
Test Coverage for Continuous and Hybrid
Systems

Tarik Nahhal and Thao Dang

VERIMAG, 2 avenue de Vignate
38610 Gières, France

Abstract. We propose a novel test coverage measure for continuous and
hybrid systems, which is defined using the star discrepancy notion. We
also propose a test generation method guided by this coverage measure.
This method was implemented in a prototype tool that can handle high
dimensional systems (up to 100 dimensions).

1 Introduction

Hybrid systems have been recognized as a high-level model appropriate for em-
bedded systems, since this model can describe, within a unified framework, the
logical part and the continuous part of an embedded system. Due to the gap be-
tween the capacity of exhaustive formal verification methods and the complexity
of embedded systems, testing is still the most commonly-used validation method
in industry. Its success is probably due to the fact that testing suffers less from
the ‘state explosion’ problem. Indeed, the engineer can choose the ‘degree of
validation’ by the number of tests. In addition, this approach can be applied to
the real system itself and not only to its model. Generally, testing of a reactive
system is carried out by controlling the inputs and checking whether its behavior
is as expected. Since it is impossible to enumerate all the admissible external
inputs to the hybrid system in question, much effort has been invested in defin-
ing and implementing notions of coverage that guarantee, to some extent, that
the finite set of input stimuli against which the system is tested is sufficient for
validating correctness. For discrete systems, specified using programming lan-
guages or hardware design languages, some syntactic coverage measures can be
defined, like exercising every statement or transition, etc. In this work, we treat
continuous and hybrid systems that operate in a metric space (typically R

n)
and where there is not much inspiration coming from the syntax to the coverage
issue. On the other hand, the metric nature of the state space encourages more
semantic notions of coverage, namely that all system trajectories generated by
the input test patterns form a kind of dense network in the reachable state space
without too many big unexplored ‘holes’.

In this work we adopt a model-based testing approach. This approach allows
the engineer to perform validation during the design, where detecting and cor-
recting errors on a model are less expensive than on an implementation. The
main contributions of the paper can be summarized as follows. We propose a
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test coverage measure for hybrid systems, which is defined using the star dis-
crepancy notion from statistics. This coverage measure is used to quantify the
validation ‘completeness’. It is also used to guide input stimulus generation by
identifying the portions of the system behaviors that are not adequately exam-
ined. We propose an algorithm for generating tests from hybrid systems models,
which is based on the RRT (Rapidly-exploring Random Tree) algorithm [8] from
robotic motion planning and guided by the coverage measure. The rest of the
paper is organized as follows. We first describe our test coverage measure and its
estimation. We then present our test generation algorithm. In Section 5 we de-
scribe an implementation of the algorithm and some experimental results. Before
concluding, we discuss related work.

2 Testing Problem

As a model for hybrid systems, we use hybrid automata. Note that a continuous
system can be modeled as a hybrid automaton with only one discrete state. A
hybrid automaton is an automaton augmented with continuous variables that
evolve according to some differential equations. Formally, a hybrid automaton is
a tuple A = (X , Q, F, I, G, R) where X ⊆ R

n is the continuous state space; Q
is a (finite) set of locations (or discrete states); E ⊆ Q × Q is a set of discrete
transitions; F = {Fq | q ∈ Q} is a set of continuous vector fields such that for
each q ∈ Q, Fq = (Uq, fq) where Uq ⊂ R

