
Computing Reachable States

for Nonlinear Biological Models

Thao Dang, Colas Le Guernic, and Oded Maler�

cnrs-verimag, 2, av. de Vignate, 38610 Gieres, France

Abstract. In this paper we describe reachability computation for con-
tinuous and hybrid systems and its potential contribution to the process
of building and debugging biological models. We then develop a novel al-
gorithm for computing reachable states for nonlinear systems and report
experimental results obtained using a prototype implementation. We be-
lieve these results constitute a promising contribution to the analysis of
complex models of biological systems.

1 Introduction

The development of modeling formalisms and analysis techniques for the study
of biological systems is a central topic in systems biology. The formalisms pro-
posed for representing biological processes are very diverse, differing at the levels
of abstraction, time scales and types of dynamics. The formalism chosen depends
naturally on the level of detail needed to answer the specific biological question
and on the granularity of available experiments. The contribution of this work
is at the level of abstraction of ordinary differential equations (ODEs), a widely
used modeling formalism. Biological systems, for instance metabolic networks
consisting of sets of reactions, can be viewed as continuous dynamical systems
with state variables denoting concentrations. The resulting differential equations
are derived, for example, from mass action rules and are, typically, polynomial.
Such equations can be numerically simulated from a given initial condition pro-
vided that the exact values of the parameters and the external environmental
conditions are known. In certain restricted cases it is possible to determine global
properties analytically.

Though widely used, ODEs suffer from several limitations. First, the passage
from a finite number of molecules to real-valued concentration is not always
justified, especially when the number of molecules is small [22]. Secondly, many
biological phenomena, for example gene activation, are more naturally modeled
as transitions between discrete states. Pure ODEs cannot easily accommodate
this mixture of continuous evolutions and discrete events. Alternatively, purely
discrete formalisms, based on transition systems expressed in various syntac-
tic forms, suffer from a similar reciprocal limitation in the sense of not being
amenable to quantitative reasoning.
� Part of this work was done while the third author was a Weston visiting professor

at Weizmann Institute.

P. Degano and R. Gorrieri (Eds.): CMSB 2009, LNBI 5688, pp. 126–141, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Computing Reachable States for Nonlinear Biological Models 127

Second, the lack of quantitative information concerning molecular concen-
trations, reaction rates and other parameters is the rule, not the exception, in
Biology. Consequently the value of predictions obtained using numerical ODEs
models, where the values of the parameters are “guessed” or “tuned”, is severely
limited. Moreover, the validation of models based on ODEs with poorly-known
parameters is difficult if not impossible because we are never sure to have cov-
ered all the qualitative behaviors compatible with a model by performing only
a finite number of simulations, each with a different choice of parameters. This
fact limits the applicability of such models for testing biological hypotheses.

To deal with this problem, qualitative approaches, notably based on qual-
itative versions of differential equations, have been proposed for representing
genetic regulatory networks, molecular interaction networks or metabolic path-
ways [30, 40]. In these models only the direction of influence between variables
is encoded (e.g. activation vs. inhibition) and much of the quantitative informa-
tion is absent. As a consequence of such under-constrained descriptions, purely-
qualitative approaches often lead to overly-conservative results in the sense of
admitting many spurious behaviors. We propose a technique that can be used
to analyze in a systematic manner quantitative models admitting this kind of
uncertainty whose nature is set-theoretic rather than stochastic.

The analysis techniques that we use and extend originate from the study of
hybrid dynamical systems, a domain situated in the intersection of control theory
and computer science and are based on reachability analysis of hybrid automata.
As their name suggests, hybrid automata are the result of marrying automata
with differential equations. Each discrete state (mode) of the automaton is as-
sociated with one set of differential equations according to which the continuous
variables evolve while being in that mode. When the variables satisfy certain con-
ditions (transition guards) the automaton may switch to another mode where
another set of equations will govern the evolution of the continuous variables.
While hybrid automata allow us to express piecewise-continuous processes and
can underlie numerical simulation, much of the analytic reasoning available for
purely-continuous systems (especially for linear ones) is lost due to switching. In
the last couple of years new techniques have been developed for the algorithmic
analysis of hybrid systems, which open as well new opportunities for the analysis
of purely-continuous systems subject to uncertainties. These techniques combine
ideas from control theory, numerical analysis, graph algorithms and computa-
tional geometry in order to export algorithmic verification, also known as model
checking, to the continuous and hybrid domains.

The principles of algorithmic verification can be summarized as follows. The
system in question is modeled as an automaton whose transitions are labeled by
input events. These inputs represent interactions of the automaton with its ex-
ternal environment (users, other systems). Each sequence of input events induces
one behavior of the automaton, a trajectory over its state space. Simulation is the
process of stimulating the automaton progressively with one input sequence and
observing the behavior that this sequence induces starting from a given initial
state. The problem is that the number of such sequences is prohibitively large.

