, a

new vertex corresponding to xnew is added in the tree T with an edge from xnear to xnew. In

the next iteration, the algorithm samples a new goal state again.

Figure 1.16 illustrates one iteration of the algorithm. One can see that xnear is the state

closest to the current goal state xgoal. From xnear the system evolves towards xgoal under the

input u, which results in a new state xnew after h time.

The algorithm terminates after kmax iterations or until a bad state in B is reached. Dif-

ferent implementations of the functions in the basic algorithm and different choices of the

metric and of the successor functions in the problem formulation result in different versions

of the RRT algorithm. Note that in most versions of the RRT algorithms, the sampling

1.4. PARTIAL VERIFICATION 33

distribution of xgoal is uniform over X , and the metric ρ is the Euclidian distance.

Figure 1.16: Illustration of one iteration of the RRT algorithm.

Probabilistic completeness is an important property of the RRT algorithm [65, 71], which

is stated as follows: If a feasible trajectory from the initial state xinit to the goal state xgoal

exists, then the probability that the RRT algorithm finds it tends to 1 as the number k of

iterations tends to infinity. Although the interest of this theorem is mainly theoretical, since

it is impossible in practice to perform an infinite number of iterations, this result is a way

to explain the good space-covering property of the RRT algorithm.

We now describe an extension of the RRT algorithm to hybrid systems, which we call

hRRT. The extension consists of the following points. Since the state space is now hybrid,

sampling a state requires not only sampling a continuous state but also a discrete state.

In addition, to determine a nearest neighbor of a state, we need to define a distance

between two hybrid states. In a continuous setting where the state space is a subset of

Rn, many distance metrics exist and can be used in the RRT algorithms. Nevertheless, in

a hybrid setting defining a meaningful hybrid distance is a difficult problem. Finally, the

successor function for a hybrid system should compute not only successors by continuous

evolution but also successors by discrete evolution. In the following we briefly describe a

hybrid distance, which is not a metric but proved to be appropriate for the purposes of

developing guiding strategies discussed in Section 1.5.

Hybrid distance. Given two hybrid states s = (q, x) and s′ = (q′, x′), if they have the

same discrete component, that is, q = q′, we can use some usual metric in Rn, such as the

Euclidian metric. When q 6= q′, it is natural to use the average length of the trajectories from

one to another, which is explained using an example shown in Figure 1.17. We consider a

34CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

discrete path γ which is a sequence of two transitions e1e2 where e1 = (q, q1) and e2 = (q1, q
′).

• The average length of the path γ is some distance between the image of the first guard

G(q,q1) by the first reset function R(q,q1) and the second guard G(q1,q′). The distance

between two sets can be defined as the Euclidian distance between their geometric

centroids. This distance is shown in the middle figure.

• The average length of trajectories from s = (q, x) to s = (q′, x′) following the path γ

is the sum of three distances (shown in Figure 1.17 from left to right): the distance

between x and the first guard G(q,q1), the average length d of the path, and the distance

between R(q1,q′)(G(q1,q′)) and x′.

u u
u u

u

u

- - -

66 6

- -

�
�

�
�

�

�
�
�
�
�
�

de1
e2

q1q

G(q,q1)

R(q,q1)(G(q,q1))

G(q1,q′)

R(q1,q′)(G(q1,q′))

q′

x

x′

Figure 1.17: Illustration of the hybrid distance.

If the set Γ(q, q′) of all the discrete paths from q to q′ is empty, the distance dH(s, s′)

from s to s′ is equal to infinity. Otherwise, dH(s, s′) = min
γ∈Γ(q,q′)

lenγ(s, s
′). It is easy to see

that the hybrid distance dH is only a pseudo metric since it does not satisfy the symmetry

requirement. Indeed, the underlying discrete structure of a hybrid automaton is a directed

graph.

1.5 Testing

Partial verification can be termed “model testing”. It is “testing” in the sense that it is

generally incomplete. In this section we look at another testing activity, however, not of

models, but of physical systems. In particular, we consider the following scenario: we are

1.5. TESTING 35

given a specification and a system under test (SUT) and we want to check whether the SUT

satisfies the specification.

The SUT can be a software system, a hardware system, or a mix of both. Often the

SUT is a black-box in the sense that we have no knowledge of its “internals” (i.e., how it is

built). For example, if the SUT is a SW system, we have no access to the source code. If it

is HW, we have no access to the HDL or other model that was used to build the circuit.12

Instead, we can interact with the SUT by means of inputs and outputs: we can provide the

inputs and observe the outputs. A precise, executable description of which inputs to provide

and when and how to proceed depending on the observed outputs is called a test case. The

test case is executed on the SUT13 and at the end of the execution it outputs a PASS or

FAIL verdict14. In the first case the SUT has passed the test, meaning that the test did not

discover non-conformance to the specification (however, this clearly does not imply that the

SUT meets the specification, as another test may fail). In the case of a FAIL, we know that

the SUT does not meet its specification (unless the test case is itself erroneous).

In this context, the problem we are interested in is that of test generation, namely, syn-

thesizing test cases automatically from a formal description of the specification. The benefits

are obvious: test cases do not have to be “manually” written, which is source of errors, as

with any other design process. The drawbacks of automatic test generation are similar to

many other automatic synthesis techniques: state explosion problems and competition with

human designers who can often “do better”. In the case of testing, “better” may mean writ-

ing a minimal set of test cases that can cover all “important” aspects of the specification.

“Minimal” can be made a formal notion (e.g., smallest number of test cases, small size of test

cases, etc.). The notion of “importance” is much harder to formalize, however. Coverage has

been formalized in many different ways since the beginnings of testing, in terms of statement

coverage, condition coverage, and so on (e.g., see [112]). We will briefly return to some of

12Even if the SUT is not entirely black-box, we may still want to treat it as a black-box, because we simply have no effective
way of taking advantage of the knowledge we have about its internals. For example, even if we have access to the source code
of some piece of SW we want to check, we may still treat this system as black-box because we have no means of analyzing the
source code (e.g., with some verification or static analysis method).

13Often the mere activity of executing a test case is a significant problem by itself. This is the case, for instance, when
ensuring right timing on the inputs and observing accurate times of the outputs is crucial. This problem is beyond the scope
of this chapter, although it is recognized as an important and practical problem.

14generally further verdict types may also appear, e.g., “inconclusive”, “error”, “none” (see the standards: UML Testing
Profile by the OMG or Testing and Test Control Notation by ETSI)

36CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

these notions below.

In the next two sections, we discuss testing and test generation methods for timed and

hybrid automata, respectively.

1.6 Test generation for timed automata

Before we discuss how test cases can be generated automatically from a given formal speci-

fication, we must first define what it means for an SUT to conform to a specification. The

answer to this question depends on the setting, and over the years many different notions

of conformance have been proposed by researchers. In this section, we will use a setting

based on timed automata. In particular, we will use a model of timed automata with inputs

and outputs (TAIO) to formally capture the specification. A TAIO is simply a TA where

each one of the events labeling its transitions is distinguished to be either an input or an

output (but not both). Some examples are shown in Figure 1.18. Input events are annotated

with ‘?’ and outputs with ‘!’. Let us look in particular at TAIO I1. I1 models a system that

initially awaits input event a. When (and if) a is received, the system “replies” by producing

output event b. The output b is produced exactly 5 time units after a was received. I2 is

similar to I1, except that its output time is non-deterministic, although it is guaranteed to

be no earlier than 4 and no later than 5 time units from the time a was received. (In these

examples we assume that outputs implicitly have an associated notion of urgency: they can

be delayed but must be eventually emitted according to the guards specified in the TAIO.)