p is a set of inputs and fq : R
n×Uq → R

n;
I = {Iq ⊆ R

n | q ∈ Q} is a set of staying conditions; G = {Ge | e ∈ E} is a
set of guards such that for each discrete transition e = (q, q′) ∈ E, Ge ⊆ Iq;
R = {Re | e ∈ E} is a set of reset maps. For each e = (q, q′) ∈ E, Re :
Ge → 2Iq′ defines how x may change when A switches from q to q′. A hybrid
state is a pair (q, x) where q ∈ Q and x ∈ X and the hybrid state space is
S = Q × X . In location q, the evolution of the continuous variables is governed
by ẋ(t) = fq(x(t), u(t)). We assume that all fq are Lipschitz continuous1. The
admissible input functions u(·) are piecewise continuous. We denote the initial
state of the automaton by (q0, x0). A state (q, x) of A can change in two ways as
follows. By continuous evolution, the continuous state x evolves according to the
dynamics fq while the discrete state q remains constant. By discrete evolution,
x satisfies the guard condition of an outgoing transition, the system changes
the location by taking this transition and possibly changing the values of x
according to the associated reset map. We assume that discrete transitions are
instantaneous. It is important to note that this model allows to capture non-
determinism in both continuous and discrete dynamics. This non-determinism
is useful for describing disturbances from the environment and imprecision in
modelling and implementation. The hybrid automata we consider are assumed
to be non-blocking and non-Zeno.

A system under test often operates within some environment. In our testing
problem, the tester plays the role of the environment. Given a hybrid automaton

1 This ensures the existence and uniqueness of solutions of the differential equations.
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modeling the behavior of the system under test, the tester can have the follow-
ing controls on the system: first, it can control all the continuous inputs of the
system; second, it can decide whether the system should take a given transition
(among the enabled ones) or continue with the same continuous dynamics. In-
deed, for simplicity of explanation, we do not include the control of the tester
over the non-determinism in the reset maps. We also assume that the state of the
system can be fully observed by the tester. Since we want to implement the tester
as a computer program, we could assume that the continuous input functions
generated by the tester are piecewise-constant with a fixed period h (i.e. they
can change their values only after a fixed period of time), and h is called the
time step. Hence, there are two types of control actions the tester can perform:
continuous and discrete. A continuous control action denoted by a continuous
dynamics and the value of the corresponding input, such as (fq, vq). It specifies
that the system continues with the dynamics fq under the input u(t) = vq for ex-
actly h time. A discrete control action specifies a discrete transition to be taken
by the system. We denote an action of this type by the corresponding transi-
tion, such as (q, q′). For a continuous action (fq, vq), we define its ‘associated’
transition as (q, q). A sequence of control actions is called admissible if after re-
placing all the continuous actions by their associated transitions, it corresponds
to a path (i.e. a sequence of consecutive transitions) in the hybrid automaton A
augmented with a self-loop at every location.

Definition 1 (Test case). A test case is an admissible sequence of control
actions a1, a2, a3, . . . which is coherent with the initial state of the system, that
is if a1 = (fq, vq) then q = q0 and if a1 = (q, q′) then q = q0.

Our testing problem can thus be stated as to automatically generate a set of
test cases from the system model to satisfy a coverage criterion that we formally
define in the following.

Test Coverage. Test coverage is a way to evaluate testing quality. More pre-
cisely, it is a way to relate the number of tests to carry out with the fraction
of the system’s behaviors effectively explored. As mentioned earlier, the classic
coverage notions mainly used in software testing, such as statement coverage
and if-then-else branch coverage, path coverage (see for example [16,14]), are
not appropriate for the trajectories of continuous and hybrid systems defined by
differential equations. However, geometric properties of the hybrid state space
can be exploited to define a coverage measure which, on one hand, has a close
relationship with the properties to verify and, on the other hand, can be effi-
ciently computed or estimated. In this work, we are interested in state coverage
and focus on a measure that describes how ‘well’ the visited states represent
the reachable set of the system. This measure is defined using the star discrep-
ancy notion in statistics, which characterises the uniformity of the distribution
of a point set within a region. We first briefly recall the star discrepancy. The
star discrepancy is an important notion in equidistribution theory as well as in
quasi-Monte Carlo techniques (see for example [1]). Recently, it was also used in
probabilistic motion planning to enhance the sampling uniformity [3].
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Star Discrepancy. Let P be a set of k points inside B = [l1, L1]× . . .× [ln, Ln].
Let Γ be the set of all sub-boxes J of the form J =

∏n
i=1[li, βi] with βi ∈ [li, Li]