128 T. Dang, C. Le Guernic, and O. Maler

Verification is based, instead, on computing with sets of states: starting from an
initial set of states P0, one computes all the one-step successors of P0 (under
all possible inputs) to obtain the set P1, to which the same procedure is applied
until all the states reachable from P0 under any admissible input are computed.1

Showing, for example, that some “bad” set of states is never reached (a “safety”
property) amounts to checking whether the reachable set thus computed inter-
sects the bad set. This computation replaces an infinite (or just huge) number
of simulations. More complex properties that specify some temporal patterns of
events can be specified and verified as well using similar methods.

The adaptation of this idea to continuous systems works as follows. Consider
a differential equation of the form ẋ = f(x, v) where x is a vector of state vari-
ables and v represents external disturbances and parameter uncertainties which
are not known exactly but are always taken from a bounded convex set V . Given
a subset P0 of the state space (in a form of, say, a polytope) and a time step r,
one can compute another polytope P1, which contains all the points reachable
from P0 within the time interval [0, r] under any admissible value of v during
that interval. Repeating this process we can obtain an over approximation of
all the reachable states in any desired time horizon. To give a concrete exam-
ple, one can compute all the possible evolutions of a reaction under all possible
concentrations of a signalling molecule which are typically not precisely known,
but which remain in a known interval. The principal contribution of this pa-
per is in developing a new technique for conducting this type of analysis for
nonlinear systems and in demonstrating its applicability on several biological
models.

The rest of the paper is organized as follows. In Section 2 we give a brief in-
troduction to the state-of-the-art in reachability computation for linear systems
and explain why it cannot be applied in a straightforward manner to nonlinear
systems. We then describe the hybridization approach [6] for handling nonlinear
systems. Hybridization is based on over approximating a nonlinear system by a
piecewise-affine system, a restricted type of a hybrid automaton without discon-
tinuous jumps. Although, in principle, hybridization provides for the application
of linear techniques to nonlinear systems, it suffers from inherent limitations
that restrict its applicability to very low-dimensional systems. Section 3 de-
scribes our major contribution, a new dynamic hybridization scheme in which
linearization is not based on a fixed partition of the state space and thus avoids
much of the associated state explosion. For this algorithm we provide in Sec-
tion 4 compelling experimental results, analyzing highly-nonlinear systems of 6
and 9 variables taken from systems biology. We conclude with a discussion of
future work. Although we have tried to maintain the paper as self contained as
possible, some readers might want to consult books like [42, 39, 28, 38] for some
notions of geometry, linear algebra and dynamical systems or expository arti-
cles such as [34,35] which discuss similarities and differences between transition
systems and continuous dynamical systems.

1 More precisely, the computation is guaranteed to converge for finite-state systems.
In continuous domains we are currently satisfied with a bounded time horizon [34].

Computing Reachable States for Nonlinear Biological Models 129

2 Reachability: Linear and Nonlinear Systems

Computing the states reachable by all trajectories of a dynamical system subject
to disturbances and parameter variations emerged as a new research topic from
the interaction between computer science and control. Reachability computation
can be seen as a peculiar way to conduct exhaustive simulation which can be
useful for the analysis of control systems, the verification of analog circuits,
the debugging of biological models and, in fact, any other activity based on
dynamical systems models. After a decade of intensive research, [2,25,11,15,26,4,
33,37,10,5,12,32,24] it is fair to say that a satisfactory solution has been provided
for time-invariant linear systems. Existing algorithms manage to produce, within
seconds, high-quality approximations of the reachable states of linear systems
with hundreds of state variables, for time horizons of thousands of integration
steps. Notwithstanding these achievements, the real challenge in almost any
application domain, Biology included, is the treatment of nonlinear systems, a
challenge that we address in the present paper.

Let us recall the rules of the game. Given a dynamical system S defined by a
differential equation ẋ = f(x, v) with v ranging over some bounded set V , a set
P of initial states and some time horizon h, we would like to compute the set
of states reachable from points in P by trajectories of S within some t ∈ [0, h].
Fixing some time discretization step r, the reachable set is approximated by the
union of the sets in a sequence P0, P1, . . . where P0 contains all states reachable
from P within t ∈ [0, r] and each Pi+1 includes states reachable from Pi within
r time. Actual computations often work first in discrete time where Pi+1 is
reachable from Pi in one time step and then some error terms are added to bloat
Pi+1 and compensate with respect to continuous time.