I3 is a variant of I2. I4 receives a but does not “respond”.

a? x := 0

b!

I1

x = 5

a?

I4

a? x := 0

b!

I3

1 ≤ x ≤ 5

a? x := 0

b!

I2

4 ≤ x ≤ 5

a? x := 0

b!

S

2 ≤ x ≤ 8

Figure 1.18: Timed automata with inputs and outputs.

1.6. TEST GENERATION FOR TIMED AUTOMATA 37

To capture conformance in a formal way, we use the timed input-output conformance

relation, or tioco, introduced in [61].15 We illustrate tioco in the sequel through an informal

description and by providing examples. A formal study can be found in [61, 60].

In Figure 1.18, TAIO Ii are given as examples of possible SUTs (they model the behaviors

of such SUTs). On the other hand, TAIO S is the formal specification. S states that when/if

a is received, b must be produced within 2 to 8 time units. Which of the four SUTs conform

to this specification? It should be clear that I1 and I2 conform to S, since all their behaviors

satisfy the above requirement. What about I3? Some of its behaviors conform to S and

others (the ones where b is produced earlier than 2 time units after a) do not. We therefore

decide that I3 does not conform to S: this is because it may produce an output too early.

It should also be clear that I4 should not conform to S: it produces no output at all.

tioco captures the above informal reasoning in a formal way. It captures the fact that

the SUT is allowed to be “more output-deterministic” than the specification. Indeed, the

specification generally gives some freedom in terms of what are the legal outputs and what

are legal times that these outputs may be produced. A given SUT, which can be seen as one

of the many possible implementations of the specification, may choose to produce any legal

output, at any legal time. Different implementations will make different choices, depending

on various performance, cost and other trade-offs.

An input-output system like the SUT is an open system, supposed to function in a given

environment that generates inputs for the SUT and consumes its outputs. It is often the

case that the environment is constrained in the sense that it does not behave in an arbitrary

way. The SUT is supposed to function correctly in that sort of environment, but not nec-

essarily in another environment, that behaves differently. For instance, a device driver for

a given peripheral is supposed to work correctly only for a certain set of devices and may

not work for others. An input-output specification must therefore be capable of expressing

assumptions about the environment. Our modeling framework (and tioco) allows to capture

such assumptions in an elegant way, as illustrated in Figure 1.19. The general scheme is

15tioco is inspired by the “untimed” conformance relation ioco introduced by Tretmans and also used in the context of
testing [100]. However, tioco differs from ioco in many ways. An important difference is that tioco has no concept of quiescence.
The latter has been included in ioco as an implicit (and somewhat problematic because it is non-quantified) way of modeling
timeouts. In our setting this is unnecessary because time is a “first-class citizen” in our model.

38CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

shown to the left of the figure. It consists in modeling the specification as two separate, but

communicating, TAIO models. One model captures the requirements on the SUT, that is,

the guarantees that the SUT provides on its outputs: this model can be built in such a way

that it is receptive to any input at any given time, although it may of course ignore inputs

that are “illegal” or arrive at “illegal” times. The other model captures the assumptions

that the SUT makes on its inputs: these specify formally which inputs are legal and at what

times. These assumptions must be satisfied by the environment of the SUT.

(on the SUT)

(on the environment)

final specification

open? done! close?

done!

x := 0

x ≤ 1

x ≤ 2 x := 0
any?

any?
any?close?

open?

open? done! close?

done!

open?

close?

done!

assumptions

requirements

done!open?

close?

after composition

open? done! close?
x := 0

x ≤ 1

x ≤ 2 x := 0

done!

Figure 1.19: Specification including assumptions on the environment: generic scheme (left)
and example (right).

We illustrate how this works more precisely through the example shown to the right of

Figure 1.19. The specification concerns a system that is supposed to receive a sequence of

requests to open or close, say a file. The system executes each request in a given amount of

time: it takes at most 2 time units to open and at most 1 time unit to close. During that

time, no new request should be received. Also, every open request should be followed by a

close before a new open can be issued, and the first request should be an open.

All these assumptions on the environment are captured formally by the untimed automa-

1.6. TEST GENERATION FOR TIMED AUTOMATA 39

ton shown in Figure 1.19. This automaton is composed with the input-receptive TAIO shown

at the top right, to yield the TAIO shown at the bottom right. The latter represents the final

specification. Notice that this final specification is not an input-receptive TAIO: for instance,

it does not accept a second open? request until the first one is fulfilled by issuing output

done!. Having non-input-receptive specifications is essential in order to model assumptions

on the environment, and this is an important feature of the tioco framework.

We could spend many more pages discussing what other properties are desirable from a

formal conformance relation such as tioco: transitivity (if A conforms to B and B conforms

to C then A conforms to C), compositionality (if A1 conforms to B1 and A2 conforms to

B2, then the composition of A1 and A2 conforms to the composition of B1 and B2). These

properties are satisfied by tioco, under appropriate conditions. We refer the reader to [60]

for an in-depth technical study.

Having explained what it means for an SUT to conform to a formal specification, we are

almost ready to discuss test generation. However, before doing that, we still need to make

more precise what exactly we mean by a test case. A test case is essentially a program that

is executed by a tester. The tester interacts with the SUT through the IO interface of the

latter. The tester can be seen as a generic device, capable of running many test cases. So

the tester is essentially a computer, with appropriate IO capabilities for the class of SUTs

we are interested in.

The execution of a test case by the tester must be as deterministic as possible. This is

crucial in order for tests to be reproducible, which in turn is very important for debugging

(it is a nightmare to know that some test has failed without being able to reproduce this

failure). Non-determinism can be allowed, for instance, one may allow randomized testing

where some choices of the tester can be based on tossing a random coin. In reality, however,

this randomness will be generated by a pseudo-random number generator, and the seed of

this generator can be saved and reused to achieve reproducibility.

Obviously, determinism of the execution does not depend only on the tester (and the

test case) but also on the SUT: if the SUT itself is non-deterministic (i.e., for the same

sequence of inputs, it may produce different sequences of outputs) then determinism cannot

40CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

be guaranteed. Still, we will require as a minimum the tester/test case to be deterministic

(or random but using a pseudo-random generator as explained above).

Notice that the behavior of the SUT depends not only on the inputs it receives from the

tester, but also on its internal state. In the context of this work, we will assume that it is

possible to reset the state of the SUT to some given initial state (or set of possible states) after

each test case has been executed. A large amount of research is available in the literature for

the case where the SUT cannot be reset and “resetting” input sequences must be devised, in

addition to the conformance testing sequences (see [73] for an excellent survey). Very little

work has been done about this problem in the context of timed automata [63].

Given that a test case is a deterministic program, what does this program do? It es-

sentially interacts with the SUT through inputs and outputs: it generates and issues the

inputs to the SUT and consumes its outputs. Since the specification defines not only the

legal values of inputs and outputs but also their legal timing, it is very important that the

test case be able to capture timing as well. In other words, the test case must specify not

only which input should be generated but also exactly when. Also, the test case must specify

how to proceed depending on what output the SUT produces but also on the time in which

this output is produced.