(see Figure 1 for an illustration). The local discrepancy of the point set P with

respect to the subbox J is defined as follows: D(P, J) = |A(P, J)
k

− λ(J)
λ(B)

| where

A(P, J) is the number of points of P that are inside J , and λ(J) is the volume
of the box J . The star discrepancy of P with respect to the box B is defined as:

D∗(P, B) = supJ∈Γ D(P, J) (1)

Note that 0 < D∗(P, B) ≤ 1. Intuitively, the star discrepancy is a measure for
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Fig. 1. Illustration of the star discrepancy notion

the irregularity of a set of points. A large value D∗(P, B) means that the points
in P are not much equidistributed over B. When the region is a hyper-cube,
the star discrepancy measures how badly the point set estimates the volume
of the cube. Since a hybrid system can only evolve within the staying sets of
the locations, we are interested in the coverage with respect to these sets. For
simplicity we assume that all the staying sets are boxes.

Definition 2 (Hybrid System Test Coverage). Let P = {(q, Pq) | q ∈
Q ∧ Pq ⊂ Iq} be the set of states. The coverage of P is defined as: Cov(P) =

1
||Q||

∑
q∈Q 1 − D∗(Pq, Iq) where ||Q|| is the number of locations in Q.

If a staying set Iq is not a box, we can take the smallest oriented box that
encloses it, and apply the star discrepancy definition in (1) to that box after
an appropriate coordination change. We can see that a large value of Cov(P)
indicates a good space-covering quality. If P is the set of states visited by a set
of test cases, our objective is to maximize Cov(P).

3 Test Generation

Our test generation is based on a randomized exploration of the reachable state
space of system. It is inspired by the Rapidly-exploring Random Tree (RRT)
algorithm, which is a successful motion planning technique for finding feasible
trajectories of robots in an environment with obstacles (see [8] for a survey). More
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precisely, we extend the RRT algorithm to hybrid systems and combine it with
a guiding tool in order to achieve a good coverage of the system’s behaviors we
want to test. In this context, we use the coverage measure defined in the previous
section. Some preliminary results for continuous systems were described in [12].

The visited states are stored in a tree T , the root of which corresponds to the
initial state. The construction of the tree is summarized in Algorithm 1. In each
iteration, a hybrid state sgoal = (qgoal, xgoal) is sampled to indicate the direction
towards which the tree is expected to evolve. Expanding the tree towards sgoal

is done by making a continuous step as follows:

– First, a starting state sinit = (qinit, xinit) for the current iteration is deter-
mined. It is natural to choose sinit to be a state near sgoal. The definition
of the distance between hybrid states will be given later.

– Next, the procedure ContinuousStep tries to find the input uqinit such
that, after one time step h, the current continuous dynamics at qinit takes
the system from sinit towards sgoal, and this results in a new continuous
state xnew . A new edge from sinit to snew = (qinit, xnew), labeled with the
associated input uqinit , is then added to the tree.

Then, from snew, we compute its successors by all possible discrete transitions.
Each time we add a new edge, we label it with the associated control action.
The algorithm terminates after reaching a satisfactory coverage value or after
some maximal number of iterations. From the tree constructed by the algorithm
we can then extract test cases. In addition, when applying such test cases to the
system, the tree can be used to decide whether the system under test behaves
as expected. In the classic RRT algorithms, which work in a continuous setting,

Algorithm 1. Test generation algotihm
T .init(s0), j = 1 � s0: initial state
repeat

sgoal = Sampling(S) � S : hybrid state space
sinit = Neighbor(T , sgoal)
(snew, uqinit) = ContinuousStep(sinit, h) � h: time step
DiscreteSteps(T , snew), j + +

until j ≥ Jmax

only xgoal needs to be sampled, and a commonly used sampling distribution
of xgoal is uniform over X . In addition, the point xinit is defined as a nearest
neighbor of xgoal in some usual distance, such as the Euclidian distance. In Al-
gorithm 1, the function Sampling plays the role of guiding the exploration via
a biased sampling of xgoal, which will be discussed in detail later. The compu-
tation of discrete successors in DiscreteSteps, which involves testing a guard
condition and applying a reset map, is straightforward. In the following, we show
how to compute the functions Neighbor and ContinuousStep.
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Finding a Neighbor. To define the distance between two hybrid states, we
first define the average length of a path. Given a path of two transitions e =
(q, q′) and e′ = (q′, q′′), let σ(e, e′) = d(R(q,q′)(G(q′,q′′)), G(q′,q′′)) where d is the
average distance between two sets defined as the Euclidian distance between
their centroids. Given a path γ = e1, e2, . . . em where ei = (qi, qi+1), we define
its average length as: len(γ) =