Reachability computation of linear systems is relatively easy. Consider first a
discrete-time autonomous linear system defined by x′ = Ax and a set P which
admits a finite representation, for example, a polytope represented by its ver-
tices or supporting halfspaces, an ellipsoid represented by its center and defor-
mation matrix or a zonotope represented by its center and generators. Then
the linear transformation “commutes” with the representation. For example, if
P = conv(P̃), meaning a polytope P being the convex hull of its finite set of
vertices P̃ , then

A · P = A · conv(P̃) = conv(A · P̃), (1)

that is, the vertices of the polytope obtained by applying A to the whole set P
are the result of applying A to the vertices of P .

The extension of this idea to systems with under-specified input, that is,
x′ = Ax+ v where v ranges over a bounded convex set V , is more involved. The
set of one-step successors of a set P under such a dynamics is captured by the
Minkowski sum P ′ = AP ⊕ V , which yields a polytope P ′ with more vertices
than P . This repeated growth in the size of the representation of Pi makes it
impractical to iterate for a long time horizon because the number of points on
which A has to be evaluated becomes huge. Two approaches are commonly used
to alleviate this problem:

130 T. Dang, C. Le Guernic, and O. Maler

1. For ellipsoids or for polytopes represented by their supporting halfspaces one
can use techniques based on the maximum principle [41,13] to obtain an over
approximation of AP ⊕V whose representation size is not much larger than
that of P ;

2. The modified recurrence scheme of [27, 24] keeps the number of points to
which the linear transformation is applied fixed. Its implementation using
zonotopes [23,24], a subclass of polytopes which are closed under Minkowski
sum, provides a very efficient solution which is, practically, exact for discrete
time.

The technique that we present in this paper is invariant under the choice between
these two approaches so we express it in terms of an abstract successor operator
σ which, given a set P , an affine differential inclusion (see below) of the form
ẋ ∈ Ax ⊕ V and a time step r, it produces the set σ(P, A, V, r) containing all
points reachable from points in P by trajectories of duration r of the affine
dynamics. The generic linear reachability algorithm can then be written as:

Algorithm 1 (Linear Reachability)
P0 := R̃[0,r](P)
repeat i = 1, 2, . . .

Pi := σ(Pi−1, A, V, r)
until i = k

The set R̃[0,r](P), the over approximation of the states reachable from P within
the time interval [0, r], can be computed, for example, by bloating the convex
hull of P ∪ σ(P, A, V, r) as in [4] or [6].

Moving to nonlinear systems of the form x′ = f(x) for arbitrary f one ob-
serves that “convexity” properties such as (1) do not hold and new ideas are
needed. In principle, it is possible to evaluate f on some representative finite
sample P̃ ⊂ P and then use the resulting points to construct a set which over
approximates f(P). However, the approximation can be very coarse and will
require a costly optimization procedure to be refined, something that cannot be
afforded as part of the inner loop of the reachability algorithm. The “hybridiza-
tion” technique of [6] suggests a good tunable compromise between the quality of
the approximation, the difficulty of the computation and the frequency in which
it is invoked. Before explaining the idea, let us give some necessary definitions.

We consider a state space X , a bounded subset of R
n equipped with a metric

ρ. Given two bounded closed subsets Y and Y ′ of X , the Hausdorff distance
between them (the lifting of ρ to sets) is

ρ(Y, Y ′) = max{max
y∈Y

min
y′∈Y ′

ρ(y, y′), max
y′∈Y ′

min
y∈Y

ρ(y, y′)}.

The trajectories of a dynamical system are viewed as signals over X .

Definition 1 (Signals). A signal over X is a partial continuous function ξ
from T = [0,∞) to X whose domain of definition is T or a prefix [0, r] of it. In
the latter case we say that ξ is finite with duration r. The concatenation of a

Computing Reachable States for Nonlinear Biological Models 131

finite signal ξ defined over [0, r] and a signal ξ′ satisfying ξ′(0) = ξ(r) is defined
in the obvious way and is denoted by ξ · ξ′.
The continuous equivalent of a non-deterministic automaton is the relational
vector field, also known as differential inclusion [7].

Definition 2 (Relational Vector Fields). A relational vector field over X is
a function f : X → 2X − {∅} which is assumed to be K-Lipschitz, satisfying

ρ({x}, {x′}) < a ⇒ ρ(f(x), f(x′)) < Ka.

When f is a (deterministic) function we write f(x) = y rather than f(x) = {y}.