For example, consider a specification for a computer mouse that states: “if the mouse

receives two consecutive clicks (the input) in less than 0.2 seconds then it should emit a

double-click event to the computer”. One can imagine various tests that attempt to check

whether a given SUT satisfies the above specification (and indeed behaves as a proper mouse).

One test may consist in issuing two consecutive clicks 0.1 seconds apart, and waiting to see

what happens. If the SUT emits a double-click then it passes the test, otherwise it fails. But

there are obviously other tests: issuing two clicks 0.15 seconds apart, or 0.05 seconds apart,

etc. Also, one may vary the initial waiting time, before issuing the clicks. Also, presumably

the specification requires that the mouse continues to exhibit the same behavior not only

the first time it receives two clicks, but also every time after that. Then a test could try

to issue two sets of two clicks and check that the SUT processes both of them correctly. It

becomes clear that a finite number of tests cannot ensure that the SUT is correct, at least

1.6. TEST GENERATION FOR TIMED AUTOMATA 41

// test case pseudo-code:
s := initialize state; // this is the state of the tester
while(not some termination condition) do

x := select input in set of legal inputs given s;
issue x to the SUT;
set timer to TIMEOUT;
wait until timer expires or SUT produces an output;
if (timer expired) then

s := update state s given TIMEOUT;
end if;
if (SUT produced output y, T time units after x) then

s := update state s given T and y;
end if;
if (s is not a legal state) then

announce that the SUT failed the test and exit;
end if;

end while;
announce that the SUT passed the test and exit;

Figure 1.20: Generic description of a test case.

not in the absence of more assumptions about the SUT. It is also interesting to note some

inherent ambiguities in the above, simple, specification written in English. For instance,

does the delay between the two ticks need to be strictly less than 0.2 seconds or can it be

exactly 0.2 seconds? How much time after the ticks should the mouse respond by emitting

an event to the computer? And so on.

In general, a test case in our setting can be cast into the form shown in Figure 1.20.

The test case is described in pseudo-code. The test case maintains an internal state, which

captures the “history” of the execution (e.g., what outputs have been observed, at what

times, and so on). The state can also be used to encode whether this history is legal, that

is, meets the specification. If it does not, the test stops with the result FAIL. Otherwise, the

test can proceed for as long as required.

The test case uses a timer to measure time. This timer is an abstract device that can

be implemented in different ways in the execution platform of the tester. An important

question, however, is what exactly can this timer measure, especially, how precise this timer

measures time. For instance, in the pseudo-code, the timer is set to expire after TIMEOUT

time units. One may ask: how critical is it that the timer expires exactly after so much

time? What if it actually expires a bit late or a bit early? In the pseudo-code, the timer

42CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

is checked to see how much time elapsed from event x until event y: this amount is T time

units. But if the timer is implemented as an integer counter, which is typically the case in

a digital computer, the value T that the counter reads at any given moment in time is only

an approximation of the time that has elapsed since the timer was reset: in reality, the time

that has elapsed lies anywhere between T and T+1 time units. To the above must be added

inaccuracies because of processing delays. For example, executing the tester code takes time:

this time must be accounted for when updating the state of the tester.

In order to make the issues of time accuracy explicit, we make a distinction between

analog-clock and digital-clock testers (and tests). The former are ideal devices (or programs),

assumed to be able to measure time exactly, with an infinite degree of precision. In particular

they can be assumed to measure any delay which is a non-negative rational number. Digital-

clock tests have access to a digital clock with finite precision. This clock may suffer from

drift, jitter, etc. Analog-clock tests are not implementable since clocks with infinite precision

do not exist in practice. Still, it is worth studying analog-clock tests not only because of

theoretical interest, but also because they can be used to represent ideal, or “best case”

tests, that are independent from a given execution platform. This is obviously useful for test

reusability. Analog-clock tests may also be used correctly when real clock inaccuracies or

execution delays can be seen as negligible compared to the delays used in the test.

We are now in a position to discuss automatic test generation. The objective is to generate,

from a given formal specification, provided in the form of a TAIO, one or more test cases, that

can be represented as programs written in some form similar to the pseudo-code presented

above. We briefly describe this quite technical step and illustrate the process through some

examples. We refer the reader to [60] for a thorough presentation.

We first describe analog-clock test generation. Suppose the specification is given as a

TAIO S. The basic idea is to generate a program that maintains in its memory (the state

variable in the pseudo-code shown in Figure 1.20) the set of all possible legal configurations

that S could be in, given the history of inputs and outputs (and their times) so far. Let C be

this set of legal configurations. The important thing to note is that C completely captures

the set of all legal future behaviors. Therefore, it is sufficient to determine the future of the

1.6. TEST GENERATION FOR TIMED AUTOMATA 43

test.

The set C is represented symbolically, in much the same way as for reachability analysis

used for timed automata model-checking. C is generally non-convex and cannot be rep-

resented as a single zone, however, it can be represented as a set of zones. C is updated

based on the observations received by the test: these observations are events (inputs or out-

puts) and time delays. Updating C amounts to performing an on-the-fly subset construction,

which can be reduced to reachability. This technique was first proposed in [102] where it was

used for monitoring in the context of fault diagnosis. The same technique can be applied to

testing with very minor modifications.

Notice that the above test generation technique is on-the-fly (also sometimes called on-

line). This means that the test state (i.e., C) is generated during the execution of the test,

and not a-priori. There are good reasons for this in the case of timed automata: since the set

of possible configurations of a TA is infinite, the set of all possible sets of legal configurations

is also infinite, thus cannot be completely enumerated.

We illustrate analog-clock on-the-fly test generation and execution on the example spec-

ification S shown in Figure 1.18. Suppose the three states of S are numbered 0,1,2, from

top to bottom. The initial set of legal configurations can be represented by the predicate

C0 : s = 0. Notice that the value of the clock x is unimportant in this case. Next, the

test can choose to issue the single input event a to the SUT. The set of legal configurations

then becomes C1 : s = 1 ∧ x = 0. Let us suppose that TIMEOUT=2. If the SUT produces

output b before the timer expires (i.e., in < 2 time units after it received input a), the set

of legal configurations becomes empty: this is because there is no configuration in C1 that

can perform a b after < 2 time units. An empty C is an illegal state for the test: this means

that the SUT fails the test in this case. Indeed, this is correct, since the SUT produces

output b too early. On the other hand, if the timer expires before b is received, then C is

updated to C2 : s = 1 ∧ x = 2. The timer is reset, and execution continues. Suppose b is

not received after four timeouts: the value of C at this point is C5 : s = 1 ∧ x = 8. If a fifth

timeout occurs, C becomes empty: this is because there is no state in C5 that can let 10

time units elapse (because of the urgency implied when x = 8). Again, the SUT fails in this

44CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

case, because it does not produce a b by the required deadline.

On-the-fly generation is not the only possibility in the case of analog-clock tests. Another

option is to generate analog tests off-line, and represent them as TAIO themselves. However,

these TAIO need to be deterministic, and synthesis of deterministic TA that are in some

sense equivalent to a non-deterministic TA can be an undecidable problem [103]. Indeed,

test generation of TA testers is generally undecidable. Still, it is possible to restrict the

problem so that it becomes decidable. One way of doing this is by limiting the number of

clocks that the tester automaton can have. We refer the reader to [62, 60] for details.