∑m−1
i=1 σ(ei, ei+1). Note that from one location

to another, there can be more than one path. Let Γ (q, q′) be the set of all paths
from q to q′. Given two hybrid states s = (q, x) and s′ = (q′, x′), if q = q′,
we define the hybrid distance dH(s, s′) from s to s′ as the Euclidian distance
between the continuous states x and x′: dH(s, s′) = ||x − x′||. If q �= q′,

dH(s, s′) =

{
min

γ∈Γ (q,q′)
d(x, fG(γ)) + len(γ) + d(x′, lR(γ)), if Γ (q, q′) �= ∅

∞ otherwise.

where fG(γ) = G(q1,q2), the first guard of γ, and lR(γ) = R(qk,qk+1)(G(qk,qk+1)),
that is the set resulting from applying the reset map of the last transition to its
guard set. Intuitively, dH(s, s′) is obtained by adding to the average length of γ
the distance from x to the first guard and the distance from the last ‘reset set’
to x′. This distance can be thought of as an average length of the trajectories
from s to s′. The function Neighbor can thus be computed using this hybrid
distance as follows: sinit = argmins∈V dH(sgoal, s) where V is the set of states
stored in the tree.

Continuous Step. If the states sinit and sgoal have the same discrete location
component, we want to expand to tree from xinit towards xgoal as closely as
possible. Otherwise, let γ be the path from qinit to qgoal with the shortest average
length, we want to steer the system from xinit towards the first guard of γ. In
both cases, this is an optimal control problem with the objective of minimizing
the distance to some target point. This problem is difficult especially for systems
with non-linear continuous dynamics. Thus, we can trade some optimality for
computational efficiency. When the input set is not finite, we can sample a set of
input values and pick from this set an optimal input. In addition, we can prove
that by an appropriate sampling of the input set, the completeness property of
the RRT algorithm is preserved [2].

Coverage Estimation. To evaluate the coverage of a set of states, we need
to compute the star discrepancy of a point set, which is not an easy problem
(see for example [7]). Many theoretical results for one-dimensional point sets are
not generalizable to higher dimensions, and among the fastest algorithms we can
mention the one proposed in [7] of time complexity O(k1+n/2). In this work, we
do not try to compute the star discrepancy but approximate it by estimating a
lower and upper bound. These bounds as well as the information obtained from
their estimation are then used to decide which parts of the state space have
been ‘well explored’ and which parts need to be explored more. This estimation
is done using a method published in [10]. Let us briefly describe this method
for computing the star discrepancy D∗(P, B) of a point set P w.r.t. a box B.
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Although in [10], the box B is [0, 1]n, we extended it to the case where B can be
any full-dimensional box. Let B = [l1, L1]×. . .×[ln, Ln]. We define a box partition
of B as a set of boxes Π = {b1, . . . , bm} such that ∪m

i=1b
i = B and the interiors of

the boxes bi do not intersect. Each such box is called an elementary box. Given
a box b = [α1, β1]× . . .× [αn, βn] ∈ Π , we define b+ = [l1, β1]× . . .× [ln, βn] and
b− = [l1, α1] × . . . × [ln, αn] (see Figure 1 for an illustration).