Definition 3 (Dynamical Systems, Trajectories and Reachable Sets). A
(continuous) dynamical system is a pair S = (X, f) where X is a state space
and f is a vector field. A trajectory of S starting from x is a signal ξ over X
with ξ(0) = x and for every t in the domain of definition of ξ, ξ(t) ∈ X and
dξ(t)/dt ∈ f(ξ(t)). The set of all trajectories of S starting from any x ∈ P is
denoted by L(S, P). The sets of states reachable from P within a time interval
[h, h′] is

R[h,h′](P) = {ξ(t) : ξ ∈ L(S, P) ∧ t ∈ [h, h′]}.
Hybridization takes a nonlinear system S = (X, f) and produces another dy-
namical system (S′, f ′) which over approximates it, that is, L(S, P) ⊆ L(S′, P)
for every P , and then computes the reachable states of S′. A formal definition
of S′ as a hybrid automaton can be found in [6]. Since our algorithm does not
use hybrid automata explicitly we only give an informal explanation.

Consider a partition of X into hyper rectangles (we use the term box here-
after). For each box Xq one can compute a linear function Aq and an error
polytope Vq such that for every x ∈ Xq, f(x) ∈ Aqx ⊕ Vq. In other words, Aq

is a local linearization of f with error bounded in Vq. Thus the vector field f ′

is defined as f ′(x) = Aqx ⊕ Vq iff x ∈ Xq. To perform reachability computation
on S′ one applies linear reachability using Aq and Vq as long as the reachable
states remain within box Xq. Whenever some Pi reaches the boundary between
Xq and Xq′ it is intersected with the switching surface (the transition guard,
in the terminology of hybrid automata) and the obtained result is used as an
initial set for reachability computation in q′ using Aq′ and Vq′ , as illustrated in
Figure 1-(a,b). The main advantage of hybridization is that the costly procedure
of finding a good linear approximation is not invoked in every step, only in the
passage between boxes. Although this scheme is clean and general, it suffers from
some serious difficulties on the way to realization:

– Although the intersection of the actual set of reachable states inside a box
with a facet of the box is typically a convex set, its computation can be inef-
ficient and inaccurate. To see why, consider a subsequence of sets Pj , . . . , Pk

computed using some linear technique, all of which intersect the boundary

132 T. Dang, C. Le Guernic, and O. Maler

(a) (b)

A1 A2

Fig. 1. Computing reachable states of the hybridization: (a) applying linear reacha-
bility using A1 until intersection with the boundary; (b) taking the intersection as an
initial set for linear reachability using A2

(c)(b)(a)

Fig. 2. (a) the intersection with the boundary spans over several iterations; (b) con-
tinuing with each intersection separately; (c) continuing with an approximation of the
union of intersections

G as illustrated in Figure 2-(a). In this case we have either to spawn sev-
eral computations with the dynamics of the subsequent box, each starting
with some Pi ∩ G (Figure 2-(b)) or to over approximate

⋃
i Pi ∩ G by a

convex set, an operation that may lead to a large over-approximation error
(Figure 2-(c)).

– The size of the partition of the state space is, of course, exponential in the
dimension, hence care should be taken in order to avoid state explosion. As
suggested in [6], the partition can be generated on-the-fly as the reachability
computation evolves, rather than being precomputed for the whole state
space in advance. However, even on-the-fly generation cannot cope with the
fact that in high dimension, a tube of reachable states will typically leave a
box via exponentially many facets. This situation is illustrated in Figure 3-
(a). Since each of these parts of the reachable set goes to a different box,
they have to be handled separately (Figure 3-(b)) even though they continue
to evolve close to each other.2 Merging these sets when they converge to the
same box is a tedious process and a source of further approximation errors.
This problem is particularly severe because making the boxes smaller is the
recommended recipe for improving accuracy.

2 A similar phenomenon has been encountered in the analysis of timed automata [9].

Computing Reachable States for Nonlinear Biological Models 133

3 Dynamic Hybridization

In this section we describe our novel nonlinear reachability algorithm which,
unlike the scheme of [6], is not based on a fixed partitioning of the state space but
rather generates overlapping linearization domains around the reachable states.
An important ingredient of any hybridization methodology is the linearization
procedure that we first define formally.

Definition 4 (Linearization in a Domain). A linearization operator is a
function L which, for a given nonlinear function f and a convex set B (lin-
earization domain), produces a matrix A and a convex polytope V such that for
every x ∈ B, f(x) ∈ Ax ⊕ V .

We use the notation L(f, B) = (A, V). In our current implementation the lin-
earization domains are boxes, but other forms are possible. In addition to the
linearization operator L and the linear successor operator σ we assume a pro-
cedure β which takes as input a set P and produces a linearization domain
B = β(P) which contains P . The form of B, the relation between its size and
the size of P as well as the position of P inside B are implementation details
that may vary according to the system in question. We first present in general
terms the algorithm for approximates the reachable states, prove its correctness
and then discuss our implementation of L and β.