We now turn to digital-clock test generation. Again, we are given a formal specification

in the form of a TAIO S. But in this case, we assume that we are also given a model of

the digital clock, also in the form of a timed automaton. The latter is a special TA model,

called a Tick automaton. The reason is that this TA has a single event, named tick, that

represents the discrete tick of a digital clock (e.g., the incrementation of the digital-clock

counter). Some possible Tick models are shown in Figure 1.21. The left-most automaton

models a perfectly periodic clock with period 1 time unit. The automaton in the middle

models a clock with drift: its period varies non-deterministically between 0.9 and 1.1 time

units. In this model, the k-th tick can occur anywhere in the interval [0.9k, 1.1k]: as k grows,

the uncertainty becomes larger and larger. The right-most automaton models a digital clock

where this uncertainty is bounded: the k-th tick can occur in the interval [k − 0.1, k + 0.1].

tick!

perfectly periodic clock

0.9 ≤ y ≤ 1.1
y := 0

tick!

drifting clock

y = 1
y := 0

tick!

clock with skew/jitter

0.9 ≤ y ≤ 1
tick!

y = 1, y := 0
0 < y ≤ 0.1

y = 1, y := 0

Figure 1.21: Models of digital clocks.

With a Tick model, the user has full control over the assumptions used by the digital-clock

test generator. The generator need not make any implicit assumptions about the behavior

of the digital clock of the tester: all these assumptions are captured in the Tick model. In

an application setting, a library of available Tick models could be supplied to the user to

1.6. TEST GENERATION FOR TIMED AUTOMATA 45

choose a model from.

Having the specification S and the Tick automaton, automatic digital-clock test gen-

eration proceeds as follows. First, the product of S and Tick is formed, as illustrated in

Figure 1.22: this product is again a TAIO, call it S+. The tick event is considered an

output in S+. Next, an “untimed” test is generated from S+. An untimed test is one that

reacts only to discrete events, and not time. However, time is implicitly captured in S+

through the tick event. Indeed, the tick event represents time elapse as measured with a

digital clock! This “trick” allows to turn digital-clock test into an “untimed” test genera-

tion problem. The latter can be solved using standard techniques, such as those developed

in [100]. Although these techniques have been originally developed for untimed specifica-

tions, they can be applied to TAIO specifications such as S+, because they are based on

reachability analysis. Again, the idea of on-the-fly subset construction is used in this case.

Specification+

Specification (digital clock model)
Tick automaton

Inputs Outputs tick!

Figure 1.22: Specification+ : product of Specification and Tick model.

Let us illustrate this process through an example. Suppose we want to generate digital

clock tests from the specification S shown in Figure 1.18 and the left-most, perfectly periodic,

Tick model shown in Figure 1.21. A digital-clock test generated by the above method for

this example is shown in Figure 1.23. Notice that the test is represented as an untimed

automaton with inputs and outputs. This is normal, since any reference to time is replaced

by a reference to the tick event of the digital clock. Also notice that inputs and outputs are

reversed for the test: a is an output for the test (an input for the SUT), while b and tick are

inputs to the test.

The test of Figure 1.23 starts by issuing a after some non-deterministic number of ticks

(strictly speaking, this is not a valid test since it is non-deterministic: however, it can be

seen as representing a set of tests rather than a single test). It then waits for a b. If a b is

46CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

b?tick?

a! tick? tick? tick? tick? tick? tick? tick? tick?

b?
tick?

FAIL

PASS
all labeled with b?

b?

Figure 1.23: A digital clock test generated from the specification S shown in Figure 1.18
and the left-most, perfectly periodic, Tick model shown in Figure 1.21.

received before at least two ticks are received, the SUT fails the test: indeed, this is because

it implies that < 2 time units have elapsed between the a and the b, which violates the

specification S.16 If no b is received for 9 ticks, the SUT fails the test: this is because it

implies that > 8 time units have elapsed between a and b, which again is a violation of S.

Otherwise, the SUT passes the test.

We end this section with a few remarks on test selection. The test generation techniques

presented above can generate a large number of tests: indeed, in the case of multiple inputs,

the test must choose which input to issue to the SUT. It must also choose when to issue this

input (this can be modeled as a choice between issuing an input or waiting). This represents

a huge number of choices, thus a huge number of possible tests that can be generated. This

is similar to the state explosion problem encountered in model-checking: in this case it can

be called the test explosion problem. It should be noted that this problem arises in any

automatic test generation framework, and not just in the timed or hybrid automata case.

The question then becomes, can this large number of tests be somehow limited? Tra-

ditionally, there have been different approaches to achieve this. One approach is based on

the notion of coverage: the idea is to generate a “representative” set of tests. One way of

defining “representative” is by means of coverage: a set of tests that “covers” all aspects of

the specification, in some way. In practice, notions such as state coverage (cover all states of

the specification), transition coverage (cover all transitions), etc., can be used. Test gener-

ation with coverage objectives is explored in [60]. Another approach to limit test explosion

16We assume here that a, b, and tick cannot occur simultaneously. If this assumption is lifted, then the digital-clock test
shown in Figure 1.23 needs to be modified to issue a PASS if b is received exactly one tick after a.

1.7. TEST GENERATION FOR HYBRID AUTOMATA 47

is to “guide” the generation of the test towards some goal: this is done using a so-called

test purpose. A test purpose can specify, for instance, that one of the states of the specifica-

tion should be reached during the test. The test generator should then produce a test that

attempts to reach that state (sometimes reaching a given state cannot be guaranteed since

it generally depends on the outputs that the SUT will produce). This approach has been

followed by untimed test generation tools such as TGV [38] and can be easily adapted to

the timed automata case.

1.7 Test generation for hybrid automata

Concerning hybrid systems, model-based testing is still a new research domain. Previous

work [95] proposed a framework for generating test cases by simulating hybrid models speci-

fied using the language Charon [7]. In this work, the test cases are generated by restricting

the behaviors of an environment automaton to yield a deterministic testing automaton. A

test suite can thus be defined as a finite set of executions of the environment automaton.

In [57], the testing problem is formulated as one of finding a piecewise constant input that

steers the system towards some set, which represents a set of bad states of the systems. The

paper [55] addresses the problem of robust testing by quantifying the robustness of some

properties under parameter perturbations. This work also considers the problem of how to

generate test cases with a number of initial state coverage strategies.

In this section we present a formal framework for conformance testing of hybrid automata

(including important notions such as conformance relation, test cases, coverage). We then

describe a test generation method, which is a combination of the RRT algorithm (presented

in Section 1.4.2) and a coverage-guided strategy.

Conformance relation

To define the conformance relation for hybrid automata, we need first the notions of inputs.

A system input that is controllable by the tester is called a control input; otherwise, it is

48CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

called a disturbance input.

Continuous inputs. All the continuous inputs of the system are assumed to be controllable.

Since we want to implement the tester as a computer program, we are interested in piecewise-

constant continuous input functions (a class of functions from reals to reals which can be

generated by a computer). Hence, a continuous control action (ūq, h), where ūq is the value

of the input and h is the duration, specifies that the system continues with the continuous

dynamics at discrete state q under the input u(t) = ūq for exactly h time. We say that

(ūq, h) is admissible at (q, x) if the input function u(t) = ūq for all t ∈ [0, h] is admissible

starting at (q, x) for h time.

Discrete inputs. The discrete transitions are partitioned into controllable and uncontrol-

lable discrete transitions. Those that are controllable correspond to discrete control actions,

and the others to discrete disturbance actions. The tester emits a discrete control action to

specify whether the system should take a controllable transition (among the enabled ones)

or continue with the same continuous dynamics. In the latter case, it can also control the

values assigned to the continuous variables by the associated reset map. For simplicity of

explanation, we will not consider non-determinism caused by the reset maps. Hence, we

denote a discrete control action by the corresponding transition, such as (q, q′).