For any finite box partition Π of B, the star discrepancy D∗(P, B) of the
point set P with respect to B satisfies: C(P, Π) ≤ D∗(P, B) ≤ B(P, Π) where
the upper and lower bounds are:

B(P, Π) = max
b∈Π

max{A(P, b+)
k

− λ(b−)
λ(B)

,
λ(b+)
λ(B)

− A(P, b−)
k

} (2)

C(P, Π) = max
b∈Π

max{|A(P, b−)
k

− λ(b−)
λ(B)

|, |A(P, b+)
k

− λ(b+)
λ(B)

|} (3)

The imprecision of this approximation is the difference between the upper and
lower bounds, which can be bounded by B(P, Π) − C(P, Π) ≤ W (Π) where
follows:

W (Π) = max
b∈Π

(λ(b+) − λ(b−))/λ(B) (4)

Thus, one needs to find a partition Π such that this difference is small.

Coverage-Guided Sampling. We show how to use the estimation of the cov-
erage measure to derive a guiding strategy. Recall that our goal is to achieve a
good testing coverage quality, which is equivalent to a small value of the star
discrepancy of the points visited at each discrete location. More concretely, in
each iteration, we want to bias the goal state sampling distribution according to
the current coverage of the visited states. To do so, we first sample a discrete
location and then a continuous state. Let P = {(q, Pq) | q ∈ Q∧Pq ⊂ Iq} be the
current set of visited states. The discrete location sampling distribution depends
on the current continuous state coverage of each location:

Pr[qgoal = q] =
D∗(Pq, Iq)∑

q′∈Q D∗(Pq′ , Iq′)
.

We now show how to sample xgoal, assuming that we have already sampled a
discrete location qgoal = q. In the remainder of the paper, to give geometric
intuitions, we often call a continuous state a point. In addition, since all the
staying sets are assumed to be boxes, we denote the staying set Iq by the box B
and denote the current set of visited points at location q simply by P instead of
Pq. Let k be the number of points in P . Let Π be a finite box partition of B that
is used to estimate the star discrepancy of P . The sampling process consists of
two steps. In the first step, we sample an elementary box bgoal from the set Π ;
in the second step we sample a point xgoal in bgoal uniformly. The elementary
box sampling distribution in the first step is biased in order to optimize the
coverage. The intuition behind this guiding strategy is to favor the selection of
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an elementary box such that a new point x added in this box results in a smaller
star discrepancy of the new point set P ∪ {x}. The strategy is determined so as
to reduce both the lower bound C(P, Π) and the upper bound B(P, Π).

Reducing the lower bound. We associate with each box B ⊆ Π a number A∗(b)

such that
λ(b)
λ(B)

=
A∗(b)

k
. We denote ΔA(b) = 1

k (A(P, b)−A∗(b)). Denote c(b) =

max{|ΔA(b+)|, |ΔA(b−)|}, and the lower bound of the star discrepancy of the
point set P over the bounding box B becomes: C(P, Π) = maxb∈Π{c(b)}. Note
that in comparison with A∗, the negative (respectively positive) sign of ΔA(b)
indicates that in this box there is a lack (respectively an excess) of points; its
absolute value indicates how significant the lack (or the excess) is. We now
compare the values of |ΔA(b+)| in two cases: the newly added point xnew is in b
and xnew is not in b. If ΔA(b+) is positive, the value of |ΔA(b+)| in the former
case is smaller than or equal to that in the latter case; otherwise it is greater
than or equal to. However, adding a new point in b does not affect the values
of A(P, b−) (see Figure 1). Thus, we define a function reflecting the potential
influence on the lower bound as follows:

ξ(b) =
1 − ΔA(b+)
1 − ΔA(b−)

, (5)

and we favor the selection of b if the value ξ(b) is large. Note that 1−ΔA(b) > 0
for any box b inside B. The intepretation of ξ is as follows. If ΔA(b+) is negative
and its absolute value is large, the ‘lack’ of points in b+ is significant. In this
case, ξ(b) is large, meaning that the selection of b is favored. On the other hand,
if ΔA(b−) is negative and its absolute value is large, then ξ(b) is small, because
it is preferable not to select b in order to increase the chance of adding new
points in b−.