Algorithm 2 (Dynamic Hybridization) Input: A nonlinear dynamical
system S = (X, f) and an initial set P
Output: A sequence of sets P0, P1, . . . Pk whose union includes R[0,h](P)

B := β(P)
(A, V) := L(f, B)
P0 := R̃[0,r](P)
i := 0
repeat

Pi+1 := σ(Pi, A, V, r)
if Pi+1 ⊆ B

i := i + 1
else

B := β(Pi)
(A, V) := L(f, B)

until i = k

The algorithm performs linear reachability in a linearization domain B as long
as the computed sets remain inside B. Once a newly-computed set Pi+1 is not
fully contained in B we backtrack to Pi and construct a new domain B′ around
Pi along with its corresponding linearization which is used for subsequent com-
putations starting from Pi, as illustrated in Figure 4. The advantage of this
approach is obvious: the linearization mesh is constructed along the reachable
set and thus we avoid artificial splitting of sets due to the structure of the mesh.
Needless to say, the intersection operation is altogether avoided.

134 T. Dang, C. Le Guernic, and O. Maler

(a) (b)

Fig. 3. (a) the reachable set leaves a box through several boundaries; (b) the compu-
tation is continued separately for each intersection although the computed sets remain
close to each other and even go later to the same box

Pi
Pi

P0P0

B

(a)

B

(b)

B′

Fig. 4. Dynamic hybridization: (a) Computing in some box until intersection with the
boundary; (b) Backtracking one step and computing in a new box

Theorem 1 (Correctness of Algorithm 2). Let P0, P1, . . . be a sequence of
sets produced by Algorithm 2. Then for every k ≤ k′, we have

R[kr,k′r](P) ⊆
k′
⋃

i=k

Pi.

Proof. The proof is by induction on the number of switchings between lin-
earization domains that the algorithm makes. The base case where no switching
occurs follows from the correctness of the linear reachability algorithm and the
fact that the linearized system over approximates f . For the inductive case,
assume the claim holds for s switchings and consider a run of the algorithm
with s + 1 switchings, the last of which occurring after Pj , k ≤ j < k′. By
the inductive hypothesis R[jr,jr](P) ⊆ Pj and since Pj serves as the initial set
for subsequent iterations inside a single linearization domain, the base case ap-
plies and Pj+1, . . . , Pk′ includes R[(j+1)r,k′r](P) which, together with Pk, . . . Pj ,
include the states reachable within [kr, k′r].

Algorithm 2 is implemented in C and uses the polytope-based algorithms of
d/dt [13]. Below we explain the novel technical aspects, namely the dynamic
construction of the linearization domain and its respective linearization.

The difference between the function f and its linear approximation A relative
to a domain B is ΔB(f, A) = {f(x) − Ax : x ∈ B}. To guarantee conservative
approximation it is sufficient to find some V such that ΔB(f, A) ⊆ V and this
can be done easily for any choice of a domain B and a linearization A. However to

Computing Reachable States for Nonlinear Biological Models 135

obtain high-quality approximations, we need to choose B and A that minimize,
roughly speaking, the diameter of ΔB(f, A) which represents the error incurred
by the linear over approximation. Clearly the smaller is B, the smaller is the
error but then the linearization procedure has to be invoked more frequently.
The problem of finding good B and A can be formulated, in principle, as some
sort of a constrained optimization problem but this computation can be very
costly and we use instead the following easy-to-compute heuristic which turns
out to work in practice despite being non optimal. The first simplification that
we do with respect to an optimized solution is to decouple the choice of the new
domain B = β(P) from the computation of the linearization (A, V) = L(B, f).

The operator β(P) which produces a box containing P is realized as follows.
Based on f and X we fix a standard rectangular frame B of size d1×, · · · ,×dn.
Given a polytope P we define its centroid c(P) to be the average of its vertices
and let β(P) be a copy of B whose center coincides with c(P). The only prob-
lematic situation occurs when during reachability computation P gets too large
and cannot fit (either immediately or after few steps) within the frame B. To
prevent Algorithm 2 from getting stuck in the else branch, we split P into two or
more sets which are then treated separately. In principle, this splitting may lead
to state explosion but, in this case, the explosion is due to intrinsic properties of
the set of reachable states and not due to an arbitrary choice of the coordinate
system underlying the mesh. This phenomenon will not occur too often while
analyzing stable systems having a contracting dynamics.

To handle the splitting we first compute a tight bounding box B(P) around P .
This computation is performed by projecting the vertices on each of the dimen-
sions and taking the minimum and maximum. Let us denote by e1×, · · · ,×en

the size of the obtained bounding box. If for every i, m · ei < di, where m > 1 is
a fixed constant, then P is sufficiently small and no splitting takes place. Oth-
erwise we take the direction i which maximizes the ratio ei/di and split P into
two parts along this direction by intersecting it with complementary halfspaces
orthogonal to direction i (see Figure 5). We repeat the process until the obtained
sets are sufficiently small. We thus end up with one or more polytopes around
each of which we put a properly-centered copy of B.