We then need the notion of admissible control action sequence, which is formally defined

in [32]. Intuitively, this means that an admissible control action sequence, when being applied

to the automaton, does not cause it to be blocked.

In the definition of the conformance relation between a system under test As and a

specification A, the following assumptions about the inputs and observability are used:

• All the controllable inputs of A are also the controllable inputs of As.

• The set of all admissible control action sequences of A is a subset of that of As. This

assumption assures that the system under test can admit all the control action sequences

that are admissible by the specification.

• The discrete state and the continuous state of A and As are observable.

1.7. TEST GENERATION FOR HYBRID AUTOMATA 49

Intuitively, the system under test As is conform to the specification A iff under every

admissible control sequence, the set of all the traces of As is included in that of A. The

definition of conformance relation can be easily extended to the case where only a subset

of continuous variables are observable by projecting the traces on the observable variables.

However, extending this definition to the case where some discrete states are unobservable

is more difficult since this requires identifying the current discrete state in order to decide a

verdict.

Test cases and test executions

In our framework, a test case is represented by a tree where each node is associated with an

observation and each path from the root with an observation sequence. Each edge of the tree

is associated with a control action. A physical test execution can be described as follows:

• The tester applies a test to the system under test.

• An observation (including both the continuous and discrete state) is measured at the

end of each continuous control action and after each discrete (disturbance or control)

action.

This procedure leads to an observation sequence, or a set of observation sequences if multiple

runs of the test case are possible (in case non-determinism is present). In the following, we

focus on the case where each test execution involves a single run of a test case. It is clear

that the above test execution process uses a number of implicit assumptions, such as obser-

vation measurements take zero time, and in addition, no measurement error is considered.

Additionally, the tester is able to realize exactly the continuous input functions (which is

often not possible in practice because of actuator imprecision).

After defining the important concepts, it now remains to tackle the problem of generating

test cases from a specification model. A hybrid automaton may have an infinite number of

infinite traces; however, the tester can only perform a finite number of test cases in finite

time. Therefore, we need to select a finite portion of the input space of A and test the

50CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

conformance of As with respect to this portion. The selection is done using a coverage

criterion that we formally define in the following. Hence, our testing problem is formulated

so as to automatically generate a set of test cases from the specification hybrid automaton

to satisfy this coverage criterion.

Test coverage

The test coverage we describe here is based on the star discrepancy notion and motivated by

the goal of testing reachability properties. It is thus desirable that the test coverage measure

can describe how well the states visited by a test suite represent the reachable set. One way

to do so is to look at how well the states are equidistributed over the reachable set. However,

the reachable set is unknown, we can only consider the distribution of the visited states over

the state space (which can be thought of as the potential reachable space).

The star discrepancy is a notion from statistics often used to describe the “irregularities”

of a distribution of points with respect to a box. Indeed, the star discrepancy measures how

badly a point set estimates the volume of the box.The popularity of this measure is perhaps

related to its usage in quasi-Monte Carlo techniques for multivariate integration (see for

example [15]).

Let P be a set of k points inside B = [l1, L1] × . . . × [ln, Ln]. Let J be the set of all

sub-boxes J of the form J = [l1, β1] × . . . × [ln, βn] with βi ∈ [li, Li] for all i ∈ {1, . . . , n}
(see Figure 1.24). The local discrepancy of the point set P with respect to the sub-box J

is defined as D(P, J) = |A(P, J)

k
− vol(J)

vol(B)
| where A(P, J) is the number of points of P that

are inside J , and vol(J) is the volume of the box J . Then, the star discrepancy of a point set

P with respect to the box B is defined as: D∗(P,B) = supJ∈JD(P, J). The star discrepancy

satisfies 0 < D∗(P,B) ≤ 1. A large value D∗(P,B) means that the points in P are not much

equidistributed over B.

Since a hybrid automaton can only evolve within the invariants of its discrete states, one

needs to define a coverage with respect to these sets. For simplicity, all the staying sets

are assumed to be boxes. For a set of P = {(q, Pq) | q ∈ Q ∧ Pq ⊂ Iq} be the set of

1.7. TEST GENERATION FOR HYBRID AUTOMATA 51

r r
r
r

r
rB

(β1, β2)

(l1, l2)

J

(L1, L2)

Figure 1.24: Illustration of the star discrepancy notion.

states. The coverage of P is defined as: Cov(P) = 1
||Q||

∑
q∈Q 1 − D∗(Pq, Iq) where ||Q|| is

the number of discrete states in Q. If an invariant set Iq is not a box, one can take the

smallest oriented box that encloses it and apply the star discrepancy definition to that box

after an appropriate coordination change. We can see that a large value of Cov(P) indicates

a good space-covering quality. The star discrepancy is difficult to compute especially for high

dimensions; however it can be approximated (see [79]). Roughly speaking, the approximation

considers a finite box decomposition instead of the infinite set of sub-boxes in the definition

of the star discrepancy.

Coverage guided test generation

Essentially, the test generation algorithm consists of the following two steps:

• From the specification automaton A, generate an exploration tree using the hRRT

algorithm and a guiding tool, which is based on the above described coverage measure.

The goal of the guiding tool is to bias the evolution of the tree towards the interesting

region of the state space, so that to rapidly achieve a good coverage quality.

• Determine the verdicts for the executions in the exploration tree, and extract a set of

test cases interesting with respect to the property to verify.

The motivation of the guiding method is as follows. Because of the uniform sampling of

goal states, the RRT algorithm is biased by the Voronoi diagram of the vertices of the tree.

52CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

If the actual reachable set is only a small fraction of the state space, the uniform sampling

over the whole state space leads to a strong bias in selection of the points on the boundary

of the tree, and the interior of the reachable set can only be explored after a large number

of iterations. Indeed, if the reachable was known, sampling within the reachable set would

produce better coverage results.

Coverage-guided sampling. Sampling a goal state sgoal = (qgoal, xgoal) in the hybrid

state space S consists of the following two steps: (1) Sample a goal discrete state qgoal,

according to some probability distribution; (2) Sample a continuous goal state xgoal inside

the invariant set Iqgoal
.

In each iteration, if a discrete state is not yet well explored, that is, its coverage is low,

we give it a higher probability to be selected. Let P = {(q, Pq) | q ∈ Q ∧ Pq ⊂ Iq} be the

current set of visited states, one can sample the goal discrete state according to the following

probability distribution: Pr[qgoal = q] =
1− Cov(P , q)

||Q|| −
∑

q′∈Q Cov(P , q′)
. Suppose that we have

sampled a discrete state qgoal = q. Since all the staying sets are boxes, and the staying set

Iq is denoted by the box B and called the bounding box.

As mentioned earlier, the coverage estimation is done using a box partition of the state

space B, and sampling of a continuous goal state can be done by two steps: first, sample a

goal box bgoal from the partition, then uniformly sample a point xgoal in bgoal. Guiding is thus

done in the goal box sampling process by defining, at each iteration of the test generation

algorithm, a probability distribution over the set of the boxes in the partition. Essentially, we

favor the selection of a box if adding a new state in this box allows to improve the coverage

of the visited states. This is captured by a potential influence function, which assigns to

each elementary box b in the partition a real number that reflects the change in the coverage

if a new state is added in b. The current coverage estimation is given in form of a lower and

an upper bound. In order to improve the coverage, both the lower and the upper bounds

need to be reduced (see more detail in [32]).