Reducing the upper bound. The upper bound in (2) can be rewritten as

B(P, Π) = max
b∈Π

fm(b) (6)

where fm(b) = max{fc(b), fo(b)} and fc(b) = 1
k (A(P, b+)−A∗(b−)) and fo(b) =

1
k (A∗(b+) − A(P, b−)). Since the value of fm is determined by comparing fc

with fo. After straightforward calculations, the inequality fc(b) − fo(b) ≤ 0 is
equivalent to fc(b) − fo(b) = ΔA(P, b+) + ΔA(P, b−) ≤ 0. Therefore,

fm(b) =
{

fo(b) if ΔA(b+) + ΔA(b−) ≤ 0,
fc(b) otherwise.

(7)

Again, the value of fc(b) when the new point xnew is added in b is larger than
that when xnew is not in b, but the fact that xnew is in b does not affect fo(b). To
reduce fo(b) we need to add points in b−. Hence, if b is a box in Π that maximizes
fm in (6), it is preferable not to add more points in b but in the boxes where
the values of fm are much lower than the current value of B(P, Π) (in particular
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those inside b−). Using the same reasoning for each box b locally, the smaller
|ΔA(P, b+)+ΔA(P, b−)| is, the smaller sampling probability we give to b. Indeed,
as mentionned earlier, if fm(b) = fc(b), increasing fc(b) directly increases fm(b).
On the other hand, if fm(b) = fo(b), increasing fc(b) may make it greater than
fo(b) and thus increase fm(b), because small |ΔA(P, b+) + ΔA(P, b−)| implies
that fc(b) is close to fo(b).

We define two functions reflecting the global and local potential influences
on the upper bound: βg(b) = B(P, Π) − fm(b) and βl(b) = βg(b)|ΔA(P, b+) +
ΔA(P, b−)|. We can verify that βg(b) and βl(b) are always positive. Now, com-
bining these functions with ξ in (5) that describes the potential influence on the
lower bound, we define: κ(b) = γξξ(b)+γgβg(b)+γlβl(b) where γξ, γg, and γl are
non-negative weights that can be user-defined parameters. Then, the probability

of choosing the box b can be defined as follows Pr[bgoal = b] =
κ(b)

∑
b∈Π κ(b)

.

4 Implementation

In addition to the tree that is used to store the explored executions, to facilitate
the computation of geometric operations, such as finding a neighbor, we store the
points reachable by the dynamics at each location using a data structure similar
to a k-d tree. Each node of the tree has exactly two children. Each internal
node is associated with the information about a partitioning plane: its axis i
and position c, and the partitioning plane is thus xi = c (where xi is the ith

coordinate of x). The additional information associated with a leaf is a set of
visited points. Each node thus corresponds to an elementary box resulting from
a hierarchical box-partition of the state space. The box of the root of the tree is
B. The tree and the partition of a 2-dimensional example is shown in Figure 2,
where the axes of the partitioning planes are specified by the horizontal and
vertical bars inside the nodes.
Approximate Neighbors. Since the computation of exact nearest neighbors is
expensive (even in a continuous setting), we approximate a neigbor of x as
follows: find the elementary box b which contains at least one visited point
and, in addition, is closest to x (note that some elementary boxes may not
contain any visited points). Then, we find a point in b which is closest to x. It is
easy to see that b does not necessarily contain a nearest neighbor of x. We use
this approximation because, on one hand the sampling distribution reflects the
boxes we want to explore, and on the other hand, it has lower complexity w.r.t.
dimensions. In addition, as we will show later, this approximation preserves the
completeness.

Update the discrepancy estimation. After adding a new point x, we need to
update the estimation of the star discrepancy. More concretely, we need to find
all the elementary boxes b such that the new point has increased the number
of points in the corresponding boxes b− and b+. These boxes are indeed those
which intersect with the box Bx = [x1, L1] × . . . × [xn, Ln]. In addition, if b is a
subset of Bx, the numbers of points in both b+ and b− need to be incremented;
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Fig. 2. Illustration of the update of the star discrepancy estimation

if b intersects with Bx but is not entirely inside Bx, only the number of points
in b+ needs to be incremented. Searching for all the elementary boxes that are
affected by x can be done by traversing the tree from the root and visiting all
the nodes the boxes of which intersect with Bx. In the example of Figure 2, the
box Bx is the dark rectangle, and the nodes of the trees visited in this search
are drawn as dark cirles.