Once the linearization domain B is fixed we compute A and V as follows.
Let f = (f1, . . . , fn), and let y = c(B) be the center of B. The matrix A is
obtained by the evaluating (numerically) the Jacobian matrix of f at y, that is,

B(P)

P

P1

P2

B2

B1

Fig. 5. A set P and its bounding box B(P). The set is too large and is split in the
vertical dimension into P1 and P2, around which the respective linearization domains
B1 and B2 are constructed.

136 T. Dang, C. Le Guernic, and O. Maler

A = ∂f
∂x(y) where Aij = ∂fi

∂xj
. Then a box V = V1 × V2 × . . . × Vn, guaranteed

to contain ΔB(f, A), is computed as follows. For each dimension i we let Vi be
the interval [li, ui] where li = min{πi(ΔB(f, A))} and ui = max{πi(ΔB(f, A))}
with πi denoting projection on i. These intervals are over approximated based
on the Taylor expansion of f(x) − Ax.

4 Experimental Results

To test the feasibility of our algorithm we applied it to two nonlinear systems
whose parameters and qualitative behaviors are documented in the literature.

The Lac Operon is a biochemical feedback mechanism through which the
bacterium E. Coli adapts to the lack of Glucose in its environment by switching
to a Lactose diet. We use the model appearing in [31] where the behavior of the
system is described by the following system of differential equations:

Ṙa = τ − μ ∗ Ra − k2RaOf + k−2(χ − Of) − k3RaI2
i + k8RiG

2

Ȯf = −k2raOf + k−2(χ − Of)

Ė = νk4Of − k7E

Ṁ = νk4Of − k6M

İi = −2k3RaI2
i + 2k−3F1 + k5IrM − k−5IiM − k9IiE

Ġ = −2k8RiG
2 + 2k−8Ra + k9IiE

The differential variables denote the concentrations of different reactants, such
as Ra (active repressor) Of (free operator), E (enzyme), M (mRNA), Ii (internal
inducer), and G (glucose). We studied the behavior of this 6-dimensional system
around a quasi-steady state for the first 4 variables and the obtained results
are consistent with the simulation results obtained on a simplified 2-dimensional
model shown in [31], page 285. As a set of initial states we take a small box where

(a) (b)

Fig. 6. Lac operon: (a) a stable focus, k−1 = 2.0; (b) a limit cycle, k−1 = 0.008

Computing Reachable States for Nonlinear Biological Models 137

Fig. 7. Results obtained for the aging model

Ii ∈ [1.9, 2.0] and G ∈ [25.9, 26]. When k−1 = 2.0 the system exhibits a stable
focus and when k−1 = 0.008 the system exhibits a limit cycle (see Figure 6).
Computation times are 3 and 5 minutes, respectively.

We conclude with a model of an aging process, based on the mitochondrial
theory of aging. The highly-nonlinear differential equations, which include ratios
between variables, can be found in [31], page 252. The model admits 9 variables
and we show in Figure 7 the reachable set after 300 iterations projected on 3
variables, namely, the concentration of antioxidants (AOx), of radicals (RAdM)
which suffer damages, and of ATP (adenosine triphosphate). After 1000 itera-
tions, we observe the convergence towards a steady state. The computation time
for 1000 iterations is 23.3 minutes.

5 Discussion

We made progress toward a very ambitious goal: automatic reachability analysis
of nonlinear systems as a methodology for investigating under-specified biological
models. Let us mention other attempts to solve this problem starting with meth-
ods that share with hybridization the idea of approximating the original systems
by partitioning the continuous state space and producing a hybrid automaton
with a simpler dynamics in each state. In the extreme case where no continuous
dynamics is left the finite automaton is the sole responsible for approximat-
ing the dynamics. This approach is common in AI and qualitative physics and
has been used extensively in Biology [21, 30, 19]. The technique of predicate ab-
straction applied to hybrid systems [3] is another elaboration of this idea where
partition boundaries are based on predicates appearing in specifications. A more
refined approach, incorporated into the tools HyTech [20] and PHAVer [17] over
approximates the nonlinear system by hybrid automata where in each state the
dynamics is defined by a constant differential inclusion of the form Aẋ ≤ c.
Since in each state the derivative does not depend on the real variables, it
is easy to compute the reachable states exactly using linear algebra, however
the over approximation with respect to the original system is large (zero-order

138 T. Dang, C. Le Guernic, and O. Maler

compared to first-order approximation in the hybridization of [6]). The transla-
tion of continuous systems into timed automata [36] is another example.