The hRRT algorithm for hybrid automata in which the goal state sampling is done us-

ing this coverage-guided method is now called the gRRT algorithm (which means “guided

1.8. CONCLUSIONS 53

hRRT”). To illustrate the coverage-efficiency of gRRT, Figure 1.25 shows the results ob-

tained by hRRT and gRRT on a linear system after 50000 iterations. We can see that the

gRRT algorithm has a better coverage result. Indeed with the same number of states, the

states visisted by gRRT are more equi-distributed over the reachable set than those visisted

by hRRT.

Figure 1.25: Results obtained using gRRT (left) and hRRT (right), with the same number
of visited states.

These algorithms were implemented in the prototype tool HTG, which was successfully

applied to treat a number of benchmarks in control applications and in analog and mixed-

signal circuits [79, 31].

1.8 Conclusions

Embedded systems consist of hardware and software embedded in a physical environment

with continuous dynamics. To model such systems, timed and hybrid automata models have

been developed and studied extensively in the past two decades. In this chapter we have

reviewed the basics of these models and methods of exhaustive or partial verification, as

well as testing for these models. We hope that our overview will motivate embedded system

designers to use these models in their applications, and that they will find them useful.

54CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

Timed and hybrid automata are still an active field of research, and we refer the readers

to the numerous papers published on these topics, in addition to those referenced in our

bibliography section.

Acknowledgements. We would like to thank Eugene Asarin, Olivier Bournez, Saddek

Bensalem, Antoine Girard, Moez Krichen, Oded Maler, Tarik Nahhal, Sergio Yovine and

other colleagues for their collaborations and their contributions to the results presented in

this article.

1.8. CONCLUSIONS 55

References

[1] N. Abed, S. Tripakis, and J-M. Vincent. Resource-Aware Verification Using Random-
ized Exploration of Large State Spaces. In SPIN’08, number 5156 in LNCS, 2008.

[2] K. Altisen and S. Tripakis. Implementation of Timed Automata: an Issue of Semantics
or Modeling? In P. Pettersson and W. Yi, editors, 3rd Intl. Conf. on Formal Modeling
and Analysis of Timed Systems (FORMATS’05), volume 3829 of LNCS, pages 273–288.
Springer, September 2005.

[3] R. Alur. Timed automata. NATO-ASI 1998 Summer School on Verification of Digital
and Hybrid Systems, 1998.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, D.L. Dill, and H. Wong-Toi. Minimization
of timed transition systems. In 3rd Conference on Concurrency Theory CONCUR ’92,
volume 630 of LNCS, pages 340–354. Springer-Verlag, 1992.

[5] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3–34, 1995.

[6] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In Hybrid
Systems, pages 209–229, 1992.

[7] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivan, C. Kumar, I. Lee, P. Mishra, G. Pappas,
and O. Sokolsky. Hierarchical modeling and analysis of embedded systems, 2002.

[8] R. Alur, T. Dang, and F. Ivancic. Counter-example guided predicate abstraction of
hybrid systems. Theoretical Computer Science (TCS), 354(2):250–271, 2006.

[9] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[10] H. Anai and V. Weispfenning. Reach set computations using real quantifier elimina-
tion. In M.D. Di Benedetto and A. Sangiovanni-Vincentelli, editors, Hybrid Systems:
Computation and Control, LNCS 2034, pages 63–75. Springer-Verlag, 2001.

[11] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability analysis
of piecewise-linear dynamical systems. In B. Krogh and N. Lynch, editors, Hybrid
Systems: Computation and Control, LNCS 1790, pages 20–31. Springer-Verlag, 2000.

[12] E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of nonlinear
systems. Acta Informatica., 43(7):451–476, 2007.

[13] E. Asarin, T. Dang, and O. Maler. The d/dt tool for verification of hybrid systems.
In Computer Aided Verification, LNCS 2404, pages 365–370. Springer-Verlag, 2002.

[14] E. Asarin and G. Schneider. Widening the boundary between decidable and unde-
cidable hybrid systems. In CONCUR, 2002.

[15] J. Beck and W. W. L. Chen. Irregularities of distribution. In Acta Arithmetica, UK,
1997. Cambridge University Press.

[16] B. Berthomieu and M. Menasche. An enumerative approach for analyzing time Petri
nets. IFIP Congress Series, 9:41–46, 1983.

[17] A. Bhatia and E. Frazzoli. Incremental search methods for reachability analysis of
continuous and hybrid systems. In HSCC, pages 142–156, 2004.

[18] S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency in Timed Systems. In W.P.
de Roever, H. Langmaack, and A. Pnueli, editors, Compositionality: The Significant
Difference, Intl. Symposium (COMPOS’97), volume 1536 of LNCS, pages 103–129.
Springer, September 1998.

[19] D. Bosnacki. Digitization of timed automata. In Proc. of the Fourth International
Workshop on Formal Methods for Industrial Critical Systems (FMICS ’99), pages
283–302, 1999.

[20] O. Botchkarev and S. Tripakis. Verification of hybrid systems with linear differential
inclusions using ellipsoidal approximations. In B. Krogh and N. Lynch, editors, Hybrid

56CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

Systems: Computation and Control, LNCS 1790, pages 73–88. Springer-Verlag, 2000.
[21] O. Bournez, O. Maler, and A. Pnueli. Orthogonal polyhedra: Representation and

computation. In F. Vaandrager and J. van Schuppen, editors, Hybrid Systems: Com-
putation and Control, LNCS 1569, pages 46–60. Springer-Verlag, 1999.

[22] P. Bouyer. Forward analysis of updatable timed automata. Formal Methods in System
Design, 24(3):281–320, 2004.

[23] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updatable? In
CAV’00. LNCS 1855, 2000.

[24] M. Bozga, O. Maler, and S. Tripakis. Efficient Verification of Timed Automata using
Dense and Discrete Time Semantics. In L. Pierre and T. Kropf, editors, Correct
Hardware Design and Verification Methods, 10th IFIP WG 10.5 Advanced Research
Working Conference (CHARME ’99), volume 1703 of LNCS, pages 125–141. Springer,
September 1999.

[25] M. Branicky, M. Curtiss, J. Levine, and S. Morgan. Sampling-based reachability algo-
rithms for control and verification of complex systems. In Thirteenth Yale Workshop
on Adaptive and Learning Systems, 2005.

[26] K. Cerans and J. Viksna. Deciding reachability for planar multi-polynomial systems.
In Hybrid Systems, pages 389–400, 1995.

[27] A. Chutinan and B.H. Krogh. Verification of polyhedral invariant hybrid automata
using polygonal flow pipe approximations. In F. Vaandrager and J. van Schuppen,
editors, Hybrid Systems: Computation and Control, LNCS 1569, pages 76–90. Springer-
Verlag, 1999.

[28] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg, and M. Theobald.
Abstraction and counterexample-guided refinement in model checking of hybrid sys-
tems. Int. Journal of Foundations of Computer Science, 14(4):583–604, 2003.

[29] T. Dang. Reachability-based technique for idle speed control synthesis. International
Journal of Software Engineering and Knowledge Engineering IJSEKE, 15 (2), 2005.