Box splitting. When the difference between the lower and upper bounds in the
star discrepancy estimation is large, some boxes need to be split as indicated
by (4). Additionally, splitting is also needed for efficiency of the neighbor com-
putation.

Completeness Property. Probabilistic completeness is an important prop-
erty of the RRT algorithm. Roughly speaking, it states that if the trajectory we
seach for is feasible, then the probability that the algorithm finds it approaches
1 as the number k of iterations approaches infinity [8]. Although this property is
mainly of theoretical interest, it is a way to explain a good space-covering prop-
erty and the success of the RRT algorithm in solving practical robotic motion
planning problems. We can prove that our test generation algorithm preserves
this completeness property.

Theorem 1. [Reachability completeness] Let V k be the set of states visited after
k iterations of Algorithm 1. Given ε > 0 and a reachable state (q, x), the
probability that there exists a state (q, x′) ∈ V k such that ||x−x′|| ≤ ε approaches
1 when k approaches infinity, i.e. limk→∞Pr[∃(q, x′) ∈ V k : ||x − x′|| ≤ ε] = 1.

Sketch of Proof. The proofs of the completeness of RRTs are often established
for the algorithms where the goal point sampling distribution is uniform and
all the operations are exactly computed (see for example [8]). We first identify
the following condition: at each iteration k, ∀s ∈ V k : Pr[sinit = s] > 0. We
can prove that this condition is sufficient for the completeness proofs to remain
valid, even when the sampling distribution is non-uniform and the operations
are not exactly computed. The proof of this is rather technical and thus omitted
(see [2]). We now give a sketch of proof that our guided sampling method and
nearest neighbor approximation satisfy this condition. We first observe that,
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both the location and elementary box sampling distributions guarantee that all
the locations and all the boxes have non-null probability of being selected. We
consider only the case where the elementary box b within which we search for
a neighbor of xgoal contains xgoal (the other case can be handled similarly). Let
Pb be the set of visited points that are inside b. Let Vb be the Voronoi diagram
of Pb restricted to b and Cp the corresponding Voronoi cell of a visited point
p ∈ Pb. (Recall that the Voronoi cell of a point p is the set of all points that
are closer to p than to any other point). We can prove that the volume of Cp is
strictly positive. Since the goal point sampling distribution within b is uniform,
Pr[xgoal ∈ Cp] > 0, and hence the probability that p is the approximate neighbor
is also positive. It then follows that any visited point has a positive probability
of being selected to be xinit. This implies that at each iteration, any visited state
has a positive probability to be sinit.

5 Experimental Results

We implemented the test generation algorithm using C++ in a prototype tool,
and the results reported here were obtained by running the tool on a 1.4 GHz
Pentium III. First, to demonstrate the performance of our algorithm, we use
a set of examples of linear systems ẋ = Ax + u in various dimensions. In this
experiment, we did not exploit the linearity of the dynamics and the tested
systems were randomly generated: the matrix A is in Jordan canonical form,
each diagonal value of which is randomly chosen from [−3, 3] and the input set U
contains 100 values randomly chosen from [−0.5, 0.5]n. We fix a maximal number
Kmax = 50000 of visited states. In terms of coverage, the star discrepancy of
the results obtained by our algorithm and the classic RRT algorithm are shown
in Table 1 (left), which indicates that our algorithm has better coverage quality.
These discrepancy values were computed for the final set of visited states, using
a partition optimal w.r.t. to the imprecision bound in (4). Note that in each
iteration of our test generation algorithm we do not compute such a partition
because it is very expensive. The results obtained on a 2-dimensional system are
visualized in Figure 3. Table 1 (right) shows the time efficiency of our algorithm
for linear systems of dimensions up to 100.