Other, more direct, approaches perform reachability on the original nonlinear
systems without relying on convexity properties. For example, the face lifting
technique [25, 15, 26], which is based on computing the maximal projections of
f on all the normals of the facets of a polyhedron, may lead to large over-
approximation errors. Other approaches use more complex classes of sets which
are not necessarily convex. In [37] the evolution of the reachable states is trans-
formed into a partial differential equation (PDE) where the boundary of the
set is represented as the set of zeros of a function defined over the state space.
The work of [14] uses Bezier simplices to represent reachable states for systems
defined by polynomial differential equations. Finally in [18,1] dynamic lineariza-
tion and computation of error bounds is performed at every reachability step.
None of these methods, to the best of our knowledge, can cope with systems of
the size and complexity of the examples presented in this paper.

Let us also mention the whole domain of interval analysis [40], a branch of
numerical analysis motivated by producing rigorous numerical answers to diverse
mathematical questions despite round-off errors. As its name suggests, for the
computation of a scalar function, the result is typically an interval guaranteed
to contain the correct answer. The generalization to many dimensions leads
naturally to bounding boxes. Although the motivation is different from ours as
the uncertainty is due to the computation itself rather than the imperfection of
the model, there are similarities between some of the techniques and we foresee
more future cross fertilization between the domains.

Parameter uncertainty in biological models is a well-known problem that has
been subject to extensive work using various techniques. We mention two recent
attacks on the problem of parameter synthesis, namely, finding or approximating
the range of model parameters for which some qualitative behavior is exhibited.
The work of [8] takes a hybrid model (piecewise multi-affine dynamics) with
parameter uncertainty and abstracts it into a finite automaton. When the prop-
erty in question is violated by the automaton, the domain of parameter values is
refined, a new abstraction is created and so on. A more direct and efficient way
to explore the space of parameter values is described in [16] based on adaptive
sampling of the parameter space and using ordinary numerical simulation. This
technique uses numerical sensitivity information to guide the refinement of the
parameter space.

To go further we need to combine dynamic hybridization with the algorithm
of [24,27] which can treat linear systems an order of magnitude larger than those
treated in the present paper. To this end we need to develop a good splitting
procedure for the sets computed by that algorithm. As the reader might have
noticed, we have focused here on systems where the uncertainty is restricted
to the initial set and we need to extend our linearization operator to nonlinear
functions with input, something that can be done using similar principles.

To conclude, we have demonstrated the feasibility of our approach by com-
puting reachable states for nonlinear systems of unpreceded size and complexity.

Computing Reachable States for Nonlinear Biological Models 139

We intend to pursue this direction further and make reachability computation a
useful tool for analyzing complex biological systems. A parallel effort should be
invested in making modelers of biological systems aware of the potential of this
analysis technology.

References

1. Althoff, M., Stursberg, O., Buss, M.: Reachability Analysis of Nonlinear Systems
with Uncertain Parameters using Conservative Linearization. In: CDC 2008 (2008)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The Algorithmic Analysis of Hybrid Systems.
Theoretical Computer Science 138, 3–34 (1995)

3. Alur, R., Dang, T., Ivancic, F.: Counterexample-guided Predicate Abstraction of
Hybrid Systems. Theoretical Computer Science 354, 250–271 (2006)

4. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate Reachability Analysis
of Piecewise Linear Dynamical Systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC
2000. LNCS, vol. 1790, pp. 21–31. Springer, Heidelberg (2000)

5. Asarin, E., Dang, T.: Abstraction by Projection and Application to Multi-affine
Systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 32–47.
Springer, Heidelberg (2004)

6. Asarin, E., Dang, T., Girard, A.: Hybridization Methods for the Analysis of Non-
linear Systems. Acta Informatica 43, 451–476 (2007)

7. Aubin, J.-P., Cellina, A.: Differential Inclusions. Springer, Heidelberg (1984)
8. Batt, G., Belta, C., Weiss, R.: Model Checking Genetic Regulatory Networks with

Parameter Uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC
2007. LNCS, vol. 4416, pp. 61–75. Springer, Heidelberg (2007)

9. Ben Salah, R., Bozga, M., Maler, O.: On Interleaving in Timed Automata. In:
Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 465–476.
Springer, Heidelberg (2006)

10. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential
inclusions using ellipsoidal approximations. In: Lynch, N.A., Krogh, B.H. (eds.)
HSCC 2000. LNCS, vol. 1790, pp. 73–88. Springer, Heidelberg (2000)

11. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata
using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen,
J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)

12. Chutinan, A., Krogh, B.H.: Computational Techniques for Hybrid System Verifi-
cation. IEEE Trans. on Automatic Control 48, 64–75 (2003)