[30] T. Dang and O. Maler. Reachability analysis via face lifting. In T.A. Henzinger
and S. Sastry, editors, Hybrid Systems: Computation and Control, LNCS 1386, pages
96–109. Springer-Verlag, 1998.

[31] T. Dang and T. Nahhal. Using disparity to enhance test generation for hybrid systems.
In TESTCOM/FATES, LNCS. Springer, 2008.

[32] T. Dang and T. Nahhal. Model-based testing of hybrid systems. Technical report,
Verimag, IMAG, Nov 2007.

[33] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The Tool KRONOS. In R. Alur, T.A.
Henzinger, and E.D. Sontag, editors, Hybrid Systems III: Verification and Control,
volume 1066 of LNCS, pages 208–219. Springer, 1996.

[34] C. Daws and S. Tripakis. Model Checking of Real-Time Reachability Properties Using
Abstractions. In B. Steffen, editor, 4th Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’98), volume 1384 of LNCS, pages 313–
329. Springer, 1998.

[35] D. Dill. Timing assumptions and verification of finite-state concurrent systems. In
J. Sifakis, editor, Automatic Verification Methods for Finite State Systems, volume
407 of LNCS, pages 197–212. Springer, 1989.

[36] A. Donzé and O. Maler. Systematic simulation using sensitivity analysis. In HSCC,
pages 174–189, 2007.

[37] J. Esposito, J. W. Kim, and V. Kumar. Adaptive RRTs for validating hybrid robotic
control systems. In Proceedings Workshop on Algorithmic Foundations of Robotics,
Zeist, The Netherlands, July 2004.

[38] J.C. Fernandez, C. Jard, T. Jéron, and G. Viho. Using on-the-fly verification techniques
for the generation of test suites. In CAV’96, volume 1102 of LNCS. Springer, 1996.

[39] G. Frehse, B. Krogh, R. Rutenbar, and O. Maler. Time domain verification of oscillator

1.8. CONCLUSIONS 57

circuit properties. Electr. Notes Theor. Comput. Sci., 153(3):9–22, 2006.
[40] A. Girard. Reachability of uncertain linear systems using zonotopes. In Hybrid Sys-

tems: Computation and Control, LNCS 3414, pages 291–305. Springer, 2005.
[41] A. Girard and C. Le Guernic. Zonotope/hyperplane intersection for hybrid systems

reachability analysis. In Hybrid Systems: Computation and ControlHSCC. Springer,
2008.

[42] A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable sets
of linear time-invariant systems with inputs. In Hybrid Systems: Computation and
ControlHSCC, pages 257–271. Springer, 2006.

[43] A. Girard and G. Pappas. Verification using simulation. In HSCC, pages 272–286,
2006.

[44] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.
SIGPLAN Not. (PLDI’05), 40(6):213–223, 2005.

[45] M.R. Greenstreet and I. Mitchell. Reachability analysis using polygonal projections.
In F. Vaandrager and J. van Schuppen, editors, Hybrid Systems: Computation and
Control, LNCS 1569, pages 76–90. Springer-Verlag, 1999.

[46] R. Grosu, X. Huang, S.A. Smolka, W. Tan, and S. Tripakis. Deep Random Search for
Efficient Model Checking of Timed Automata. In F. Kordon and O. Sokolsky, editors,
7th Monterey Workshop on Composition of Embedded Systems, volume 4888 of LNCS.
Springer, October 2006.

[47] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid
automata? In Journal of Computer and System Sciences, pages 373–382. ACM Press,
1995.

[48] T. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In ICALP’92,
LNCS 623, 1992.

[49] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. Information and Computation, 111(2):193–244, 1994.

[50] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. Software Tools for Technology Transfer, 1:110–122, 1997.

[51] G. Holzmann. An analysis of bitstate hashing. In Formal Methods in System Design,
pages 301–314. Chapman & Hall, 1998.

[52] G. Holzmann. The Spin Model Checker. Addison-Wesley, 2003.
[53] S. Iman and S. Joshi. The e-Hardware Verification Language. Springer, 2004.
[54] C. Jard and T. Jeron. Bounded-memory Algorithms for Verification On-the-fly. In

CAV’91, volume 575 of LNCS. Springer, 1992.
[55] A. Agung Julius, Georgios E. Fainekos, Madhukar Anand, Insup Lee, and George J.

Pappas. Robust test generation and coverage for hybrid systems. In HSCC, pages
329–342, 2007.

[56] J. Kapinski, B. Krogh, O. Maler, and O. Stursberg. On systematic simulation of open
continuous systems. In HSCC, pages 283–297, 2003.

[57] J. Kim, J. Esposito, and V. Kumar. Sampling-based algorithm for testing and vali-
dating robot controllers. Int. J. Rob. Res., 25(12):1257–1272, 2006.

[58] Donald E. Kirk. Planning Algorithms. Dover Publications, April 2004.
[59] M. Kloetzer and C. Belta. Reachability analysis of multi-affine systems. In Hybrid

Systems: Computation and Control, pages 348–362. Springer, 2006.
[60] M. Krichen and S. Tripakis. Conformance Testing for Real-Time Systems. Formal

Methods in System Design (to appear).
[61] M. Krichen and S. Tripakis. Black-Box Conformance Testing for Real-Time Systems.

In S. Graf and L. Mounier, editors, 11th Intl. SPIN Workshop on Model Checking
Software (SPIN’04), volume 2989 of LNCS, pages 109–126. Springer, April 2004.

[62] M. Krichen and S. Tripakis. Real-time Testing with Timed Automata Testers and
Coverage Criteria. In Y. Lakhnech and S. Yovine, editors, Joint Intl. Conf. on Formal

58CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

Modelling and Analysis of Timed Systems and Formal Techniques in Real-Time and
Fault-Tolerant Systems, FORMATS/FTRTFT 2004, volume 3253 of LNCS, pages 134–
151. Springer, September 2004.

[63] M. Krichen and S. Tripakis. State Identification Problems for Timed Automata. In
F. Khendek and R. Dssouli, editors, 17th IFIP TC6/WG 6.1 Intl. Conf. on Test-
ing of Communicating Systems (TestCom’05), volume 3502 of LNCS, pages 175–191.
Springer, May 2005.

[64] A. Kuehlmann, K. McMillan, and R. Brayton. Probabilistic state space search. In
ICCAD’99, pages 574–579, 1999.

[65] J. Kuffner and S. LaValle. RRT-connect: An efficient approach to single-query path
planning. In Proc. IEEE Int’l Conf. on Robotics and Automation (ICRA’2000), San
Francisco, CA, April 2000.

[66] A. Kurzhanski and I. Valyi. Ellipsoidal Calculus for Estimation and Control.
Birkhauser, 1997.

[67] A.B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis. In
Hybrid Systems: Computation and Control, 2000.

[68] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal toolbox (et). In Proc. 45th IEEE Conf.
on Decision and Control, 2006.

[69] M. Kvasnica, P. Grieder, M. Baoti, and M. Morari. Multi-parametric toolbox (mpt).
In Hybrid Systems: Computation and Control, volume LNCS 2993, pages 448–462.
Springer, 2004.

[70] K. Larsen, P. Petterson, and W. Yi. Uppaal in a nutshell. Software Tools for Technology
Transfer, 1(1/2), October 1997.

[71] S. LaValle and J. Kuffner. Rapidly-exploring random trees: Progress and prospects,
2000. In Workshop on the Algorithmic Foundations of Robotics.