To illustrate the application of our algorithm to hybrid systems, we use
the well-known aircraft collision avoidance problem [11]. The dynamics of each

Table 1. Discrepancy results and computation time for some linear systems

dim n Lower bound Upper bound
Algo 1 RRT Algo 1 RRT

3 0.451 0.546 0.457 0.555
5 0.462 0.650 0.531 0.742
10 0.540 0.780 0.696 0.904

dim n Time (min)
5 1
10 3.5
20 7.3
50 24
100 71
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Fig. 3. Results obtained using Algorithm 1 (left) and the RRT algorithm (right)

aircraft is as follows: ẋi = vcos(θi) + d1sin(θi) + d2cos(θ2), ẏi = vsin(θi) −
d1cos(θi) + d2sin(θ2), θ̇i = ω where xi, yi describe the position and θi is the
relative heading. The continuous inputs are d1 and d2 describing the external dis-
turbances on the aircrafts and −δ ≤ d1, d2 ≤ δ. There are three discrete modes.
At first, each aircraft begins in straight flight with a fixed heading (mode 1).
Then, as soon as two aircrafts are within the distance between each other, they
enter mode 2, at which point each makes an instantaneous heading change of
90 degrees, and begins a circular flight for π time units. After that, they switch
to mode 3 and make another instantaneous heading change of 90 degrees and
resume their original headings from mode 1. Thus for N aircrafts, the system has
3N + 1 continuous variables (one for modeling a clock). For the case of N = 2
aircrafts, when the collision distance is 5 no colission was detected after visit-
ing 10000 visited states, and the computation time was 0.9 min. The result for
N = 8 aircrafts with the disturbance bound δ = 0.06 is shown in Figure 4. For
this example, the computation time for 50000 visited states was 10 min and a
collision was found. For a similar example with N = 10 aicrafts, the computation
time was 14 minutes and a collision was also found.

Fig. 4. Eight-aircraft collision avoidance (50000 visited states, computation time: 10
min)
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6 Related Work and Conclusion

Classical model-based testing frameworks use Mealy machines or finite labeled
transition systems and their applications include testing of digital circuits, com-
munication protocols and software. Recently, these frameworks have been ex-
tended to real-time systems and hybrid systems. Here we only discuss related
works in hybrid systems testing. The paper [13] proposed a framework for gen-
erating test cases from simulation of hybrid models specified using the language
Charon. A probabilistic test generation approach, similiar to ours, was pre-
sented in [5]. In this paper, the authors also proposed a coverage measure based
on a discretized version of dispersion. This measure is defined over a set of grid
points with a fixed size δ. The spacing sg of a grid point g is the distance from g
to the tree if it is smaller than δ, and sg = δ otherwise. Let S be the sum of the
spacings of all the grid points. This means that the value of S is the largest when
the tree is empty. Then, the coverage measure is defined in terms of how much
the vertices of the tree reduce the value of S. While in our work, the coverage
measure is used to guide the simulation, in [5] it is used as a termination cri-
terion. The RRT algorithms have also been used to solve other hybrid systems
analysis problems such as hybrid systems control and verification [6,4]. Bias-
ing the sampling process is guided by geometric constraints (such as avoiding
sampling near the obstacles) in [15] and by the exploration history (to predict
unreachable parts) in [5]. The difference which is also the novelty in our method
for guiding test generation is that we use the information about the current
coverage in order to improve it.

To conclude, in this paper we described a test coverage measure for continuous
and hybrid systems and a test generation algorithm. The originality of our paper is
away to guide the test generationprocess by the coveragemeasure.The experimen-
tal results obtained using an implementation of the test generation algorithm show
its scalability to high dimensional systems and good coverage quality. A number of
directions for future research can be identified. First, we are interested in defining a
measure for trace coverage. Partial observability also needs to be considered. Con-
vergence rate of the exploration in the test generation algorithm is another interest-
ing theoretical problem to tackle. This problem is particular hard especially in the
verificationcontextwhere the systemis subject touncontrollable inputs.Finally,we
intend to apply the results of this research to validation of analog and mixed-signal
circuits, a domain where testing is a widely used technique.
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