13. Dang, T.: Verification and Synthesis of Hybrid Systems, PhD thesis, Institut Na-
tional Polytechnique de Grenoble, Laboratoire Verimag (2000)

14. Dang, T.: Approximate Reachability Computation for Polynomial Systems. In:
Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 138–152.
Springer, Heidelberg (2006)

15. Dang, T., Maler, O.: Reachability Analysis via Face Lifting. In: Henzinger, T.A.,
Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 96–109. Springer, Heidelberg
(1998)

16. Donze, A., Clermont, G., Legay, A., Langmead, C.J.: Parameter Synthesis in Non-
linear Dynamical Systems: Application to Systems Biology. In: RECOMB 2009,
pp. 155–169 (2009)

140 T. Dang, C. Le Guernic, and O. Maler

17. Frehse, G.: PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

18. Han, Z., Krogh, B.H.: Reachability Analysis of Nonlinear Systems using Trajec-
tory Piecewise Linearized Models. In: American Control Conference, pp. 1505–1510
(2006)

19. Halasz, A., Kumar, V., Imielinski, M., Belta, C., Sokolsky, O., Pathak, S.: Analysis
of Lactose Metabolism in E.coli using Reachability Analysis of Hybrid Systems.
IEE Proceedings - Systems Biology 21, 130–148 (2007)

20. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Algorithmic Analysis of Nonlinear Hy-
brid Systems. IEEE Trans. on Automatic Control 43, 540–554 (1998)

21. de Jong, H., Page, M., Hernandez, C., Geiselmann, J.: Qualitative Simulation of
Genetic Regulatory Networks: Method and Application. In: IJCAI 2001, pp. 67–73
(2001)

22. Gillespie, D.T.: Stochastic Simulation of Chemical Kinetics. Annual Review of
Physical Chemistry 58, 35–55 (2007)

23. Girard, A.: Reachability of Uncertain Linear Systems using Zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005)

24. Girard, A., Le Guernic, C., Maler, O.: Efficient Computation of Reachable Sets of
Linear Time-invariant Systems with Inputs. In: Hespanha, J.P., Tiwari, A. (eds.)
HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006)

25. Greenstreet, M.R.: Verifying Safety Properties of Differential Equations. In: Alur,
R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 277–287. Springer,
Heidelberg (1996)

26. Greenstreet, M.R., Mitchell, I.: Reachability Analysis Using Polygonal Projections.
In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp.
103–116. Springer, Heidelberg (1999)

27. Le Guernic, C.: Calcul efficace de l’ensemble atteignable des systémes linaires avec
incertitudes, Master’s thesis, Université Paris 7 (2005)

28. Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Al-
gebra. Academic Press, London (1974)

29. 29 Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis.
Springer, Heidelberg (2001)

30. de Jong, H., Page, M., Hernandez, C., Geiselmann, J.: Qualitative Simulation of
Genetic Regulatory Networks: Method and Application. In: IJCAI 2001, pp. 67–73
(2001)

31. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in
Practice: Concepts, Implementation and Application. Wiley, Chichester (2005)

32. Kurzhanskiy, A., Varaiya, P.: Ellipsoidal Techniques for Reachability Analysis of
Discrete-time Linear Systems. IEEE Trans. Automatic Control 52, 26–38 (2007)

33. Kurzhanski, A., Varaiya, P.: Ellipsoidal tehcniques for reachability analysis. In:
Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, p. 202. Springer,
Heidelberg (2000)

34. Maler, O.: A Unified Approach for Studying Discrete and Continuous Dynamical
Systems. In: CDC 1998, pp. 2083–2088 (1998)

35. Maler, O.: Control from Computer Science. Ann. Rev. in Control 26, 175–187
(2002)

36. Maler, O., Batt, G.: Approximating Continuous Systems by Timed Automata.
In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 77–89. Springer,
Heidelberg (2008)

Computing Reachable States for Nonlinear Biological Models 141

37. Mitchell, I., Tomlin, C.J.: Level Set Methods for Computation in Hybrid Systems.
In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323.
Springer, Heidelberg (2000)

38. Sastry, S.: Nonlinear systems. Analysis, Stability and Control. Springer, Heidelberg
(1999)

39. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
40. Thomas, R., D’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990)
41. Varaiya, P.: Reach Set computation using Optimal Control. In: KIT Workshop,

pp. 377–383. Verimag, Grenoble (1998)
42. Zeigler, G.M.: Lectures on Polytpoes. Springer, Heidelberg (1995)

	Computing Reachable States for Nonlinear Biological Models
	Introduction
	Reachability: Linear and Nonlinear Systems
	Dynamic Hybridization
	Experimental Results
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