[72] Steve LaValle. Planning Algorithms. Cambridge University Press, 2006.
[73] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines -

A survey. Proceedings of the IEEE, 84:1090–1126, 1996.
[74] J. Lygeros, K. Johansson, S. Sastry, and M. Egerstedt. the existence of executions

of hybrid automata. In in IEEE Conference on Decision and Control, Phoenix, AZ,
1999.

[75] M. Mihail and C. H. Papadimitriou. On the random walk method for protocol testing.
In David L. Dill, editor, Proc. 6th Intl. Conf. on Computer-Aided Verification CAV,
volume 818, pages 132–141. Springer, 1994.

[76] O. Maler and A. Pnueli. Reachability analysis of planar multilinear systems. In Pro-
ceedings of the 4th Computer-Aided Verification, volume 697. Springer, 1993.

[77] Ian M. Mitchell and Jeremy A. Templeton. A toolbox of Hamilton-Jacobi solvers
for analysis of nondeterministic continuous and hybrid systems. In Hybrid Systems:
Computation and Control, LNCS. Springer-Verlag, 2005, to appear.

[78] N. Kitchen and A. Kuehlmann. Stimulus generation for constrained random simulation.
In ICCAD 2007, pages 258–265, 2007.

[79] T. Nahhal and T. Dang. Test coverage for continuous and hybrid systems. In CAV,
pages 454–468, 2007.

[80] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the description and
analysis of hybrid systems. In Hybrid Systems, pages 149–178, 1992.

[81] J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decidability for
timed automata. In LICS 2003. IEEE CS Press, 2003.

[82] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on
Computing, 16(6), 1987.

[83] G. Pappas, G. Lafferriere, and S. Yovine. A new class of decidable hybrid systems.
In F. Vaandrager and J. van Schuppen, editors, Hybrid Systems: Computation and
Control, LNCS 1569, pages 29–31. Springer-Verlag, 1999.

1.8. CONCLUSIONS 59

[84] R. Pelanek and I. Cerna. Enhancing random walk state space exploration. In In Proc.
of Formal Methods for Industrial Critical Systems (FMICS’05), pages 98–105. ACM
Press, 2005.

[85] E. Plaku, L. Kavraki, and M. Vardi. Hybrid systems: From verification to falsification.
In W. Damm and H. Hermanns, editors, International Conference on Computer Aided
Verification (CAV), volume 4590, pages 468–481. Lecture Notes in Computer Science,
Springer-Verlag Heidelberg, Berlin, Germany, 2007.

[86] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier certifi-
cates. In Rajeev Alur and George J. Pappas, editors, Hybrid Systems: Computation and
Control, volume 2993 of Lecture Notes in Computer Science, pages 477–492. Springer,
2004.

[87] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. SOSTOOLS: Sum of
squares optimization toolbox for MATLAB, 2004.

[88] A. Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems,
10(1-2):87–113, 2000.

[89] A. Puri and P. Varaiya. Decidability of hybrid systems with rectangular differential
inclusions. In David L. Dill, editor, Proceedings of the sixth International Conference
on Computer-Aided Verification CAV, volume 818, pages 95–104, Stanford, California,
USA, 1994. Springer-Verlag.

[90] Stefan Ratschan and Zhikun She. Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Trans. Embedded Comput. Syst., 6(1),
2007.

[91] S. Sankaranarayanan, T. Dang, and F. Ivancic. Symbolic model checking of hybrid
systems using template polyhedra. In TACAS’08 - Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 2008.

[92] S. Shyam and V. Bertacco. Distance-guided hybrid verification with GUIDO. In DATE
’06: Proceedings of the conference on Design, automation and test in Europe, pages
1211–1216. European Design and Automation Association, 2006.

[93] J. Sifakis and S. Yovine. Compositional specification of timed systems. In 13th Annual
Symposium on Theoretical Aspects of Computer Science, STACS’96, volume 1046 of
LNCS. Spinger-Verlag, 1996.

[94] O. Stursberg and B. Krogh. Efficient representation and computation of reachable
sets for hybrid systems. In Hybrid Systems: Computation and Control HSCC, volume
LNCS, pages 482–497. Springer, 2003.

[95] L. Tan, J. Kim, O. Sokolsky, and I. Lee. Model-based testing and monitoring for hybrid
embedded systems. In proceedings of IEEE Internation Conference on Information
Reuse and Integration (IRI’04), 2004.

[96] A. Tiwari. Formal semantics and analysis methods for Simulink Stateflow models.
Technical report, SRI International, 2002.

[97] A. Tiwari and G. Khanna. Nonlinear systems: Approximating reach sets. In Hy-
brid Systems: Computation and Control, volume 2993 of Lecture Notes in Computer
Science, pages 600–614. Springer, 2004.

[98] C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi. Computational techniques for the
verification of hybrid systems. Proceedings of the IEEE, 91(7):986–1001, 2003.

[99] F. Torrisi and A. Bemporad. HYSDEL - a tool for generating computational hybrid
models. IEEE Transactions on Control Systems Technology, 12(2):235–249, 2004.

[100] J. Tretmans. Testing concurrent systems: A formal approach. In CONCUR’99, volume
1664 of LNCS. Springer, 1999.

[101] S. Tripakis. Checking Timed Büchi Automata Emptiness on Simulation Graphs. ACM
Transactions on Computational Logic (to appear).

[102] S. Tripakis. Fault Diagnosis for Timed Automata. In W. Damm and E.-R. Olderog,
editors, Formal Techniques in Real Time and Fault Tolerant Systems, 7th Intl. Sym-

60CHAPTER 1. MODELING, VERIFICATION AND TESTING USING TIMED AND HYBRID AUTOMATA

posium (FTRTFT’02), volume 2469 of LNCS, pages 205–224. Springer, September
2002.

[103] S. Tripakis. Folk Theorems on the Determinization and Minimization of Timed Au-
tomata. Information Processing Letters, 99(6):222–226, September 2006.

[104] S. Tripakis. What is Resource-Aware Verification? Unpublished document, 2008.
Available from the author’s web page.

[105] S. Tripakis and C. Courcoubetis. Extending Promela and Spin for Real Time. In
T. Margaria and B. Steffen, editors, 2nd Intl. Workshop on Tools and Algorithms
for Construction and Analysis of Systems (TACAS’96), volume 1055 of LNCS, pages
329–348. Springer, March 1996.

[106] S. Tripakis and S. Yovine. Analysis of Timed Systems using Time-abstracting Bisim-
ulations. Formal Methods in System Design, 18(1):25–68, January 2001.

[107] A. van der Schaft and H. Schumacher. An introduction to hybrid dynamical systems.
LNCIS 251, Springer, Berlin, 2000.

[108] B. Wile, J. Goss, and W. Roesner. Comprehensive Functional Verification. Elsevier,
2005.

[109] M. De Wulf, L. Doyen, and J-F. Raskin. Almost ASAP semantics: From timed models
to timed implementations. In Hybrid Systems: Computation and Control (HSCC’04),
volume 2993 of LNCS. Springer, 2004.

[110] M. Yannakakis and D. Lee. An efficient algorithm for minimizing real-time transition
systems. In 5th Intl. Conf. on Computer-Aided Verification, LNCS 697, June 1993.

[111] J. Yuan, C. Pixley, and A. Aziz. Constraint-Based Verification. Springer, 2006.
[112] H. Zhu, P. Hall, and J. May. Software unit test coverage and adequacy. ACM Com-

puting Surveys, 29(4), 1997.

